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Stlmmary 
CD28 is an adhesion receptor expressed as a 44-kD dimer on the surface of a major subset of 
human T cells. The CD28 receptor regulates the production of multiple lymphokines, including 
interleukin 2 (Ib2), by activation of a signal transduction pathway that is poorly understood. 
Here we show that ligation of CD28 by a monoclonal antibody (mAb) or by a natural ligand, 
B7/BB1, induces protein tyrosine phosphorylation that is distinct from T cell receptor (TCR)- 
induced tyrosine phosphorylation. CD28-induced protein tyrosine phosphorylation was greatly 
enhanced in cells that had been preactivated by ligation of the TCR, or by pretreatment with 
phorbol esters. Rapid and prolonged tyrosine phosphorylation of a single substrate, ppl00, was 
induced in T cells after interaction with B7/BB1 presented on transfected Chinese hamster ovary 
(CHO) cells. Anti-B7 mAb inhibited B7/BB1 receptor-induced tyrosine phosphorylation, indicating 
that B7-CD28 interaction was required. CD28-induced tyrosine phosphorylation was independent 
of the TCR because it occurred in a variant of the Jurkat T cell line that does not express the 
TCR. Herbimycin A, a protein tyrosine kinase inhibitor, could prevent CD28-induced tyrosine 
phosphorylation and CD28-induced I1.-2 production in normal T cells. The simultaneous 
crosslinking of CD28 and CD45, a tyrosine phosphatase, could prevent tyrosine phosphorylation 
of ppl00. These results suggest that specific tyrosine phosphorylation, particularly of ppl00, 
occurs directly as a result ofCD28 ligand binding and is involved in transducing the signal delivered 
through CD28 by accessory cells that express the B7/BB1 receptor. Thus, this particular form 
of signal transduction may be relevant to lymphokine production and, potentially may provide 
a means to study the induction of self-tolerance, given the putative role of the costimulatory 
signal in the induction of T cell activation or anergy. 

T he activation of T lymphocytes requires both an antigen- 
specific signal that is delivered by the TCR/CD3 com- 

plex, and the delivery of accessory cell-derived costimula- 
tory signals (1, 2). While the TCR mediates the specificity 
of a T cell-initiated immune response, the presence or ab- 
sence of the costimulatory signal regulates lymphokine gene 
expression (3, 4). The functional outcome of T cell activa- 
tion also appears to depend on the nature of the accessory 
cell-derived costimulatory signal. For example, it has been 

proposed that specific tolerance can be induced by antigen 
encountered in the absence of a costimulatory signal (1-3). 

CD28, a 44-kD glycoprotein expressed as a homodimer 
on the surface of most peripheral blood T cells, is a hypothetical 
receptor for such an accessory signal (5). When CD28 + cells 
are activated with antigen, mitogenic lectins, anti-TCR/CD3 
mAbs, or by PMA, costimulation with CD28 mAbs leads 
to enhanced production of several lymphokines (I1.-2, GM- 
CSF, IFN-% and TNF-oe) and increased cellular prolifera- 
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tion (6, 7). A natural ligand of CD28 has recently been 
identified as B7/BB1 (8), a cell surface glycoprotein present 
on activated B cells (9, 10) and IFN-3,-stimulated monocytes 
(11). Recent experiments in which CD28 was ligated with 
B7/BB1 indicate potent functional effects of CD28-B7/BB1 
interaction that are similar to previous studies that used mAbs 
to bind the CD28 receptor (12-14). 

A major issue that remains unresolved is the nature of the 
signal transduction pathway utilized by CD28. Triggering 
of the TCR leads to rapid tyrosine phosphorylation on a va- 
riety of substrates, including phospholipase C 3'1, and pro- 
vides second messengers that activate protein kinase C and 
raise the intracellular calcium concentration (15). In contrast, 
CD28 stimulation with bivalent mAb does not appear to 
be accompanied by increases in [Ca2+]i and protein kinase 
C activation (5, 16). Pharmacologic agents also appear to dis- 
tinguish between signal transduction by the TCR and by 
CD28, in that TCR-mediated signal transduction is sensi- 
tive to the effects of cyclosporine and agents that raise intra- 
cellular cAMP concentration, while CD28-mediated effects 
are resistant (16-18). Furthermore, signal transduction through 
the TCR appears to require expression of the CD45 tyrosine 
phosphatase (19) while CD28 can function independently of 
CD45 expression (20). 

