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Summary 
It is now established that the subdasses of mast cells (MC) that reside in mucosal and serosal 
environments can be distinguished from one another in terms of their expression of specific secretory 
granule-localized proteases and proteoglycans. Further, the hematopoietic- and connective 
tissue-derived cytokines that regulate expression of the genes that encode these constituents of 
the granule can now be identified using recently developed gene-specific probes and recombinant 
cytokines. When bone marrow-derived MC (BMMC) were developed with recombinant interleukin 
3 (rlL-3) and maintained with this cytokine in the absence or presence of recombinant c-kit ligand 
(rKL), they remained saffanin-, produced almost no 3sS-labeled heparin proteoglycans, and con- 
tained greater levels of mouse MC protease (MMCP) -5 mKNA and mast cell carboxypeptidase 
A (MC-CPA) mKNA than MMCP-6 mKNA. They did not contain MMCP-4 or -2 mKNA, 
genes expressed late in the differentiation of progenitor cells into serosal and mucosal MCs, 
respectively. In contrast, BMMC developed with rKL alone or by sequential culture in medium 
containing rlL-3 followed by rKL expressed high levels of MMCP-4 and -6 mRNA, as well as 
the transcripts that encode MMCP-5 and MC-CPA. Although rKL-developed BMMC were 
saffanin + and produced substantial amounts of 3sS-labeled heparin proteoglycans, they contained 
only minimal amounts of histamine and MC-CPA enzymatic activity relative to serosal MC. 
These are the first studies to characterize the transcriptional granule phenotype of a population 
of BMMC derived using any recombinant eytokine, to demonstrate a dissociation between 
histochemical staining and granule maturation, and to demonstrate antagonistic regulation of 
late expressed protease genes by a eytokine. 

M ast cells (MC) 1 that reside in different tissue sites are 
heterogeneous in terms of their secretory granule pro- 

teoglycans and proteases. Safranin + granules of mouse 
serosal MC, considered to represent the connective tissue MC 
subclass, contain abundant amounts of heparin proteoglycans, 
MC carboxypeptidase A (MC-CPA), mouse MC protease 
(MMCP) -3, -4, -5, -6, but no MMCP-1 or -2 (1-8). In con- 
trast, the safranin- mucosal MC subclass found in the in- 
testines of helminth-infected mice express MMCP-1 (9) and 
-2 (5), but little MC-CPA (4), and no MMCP-5 (7) or -6 (8). 

The factors that regulate the diversity of MC proteases are 
unknown, but tissue-related MC heterogeneity may be a con- 
sequence of the particular panel of cytokines provided in varied 

t Abbreviations used in this paper: BMMC, bone marrow-derived MC; KL, 
c-kit ligand; MC, mast cell; MC-CPA, MC carboxypeptidase A; MMCP, 
mouse MC protease; SG-PG, secretory granule proteoglycan peptide core; 
and TSG, 0.1 M Tr/s-HCI, 0,1 M sodium sulfate, and 4 M GnHC1. 

microenvironments (10-14). Mouse bone marrow cells cul- 
tured in medium containing IL-3 differentiate into morpho- 
logically immature MC that express the high affinity IgE 
receptor FceKI (15-21). When this receptor is crosslinked 
with antigen, lipid mediators are generated and released 
(22-24), cytokines are transcribed and translated (25-28), and 
preformed mediators are released from the secretory granules 
(2, 22, 29, 30). These in vitro differentiated mouse bone 
marrow-derived MC (BMMC) are alcian blue+/safranin - 
when stained, and they preferentially synthesize chondroitin 
sulfate E proteoglycans, rather than the heparin proteoglycans 
that predominate in mouse serosal MC (1). BMMC are poorly 
granulated (31, 32) and contain low amounts of histamine 
(16, 20), secretory granule serine proteases (29), and MC- 
CPA (2). The granule proteases expressed by BMMC derived 
using rlL-3 (termed BMMCIL-3) have not been determined, 
but BMMC differentiated in the presence of WEHI-3 cell-con- 
ditioned medium as a source of IL-3 (termed BMMCw) ex- 
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press the transcripts that encode MC-CPA (4), MMCP-5 (7), 
and -6 (8), but not MMCP-2 (5) or -4 (6). The latter two 
are late expressed protease genes of mucosal and serosal MC, 
respectively. 

During 4 wk of coculture of BMMC with mouse 3T3 
fibroblasts in the presence of WEHI-3 cell-conditioned 
medium, the resulting cells, termed BMMCw/F, become 
safranin + and preferentially synthesize heparin proteoglycans 
rather then chondroitin sulfate proteoglycans (12). Their secre- 
tory granules also become more electron dense (32), possessing 
amounts of histamine (12, 33) and MC-CPA activity (2, 
33) comparable to in vivo differentiated serosal MC. Both 
WBB6F1-W/W v mice which contain an altered (34) plasma 
membrane-localized tyrosine kinase designated c-kit (35, 36), 
and WCB6Ft-S1/S1 a, which do not produce a membrane 
form of the fibroblast-derived cytokine designated c-kit ligand 
(KL, also known as stem cell factor or MC growth factor 
[37-44]) are MC defident (45, 46). Recombinant KL func- 
tions as a pluripotent cytokine (47-49) that elicits prolifera- 
tion of mouse MC in vitro (41, 48). It also induces the ap- 
pearance of safranin + MC when injected subcutaneously 
into SI/S1 d mice (44), but it is not known which granule 
proteases are expressed by MC exposed to rKL. 