It has been demonstrated recently that tyrosine phosphory- 
lation has a pivotal role in the early signal transduction events 
after engagement of the TCR (21, 22). With regard to the 
CD28-associated signal transduction pathway, however, the 
potential involvement of tyrosine phosphorylation has not 
been extensively studied. The present study reports that stim- 
ulation ofJurkat T cells and normal T cells with anti-CD28 
mAb induces tyrosine phosphorylation of several substrates. 
CD28-induced tyrosine phosphorylation was strongly en- 
hanced by prestimulation of cells with anti-CD3 mAb or 
with phorbol esters. The interaction of cells expressing the 
B7 molecule with T cells induced prolonged tyrosine phos- 
phorylation of one of these substrates. These effects were 
specific as mAbs identifying other accessory molecules such 
as CD5 and MHC class I molecules could not induce tyro- 
sine phosphorylation of this substrate. Finally, the induction 
of tyrosine phosphorylation by CD28 differed from antigen- 
induced signal transduction in that it was independent of ex- 
pression of the TCR. 

Materials and Methods 
mAbs. Anti-CD3 mAb G19-4 (IgG1), anti-CD28 mAb 9.3 

(IgG2a), anti-CD5 mAb 10.2 (IgG2a), and anti-CD45 mAb 9.4 
(IgG2a) were produced, purified, and in some cases, biotinylated 
as described previously (7, 16). Anti-B7 mAb 133 (IgM) was de- 
scribed previously and the dilutions of ascites used are indicated 
(23). Anti-CD3 mAb OKT3 (IgG2a) was absorbed to goat 
anti-mouse IgG covalently linked to microspheres (Kirkegaard & 
Perry Laboratories, Inc., Gaithersburg, ME)), by incubation of a 
1/10 s dilution of pooled ascites with 107 beads/ml in HBSS at 
room temperature, followed by extensive washing. 

Cells. The CD28 + subset of T ceUs was isolated from periph- 
eral blood T lymphocytes by negative selection using immunoab- 
sorption with goat anti-mouse Ig--coated magnetic particles as pre- 

viously described (17). This resulted in a population of resting T 
cells that was >99% CD3 § and that did not contain CD2+/ 
CD3- cells such as NK cells. The Jurkat T leukemia cell line E6-1 
was a gift from Dr. A. Weiss (University of California, San Fran- 
cisco) and maintained in complete media, i.e., RPMI 1640 con- 
taining 2 mM t-gtutamine, 50/~g/ml gentamycin, and 10% FCS 
(HyClone Laboratories, Logan, UT). In some instances, T cells 
or Jurkat cells were cultured in complete media, or in complete 
media with 5 ng/ml PMA (Sigma Chemical Co., St. Louis, MO) 
or OKT3 beads (+ 5 beads/cell) before experiments. The Jurkat 
J32 cell line (CD2 + ,CD3 + ,CD28 +) has been described (24). J32 
variants (CD2 + ,CD3-,CD28 +) were derived by 3, irradiation-in- 
duced mutagenesis and immunoselection (24); one such cloned mu- 
tant, J32-72.4 is stable in culture. The surface receptor expression 
of these cells was quantitated by indirect immunofluorescence and 
analyzed by flow cytometry. The mean log fluorescence intensity 
for each sample was determined and was converted into linear rela- 
tive fluorescence units (AFL) by the formula AFL = IO[(E-C)/D]; 
where E is the mean log fluorescence intensity of the experimental 
antibody sample, C is the mean log fluorescence intensity of the 
control antibody sample, and D is 50 channels/decade. For the 
TCR/CD3 and CD28 receptors, AFL of the J32 cells was 27.0 
and 57.0, and for the J32-74.2 cells 1.1 and 40.7. Northern blot 
analysis ofJ32-72.4 revealed no detectable TCR-~ mRNA, while 
the expression of the TCR-ce, CD3~,/~, and e, and TCR ~'mRNA 
was similar to that of the parental J32 cells (our unpublished data). 

B7 Transfection of CHO Cells. CHO cells were transfected with 
B7 cDNA as previously described (14). These calls have previously 
been shown to stimulate lymphocyte proliferation and lymphokine 
secretion in a manner that mimics CD28 mAb-induced T cell acti- 
vation (13, 14). Transfected CHO ceils showing no B7 expression 
were recloned and are referred to as CHO-B7-. CHO cells were 
detached from tissue culture plates by incubation in PBS with 0.5 
mM EDTA for 30 min and fixed in 0.4% paraformaldehyde as pre- 
viously described (14). Fixed CHO-B7- cells were used as con- 
trol ceils. 

Immunoblot Analysis of Protein Tyrosine Phosphorylation. Details 
of the immunoblot assay with antiphosphotyrosine antibodies have 
been described dsewhere (25, 26). Calls were suspended at 5-10 
x 107 cells/ml in reaction media, i.e., HBSS containing 0.8% FCS 
and 20 mM Hepes at 37~ at time -3 min and stimulated at time 
0 min. mAbs were used at 10/~g/ml final concentration. For cross- 
linking, biotinylated mAbs were incubated with cells for 5-8 min 
at room temperature, the cells prewarmed at time -3 min, and 
stimulated with avidin (Sigma Chemical Co.) at a final concentra- 
tion of 40/~g/ml at time 0. Stimulation was terminated by the 
addition of ice-cold 10 x lysis buffer, yielding a final concentration 
of 0.5% Triton X-100 (26). After lysis at 4~ nuclei were pelleted 
and postnudear supernatants were subjected to SDS-PAGE on a 
7.5% gd, transferred to polyvinylidene difluoride microporous 
membrane (Millipore, Bedford, MA), and the membranes probed 
with aff~ity-purified antiphosphotyrosine antibodies, labeled with 
12sI staphylococcal protein A (ICN, Irvine, CA) and exposed to 
x-ray film. 

Results 
Herbimycin A Prevents CD28-stimulated 11.,2 Production. 

Previous studies have shown that three distinct biochemical 
signals, provided by phorbol esters, calcium ionophore, and 
ligation of the CD28 receptor with mAb, are required to 
cause optimal II_,2 secretion (27). Cells cultured in the pres- 
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Figure 1. The effect of herbimycin A on CD28-stimulated IL-2 produc- 
tion. T cells were cultured overnight in the absence (open bars) or presence 
O~lled bars) of herbimycin A (1/~M). The cells were then cultured for a 
further 24 h in the presence of medium, immobilized anti-CD3 mAb (G19- 
4), PMA (3 rig/m1) (P), or PMA plus ionomycin (150 ng/ml) (P+/) in 
the presence or absence of soluble anti-CD28 mAb 9.3 (1/~g/ml). Cell- 
free supernatant was collected and serial dilutions were analyzed for Ib2 
content by bioassay as described (27). Cells cultured in PMA, ionomycin, 
or 9.3 mAb only produced <10 U/ml of IL-2. 

ence PMA, ionomycin, or CD28 mAb alone produced no 
detectable IL-2 and, as previously reported (27, 28), stimula- 
tion of the CD28 receptor strongly upregulated IL-2 produc- 
tion of T cells stimulated with immobilized anti-CD3 mAb, 
PMA, or PMA plus ionomycin (Fig. 1). To address the poten- 
tial role of tyrosine kinases in CD28-triggered signaling, we 
investigated the effect of herbimycin A, an inhibitor of the 
src family protein tyrosine kinases (29), on the CD28-triggered 
enhancement of II.-2 production. The CD28 mAb mediated 
enhancement of IL-2 production in response to stimulation 
with immobilized anti-CD3, or PMA was nearly completely 
inhibited in the presence of herbimycin A. In contrast, I1.-2 
secretion mediated by PMA plus ionomycin stimulation was 
largely resistant to herbimycin (Fig. 1). 

Disruption of the proximal signaling pathway triggered 
through CD3 could potentially explain the effect of herbimycin 
on cells stimulated with anti-CD3 and anti-CD28. Consis- 
tent with this, CD3-triggered II.-2 production was previously 
shown to be exquisitely sensitive to herbimycin A (21). How- 
ever, II.72 production induced with the combination of PMA 
plus ionomycin or PMA plus CD28 stimulation permits, in 
principle, the ability to isolate the CD28 signal for testing 
the effect of herbimycin A. PMA plus anti-CD28-stimulated 
IL-2 production was sensitive to the effects of herbimycin A 
while, as noted above, PMA plus ionomycin-stimulated I1:2 
secretion was resistant to the effects of herbimycin A. The 

Figure 2. CD28 mAb induces protein tyrosine phosphoryhtion in PMA- 
treated Jurkat E-6 cells but not in untreated Jurkat E-6 cells. Jurkat E-6 
cells were cultured for 2 d in the presence or absence of PMA (5 ng/ml). 
After washing, 107 cells in 120/~i were stimulated with reaction media 
(control), anti-CD3 mAh (G19-4), anti-CD28 mAb (9.3), or crosslinked 
anti-CD28 mAb (9.3) (final concentration, 10 ~tg/ml). For crosslinking, 
biotinylated mAb was added at time -10 rain, followed by avidin (40 
/~g/ml) at time zero. After 2 rain, the reaction was terminated with ice- 
cold lysis buffer and posmuclear supernatants were resolved by SDS-PAGE 
electrophoresis, transferred to immobihn, and immunoblotted with an- 
tiphosphotyrosine, followed by 12SI-protein A and autoradiography, as de- 
scribed in Materials and Methods. The position of molecular mass markers 
are shown on the right; arrowheads to the left indicate the position of 
pp75 and of ppl00. 

combination of PMA plus ionomycin plus anti-CD28- 
stimulation resulted in more II.-2 secretion than optimal 
amounts of PMA plus ionomycin, consistent with previous 
reports (27, 28). However, in the presence of herbimycin A, 
PMA plus ionomycin plus CD28-stimulated cells produced 
approximately equivalent amounts of I1.-2 as cells stimulated 
in the absence of herbimycin with PMA plus ionomycin. To- 
gether, the above results suggest that the function of both 
the TCR and CD28 receptors are sensitive to herbimycin, 
and further suggest the independent effects of these three re- 
agents on II.-2 gene expression (27, 28). 

Crosslinking of the CD28 Receptor by Monoclonal Antibody 
Induces Protein Tyrosine Phosphorylation in PMA-treated Jurkat 
and Not in UnstiraulatedJurkat Cells. Given the above-func- 
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tional results, the potential involvement of protein tyrosine 
phosphorylation in CD28-mediated signal transduction was 
investigated by immunoblot analysis of postnuclear superna- 
rants of whole cell lysates of the T cell leukemia line Jurkat 
E6-1 (Fig. 2). In a previous report, increased tyrosine phos- 
phorylation could not be detected in resting T cells after cross- 
linking the CD28 receptor (30). Consistent with that report, 
no changes in tyrosine phosphorylation were detected in un- 
stimulated Jurkat cells after the binding of bivalent or cross- 
linked CD28 mAb (Fig. 2, lanes 3 and 4). Previous studies 
have shown that CD28 stimulation alone does not result in 
lymphokine production in Jurkat cells or induce prolifera- 
tion of primary T cells (31-33). Engagement of CD28 by 
CD28 mAbs or by B7, the natural CD28 ligand, delivers 
a costimulatory signal provided T cells are stimulated with 
PMA or with TCR/CD3 mAbs (5, 12-14). We reasoned 
that CD28-induced protein tyrosine phosphorylation might 
only occur in the context of a costimulatory signal. To test 
this hypothesis, Jurkat cells were cultured in PMA and then 
stimulated with anti-CD28 mAb. In these PMA-stimulated 
cells, crosslinking of CD28 for 2 min induced phosphotyro- 
sine on substrates migrating with approximate molecular 

masses of 47, 62, 75, 82, 100, 110, and 145 kD (Fig. 2, lane 
7). Bivalent CD28 mAb induced tyrosine phosphorylation, 
but to a lesser magnitude. In agreement with a previous re- 
port (26), CD3 triggering of Jurkat cells induced tyrosine 
phosphorylation of pp56, pp65, pp75, ppl00, pp110, and 
pp145 in resting Jurkat cells (Fig. 2, lane 2) and in PMA- 
treated Jurkat cells (data not shown). Of particular interest 
are pp75 and ppl00, (arrowheads), which are consistently phos- 
phorylated by CD28 stimulation in all conditions we have 
tested. 

CD28 Receptor Crosslinking with Monoclonal Antibody In- 
duces Protein Tyrosine Phosphorylation in Normal T Cells. We 
performed similar experiments with highly purified periph- 
eral blood T cells from normal human donors in order to 
determine if CD28 could increase tyrosine phosphorylation 
in nontransformed cells (Fig. 3). T cells were cultured with 
PMA for 6 h before CD28 stimulation. Cross[inking of CD28 
for 2 rain on PMA-treated cells induced the appearance of 
tyrosine phosphorylated substrates that migrated at 47, 75, 
and 100 kD (lanes I vs. 4). Again, pp75 and ppl00 were most 
prominent and consistently reproduced. 

The effects of CD28 stimulation observed after 24-48 h 
of PMA stimulation (not shown) were more pronounced than 
those seen after 6 h (Fig. 3). Ligation of CD28 by mAb on 
resting T cells caused the appearance of weakly detected tyro- 
sine phosphorylation (Fig. 4, left). The induction of increased 
responsiveness to anti-CD28 mAb stimulation by PMA is 
slow in that 4-6 h of PMA treatment are required to consis- 
tently observe CD28-induced tyrosine phosphorylation. Ex- 

Figure 3. CD28 induces protein tyrosine phosphorylation in PMA- 
stimuhted T cells. Peripheral blood CD28 § T cells were cultured in PMA 
(5 ng/ml) for 6 h. After washing, 107 cells were stimulated for 2 min with 
media (control), anti-CD3 mAb (G19.4), anti-CD28 mAb (9.3), cross- 
linked anti-CD28 mAb (9.3), or crosslinked anti-CD5 mAb (10.2). Cells 
were lysed and protein tyrosine phosphorylation was determined as de- 
scribed in Fig. 2. 

Figure 4. Kinetics of CD28-triggered induction of protein tyrosine phos- 
phorylation in quiescent T cells and in TCR-stimulated T cell blasts. T 
cells were cultured overnight in medium (left) or in the presence of anti- 
CD3-coated beads (right). The cells were recovered, and 8 x 106 cells were 
stimulated with crosslinked anti-CD28 mAb for 0--5 rain as indicated, 
the cells lysed, and protein tyrosine phosphorylation determined as de- 
scribed in Fig. 2. 
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Figure 5. Interaction of CD28 with CHO- 
B7 + cells induces sustained tyrosine phos- 
phorylation of ppl00. CHO cells expressing 
B7 or not expressing B7 were detached from 
tissue culture plates and fixed with 0.4% 
paraformaldehyde as described in Materials and 
Methods. + and - indicate expression or 
nonexpression of B7, respectively. T cells were 
cultured overnight with PMA (5 ng/ml). (A) 
Tune course. 5 x 105 CHO-B7- or B7 + cells 
were added to 5 x 106 PMA-treated T cells 
at time 0. The reaction was terminated with 
lysis buffer after 0-30 min. (Lane I) T cells were 
lysed first followed by the addition of the CHO- 
B7 + cells. (B) Blocking with anti-B7 mAb. 
5 x 10 s CHO-B7- cells or B7 + cells were 
added to 5 x 106 PMA-treated T cells at time 
0. (Lanes 1 and 2) T cells were lysed first fol- 
lowed by the addition of the CHO-B7- (lane 
I) or CHO-B7 + (lane 2) cells. (Lane 5) CHO- 
B7 + cells were incubated with anti-B7 mAb 
133 (1/100 of ascites) for 30 rain before adding 
them to the T cells (+*). After 20 min, the 
reaction was terminated and detergent-soluble 
proteins were processed further as described in 
Fig. 2. The data in A and B are derived from 
two independent experiments. The position of 
ppl00 is indicated. 

periments with cycloheximide indicate that new protein syn- 
thesis is required for cells to become responsive to CD28 (data 
not shown). The specificity of the CD28-induced tyrosine 
phosphorylation was investigated by crosslinking CD5 with 
an isotype-matched mAb (Fig. 3, lane 5). Increased tyrosine 
phosphorylation on the 75-kD substrate was occasionally in- 
duced by CD5 crosslinking. In contrast, CD5 never induced 
tyrosine phosphorylation on ppl00. Similarly, crosslinking 
of the MHC dass I receptor also did not induce tyrosine phos- 
phorylation of this substrate (not shown). 

CD28 Receptor Crosslinking Induces Protein Tyrosine Phos- 
phorylation in CD3-treated Normal T Cells. The above ex- 
periments suggest that the CD28 receptor is relatively inac- 
tive in quiescent cells, and becomes responsive consequent 
to protein kinase C activation. To determine whether TCK 
stimulation can also prime calls for the CD28 signal, T calls 
were cultured overnight in medium or with anti-CD3 mAb 
OKT3 adsorbed to microspheres (Fig. 4). In this experiment, 
crosslinked CD28 mAb induced low-level tyrosine phosphory- 
lation on multiple substrates in resting T cells that peaked 
2-5 min after CD28 stimulation. In contrast, CD28 mAb 
induced marked tyrosine phosphorylation in CD3-primed cells 
that was maximal within 1 rain. Thus, costimulation of T 
ceUs with and-CD3 augmented CD28-induced tyrosine phos- 
phorylation as manifested by an increased magnitude of re- 
sponse and an accelerated kinetics of response. This induc- 
tion of responsiveness to CD28 did not require DNA synthesis, 
as separate studies have shown that the T cell blasts used for 
these studies were in the late G1 phase of the cell cycle (data 
not shown). 
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CD28 Receptor-B7/BB1 Receptor Interaction Induces Specific 
Tyrosine Phosphorflation in T Cells. The above results indi- 
cate that CD28 mAb can increase tyrosine phosphorylation 
on a variety of substrates on pre-activated T calls. Previous 
studies have indicated that CD28 appears to deliver two bio- 
chemically distinct signals, depending on the degree of cross- 
linking (30). The unique functional properties of CD28 mAb 
observed after stimulation of T calls do not require highly 
crosslinked CD28 mAb and are obtained using intact or 
F(ab')2 CD28 mAb (33). Recent studies have shown that 
CHO ceils expressing the CD28 ligand mimic the functional 
effects ofCD28 mAb (13, 14). These cells presumably repre- 
sent a more physiologic means to study CD28 receptor- 
mediated signal transduction. CHO-B7 + cells were in- 
cubated with PMA-treated T ceils at a C H O / T  cell ratio of 
1:10 for 5-30 min (Fig. 5 A). B7-transfected CHO calls not 
expressing B7 on the call surface (CHO-B7- cells) were 
used as controls. Before the stimulation, CHO cells were fixed 
with paraformaldehyde to decrease phosphotyrosine back- 
ground. Previous studies have indicated that this treatment 
leaves intact B7-CD28 interaction and the ensuing functional 
effects (14). For the time zero point, lysis buffer was added 
to the T cells first, immediately followed by addition of CHO 
cells to the mixture (Fig. 5 A, lane I; and/3, lanes 1 and 
2). CHO-B7 + cells induced specific tyrosine phosphoryla- 
tion that was detected primarily on a substrate that migrated 
at 100 kD. The CHO-B7-induced tyrosine phosphorylation 
was detectable within 5 rain of stimulation (data not shown) 
and remained devated at plateau levels for at least 30 rain. 
CHO-B7-induced tyrosine phosphorylation was evident at 



Figure 6. CD28 crosslinking induces tyrosine phosphorylation of ppl00 
in a CD3- Jurkat cell line. CD3+CD28 + and CD3-CD28 § Jurkat mu- 
tant cell lines were generated as described in Materials and Methods. 107 
cells were stimulated for 2 min with anti-CD3 mAb (G19-4), crosslinked 
CD28 mAb (9.3), or crosslinked anti-CD5 mAb (10.2), as described in 
Fig. 2. The position of ppl00 is indicated. 

Figure 7. CD28-induced tyrosine phosphorylation can be prevented by 
herbimycin A. T cells were treated overnight with PMA (5 ng/ml) in 
the presence of the indicated concentration of herbimycin A or in control 
medium. The cells were collected, washed, and 8 x 106 cells were stimu- 
lated with medh or with crosslinked anti-CD28 mAb for 2 min. Detergent- 
soluble proteins were processed as described in Fig. 2. 

a variety of CHO-T cell ratios, and has been consistently ob- 
served for only the 100-kD substrate. CHO-B7- cells did 
not induce tyrosine phosphorylation of ppl00. The B7-induced 
tyrosine phosphorylation was dependent upon CD28-B7 in- 
teraction as preincubation of the CHO cells with anti-B7 
mAb prevented CHO-B7 induced ppl00 tyrosine phosphory- 
lation (Fig. 5 B, lanes 4 vs. 5). B7- CHO cells induced a 
slight increase in ppl00 tyrosine phosphorylation in some 
experiments, however, this was not consistently observed (Fig. 
5, A and B). 

In other experiments, aUoantigen-induced T cell blasts were 
tested for CD28-induced tyrosine phosphorylation. T cells 
were cultured for 8 d with allogeneic irradiated cells and then 
stimulated with CD28 mAb. Tyrosine phosphorylation that 
was most pronounced on the 75- and 100-kD substrates was 
observed (data not shown). Thus, CD28 stimulation of T 
cells preactivated with alloantigen, CD3 mAb, or PMA can 
induce tyrosine phosphorylation on a limited number of sub- 
strates that are early in onset and brief in duration. 

CD28 Receptor-induced Tyrosine Phosphorylation Does Not 
Require Celt Surface Expression of the T Cell Receptor. There 
is evidence that the costimulatory signal delivered by CD28 
is independent of the TCR. Such conclusions are based on 
studies of CD28-induced lymphokine production in cell lines 
lacking expression of the TCR (31). The observation that 
CD28-induced lymphokine production is resistant to various 
immunosuppressive agents while TCR-induced lymphokine 
production is sensitive also suggested that CD28-induced 
signal transduction might be independent of the TCR (16-18). 
The Jurkat J32 and J32-72.4 lines were studied to assess 
whether CD28-induced tyrosine phosphorylation was depen- 
dent on expression of the TCR. J32 cells have the wild-type 
phenotype (24) while J32-72.4 is a TCR- mutant line that 
expresses 71% of the wild-type levels of the CD28 receptor 
(see Materials and Methods). CD28 mAb stimulation clearly 
induced ppl00 tyrosine phosphorylation in the TCR- line, 
although the level of tyrosine phosphorylation was less than 
in the parental J32 line (Fig. 6). The decreased magnitude 
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phorylation on pp75 and ppl00 that was completely prevented 
by CD45 (Fig. 8). Consistent with previous results (34), cross- 
linking of CD45 alone caused increased tyrosine phosphory- 
lation of a 120-135-kD substrate (Fig. 8, lane 2); this effect 
is also seen in CD28 plus CD45-treated cells. Thus, the above 
studies indicate that CD28-induced tyrosine phosphorylation 
is sensitive to an inhibitor of src family protein tyrosine ki- 
nases, and furthermore, that the CD45 protein tyrosine phos- 
phatase can prevent CD28-induced protein tyrosine phos- 
phorylation. 

Figure 8. CD28-induced tyro- 
sine phosphorylation can be pre- 
vented by anti-CD45 mAb. T cells 
were cultured overnight with 
PMA (5 ng/ml). 107 cells were 
incubated for 10 rain with media 
(control), biotinylated anti-CD45 
mAb (9.4), anti-CD28 mAb (9.3), 
or both. mAbs were crosslinked 
with avidin at time 0. The reac- 
tion was terminated after 2 min. 
Immunoblot analysis with an- 
tiphosphotyrosine antibodies of 
detergent-soluble proteins was 
performed as described in Fig. 2. 

of CD28-induced phosphorylation in the TCR-  line is most 
likely the result of decreased surface expression of CD28 in 
these cells. TCR stimulation caused substantial stimulation 
of a variety of phosphoproteins in J32 cells, while, as expected, 
anti-CD3 stimulation of the TCR-  J32-72.4 line failed to 
induce significant tyrosine phosphorylation. In J32 cells the 
magnitude of the phosphorylation observed on ppl00 was 
nearly equivalent after TCR and CD28 stimulation. The sub- 
strates induced by CD28 stimulation all comigrated with CD3- 
induced substrates. However, there are many phosphorylated 
substrates after CD3 stimulation that are not detected after 
CD28 stimulation. CD5 stimulation failed to cause ppl00 
tyrosine phosphorylation in either line. 

CD28-induced Tyrosine Phosphorylation Can Be Prevented by 
CD45 and by Herbimycin A. Given that protein tyrosine ki- 
nase inhibitor herbimycin A could ef~ciently inhibit CD28- 
induced II.-2 secretion (Fig. 1), we tested this inhibitor for 
effects on CD28-induced tyrosine phosphorylation. T cells 
were cultured in PMA and various concentrations of her- 
bimycin A. Tyrosine phosphorylation induced by anti-CD28 
mAb was nearly completely prevented in herbimycin-treated 
cells (Fig. 7) under conditions that specifically inhibit CD28- 
induced IL-2 production (Fig. 1). 

The brief temporal course of CD28 mAb-induced tyro- 
sine phosphorylation (Fig. 4) suggests regulation by a phos- 
phatase. To address the effects of phosphatases on CD28- 
mediated signal transduction, T cells were cultured in PMA 
and then stimulated with crosslinked CD28, CD45, or CD28 
plus CD45 mAbs. CD28 erosslinking induced tyrosine phos- 

Discussion 
In the present study we have used phosphotyrosine im- 

munoblot analysis to show that ligation of the CD28 receptor 
induces increased tyrosine phosphorylation on several de- 
tergent-soluble cellular substrates. Experiments with an in- 
hibitor ofsrc family tyrosine kinases, herbimycin A, suggest 
that the functional effects of CD28 stimulation on lymphokine 
gene expression require protein tyrosine phosphorylation. The 
tyrosine phosphorylation induced by the CD28 receptor differs 
in several important aspects from that of the TCR. TCR- 
induced tyrosine phosphorylation occurs in both resting and 
activated T cells, while CD28-induced tyrosine phosphory- 
lation occurs primarily in previously activated T cells. Liga- 
tion of the TCR by antigen or by CD3 mAb induces tyro- 
sine phosphorylation of >12 substrates (26), while CD28 
ligation by antibody induces phosphorylation detectable on 
a more limited set of substrates. Separate experiments failed 
to demonstrate tyrosine phosphorylation of the TCR ~" chain 
(not shown). Most striking were the results after CD28 
receptor ligation by cell-bound B7, where phosphorylation 
was consistently detectable on only a single substrate. The 
specificity of CD28-induced tyrosine phosphorylation was 
shown by the failure of isotype-matched mAbs to two addi- 
tional T cell adhesion receptors, CD5 (Fig. 3) and MHC class 
I antigens (not shown), to induce tyrosine phosphorylation 
on ppl00. Thus, there are several cellular adhesion receptors 
that have "accessory" functions on T cells, and yet do not 
activate the same biochemical signal transduction cascade as- 
sociated with the CD28 receptor. 

Experiments using the Jurkat E6-1 T cell line indicated 
there is an absolute requirement for PMA pretreatment in 
order to observe CD28-induced tyrosine phosphorylation. 
In contrast, there was no requirement for cellular preactiva- 
tion in the Jurkat J32 line, while, as noted above, there is 
a relative requirement for PMA or TCR prestimulation of 
normal T cells in order to induce CD28 responsiveness. The 
basis for the prestimulation requirement is not known at this 
time, although we have noted that new protein synthesis is 
required. Previous studies have shown that antigen treatment 
of T cell clones causes substantial enhancement of CD28 
receptor expression (35), and in the case of primary T cells, 
PMA treatment causes increased CD28 m R N A  expression 
and increased surface CD28 expression (36). However, in- 
creased surface CD28 expression is unlikely to explain the 
requirement for new protein synthesis for CD28-induced signal 

957 Vandenberghe et al. 



transduction, as Jurkat cells have brighter CD28 surface ex- 
pression than primary T cells, and yet have no detectable tyro- 
sine phosphorylation after CD28 stimulation. Thus, the coup- 
ling of the CD28 receptor to signal transduction likely involves 
the expression of some other protein in the signal transduc- 
tion pathway that is limiting or absent in resting T cells, 
and is induced by TCR stimulation. 

The requirement for PMA or anti-CD3 pretreatment could 
indicate either that CD28-associated signal transduction re- 
quires a consequence of PKC activation, or alternatively, that 
depletion of PKC is required for the CD28 signal. The latter 
possibility is considered unlikely as only relatively low con- 
centrations of PMA are required, and furthermore, a more 
physiologic means of activation, anti-CD3, is capable of in- 
ducing CD28 responsiveness. In addition, immunoblot analysis 
of CD28-responsive cells indicates easily detectable amounts 
of PKC. 

Studies with Jurkat mutants further indicate that CD28- 
induced tyrosine phosphorylation (Fig. 6) and biologic func- 
tion (31) can occur in the absence of the TCR. In this re- 
spect, CD28 appears to be unique, in that other accessory 
molecules involved in T cell activation such as CD2, Ly-6, 
Thy-1, and CD5 appear to require the presence of the TCR. 
The mechanism for the independence of the CD28 pathway 
remains unclear, and may indicate that the CD28 receptor 
is coupled to different kinase(s)/phosphatases than is the TCR. 
This notion would be in accord with findings of Koretzky 
et al. (20), who found that Ib2 production induced by anti- 
CD28 mAb was independent of CD45 expression, while both 
CD2- and TCR-induced II-2 expression required CD45 ex- 
pression. The independence of the CD28-induced tyrosine 
phosphorylation from the TCR is also in accord with studies 
that indicated sensitivity of TCR-induced functional responses 

to cyclosporine, prostaglandin E2, 1,25-hydroxyvitamin D3, 
and cholera toxin, and resistance of the CD28 pathway to 
these agents (16-18, 37). 

In previous studies, we and others have failed to observe 
tyrosine phosphorylation after CD28 receptor stimulation 
(30). There appear to be several reasons for the differing results, 
including the failure to test appropriately "primed" T cells 
and the fact that CD28 stimulation causes only a minor subset 
of substrate phosphorylation. The inability in the present 
studies to consistently observe CD28 mAb-induced tyrosine 
phosphorylation with bivalent antibody is likely explained 
by the signal being at the limit of detection by our current 
assay system. However, the observation that cell-bound 
B7/BB1 receptor could activate T cell tyrosine phosphoryla- 
tion suggests that tyrosine phosphorylation results from CD28 
receptor-ligand interaction under physiologic conditions. 

The CD45 tyrosine phosphatase has previously been shown 
to prevent calcium mobilization induced by crosslinked CD28 
(38), and in the current studies, we have found that under 
these conditions, CD28-induced tyrosine phosphorylation of 
ppl00 is prevented. This result may imply that CD28-induced 
tyrosine phosphorylation can be regulated by a tyrosine phos- 
phatase. Under physiologic conditions, it is likely that phos- 
phatases other than CD45 regulate CD28-mediated signal 
transduction, as CD28-induced lymphokine production has 
been shown to occur in CD45-negative Jurkat cells (20). 

The CD28 receptor has been shown to have potent effects 
on lymphokine production by several different mechanisms 
(28, 39), and postulated to have effects on thymic differentia- 
tion (40) and T cell anerg'y (3, 41). The relation of the CD28- 
induced tyrosine phosphorylation to these functional effects 
remains to be demonstrated in further studies. 
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