In this study, we have examined the transcriptional pheno- 
types of mouse MC that have been derived in vitro directly 
from bone marrow cells using either rKL or rlL-3, and se- 
quentially using BMMCw exposed to rKL, rlL-3, or both 
together. We show that even though rlL-3 and rKL both in- 
duce the proliferation and differentiation of hematopoietic 
progenitor cells into MC, the resulting MC can be distin- 
guished by their expression of certain constituents of their 
secretory granules. In contrast to rlL-3, rKL not only induces 
the expression of heparin proteoglycans, but also the tran- 
scription of a late expressed gene that encodes one of the novel 
secretory granule proteases (MMCP-4) that is preferentially 
expressed by mouse serosal MC. r ib3 has an antagonistic 
effect on these rKIAnduced phenotypic changes. These findings 
demonstrate cytokine regulation of transcription of secretory 
granule neutral protease genes, and specifically iUustrate the 
sequential and competitive interaction of IL-3 and KL in de- 
termining the eventual protease phenotype of BMMC. 

Materials and Methods 
Culture of MC. Mouse BMMC were obtained by culturing bone 

marrow cells from the femurs and tibias of 6-16-wk-old BALB/c 
mice (Charles River Breeding Laboratories, Inc., Wilmington, MA) 
for 1-3 wk in enriched medium (RPMI 1640 containing 100 U/ml 
penicillin, 100/~g/ml streptomycin, 10/zg/ml gentamicin, 2 mM 
t-glutamine, 0.1 mM nonessential amino acids, 50 #M 2-ME, and 
10% FCS [Gibco Laboratories, Grand Island, NY]) containing ei- 
ther 200 ng/ml rKL (Immunex Corporation) or 40 U/ml rib3 
(Genzyme Corp., Boston, MA). Alternatively, mouse bone marrow 
cells were cultured for 3 wk in 50% enriched medium and 50% 
WEHI-3 cell (line TIB-68; American Type Culture Collection, 
Rockville, MD) -conditioned medium (20). In some instances, these 
latter BMMCw were washed twice with 100% enriched medium, 
and were then cultured for 1-2 wk at an initial density of 1-3 x 
105 cells/ml in enriched medium supplemented with 20-100 U/ml 

rlL-3, 200 ng/ml rKL, or a combination of both cytokines to study 
their action on an elicited immature MC population, rKL and rIL-3 
were both expressed in yeast. Previous reports had shown that 
20 U/ml of IL-3 purified from WEHI-3 cell-conditioned medium 
was sufficient to induce the proliferation and differentiation of 
BMMC (20), and that a maximum proliferation of MC-9 ceils oc- 
curred when this transformed MC line was exposed to 100 ng/ml 
of rKL (48). Every 7 d, the nonadherent cells in all of the cultures 
were transferred into fresh culture medium containing the appro- 
priate cytokine and adjusted to a density of 1-3 x 105 ceils/ml. 
Cytocentrlfuge preparations of the cultured MC were stained with 
toluidine or with alcian blue followed by safranin (50, 51). 

RNA Blot Analysis. Total cellular RNA was isolated by the 
method of Chomczynski and Sacchi (52), and was quantified by 
measurement of its OD at 260 nm. Approximately equal amounts 
of total RNA were applied to individual lanes of 1.3% formaldehyde- 
agarose gels, and electrophoresis was carried out for 17-24 h. The 
separated RNAs were transferred to nylon membranes (Cuno Inc., 
Meriden, CT) (53), and the resulting blots were probed with ra- 
diolabeled cDNAs that encode either mouse actin (54), MC-CPA 
(4), MMCP-2 (5), -4 (6), -5 (7), -6 (8), mouse secretory granule 
proteoglycan peptide core (SG-PG) (55), or the c~ chain of FceRI 
(28, 56). All hybridizations were performed with ot-[32p]dCTP 
(,,o3,000 Ci/mmol; DuPont/New England Nuclear, Boston, MA) 
random-primed (Boehringer Mannheim, Indianapolis, IN) cDNA 
probes at 43~ for 24 h in 50% formamide, 0.75 M NaC|, 75 mM 
sodium citrate, 0.1% SDS, 5 mM EDTA, 50 mM sodium phos- 
phate, 2 x Denhardt's buffer, and 100 #g/m1 denatured, single- 
stranded herring sperm DNA (Sigma Chemical Co., St. Louis, MO). 
The RNA blots were washed under conditions of high stringency 
(55~ 30 mM NaC1, 3 mM sodium citrate, 0.1% SDS, 1 mM 
EDTA, and 10 mM sodium phosphate, pH 7.0), and autoradiog- 
raphy was performed with Kodak XAR-5 film, generally for 48 h. 
The ~2P-labeled probe was removed from each blot by a 1-h incu- 
bation at 65~ in 0.2 mM ~ ,  0.5% pyrophosphate, 0.1x Den- 
hardt's buffer, 5 mM Tn's-HCI, pH 8.0. The same blot was then 
assessed for the presence of other transcripts. The presence of 
MMCP-4 mRNA in rKL-treated cultures was confirmed using a 
RNase protection assay kit from Ambion, Inc. (Austin, TX). 

Proteoglycan, Histaminr and MC-CPA Analyses. BMMCw were 
cultured for 1 or 2 wk in enriched medium supplemented with 
rIL-3, rKL, or both cytokines, and then were radiolabeled for 3.5 h 
at 37~ at a density of 5 x 105 cells/ml in fresh enriched medium 
containing the appropriate cytokine and 50 #Ci/ml of [~SS]sulfate 
(10 Ci/mmol; DuPont). The supernatants were removed, analyzed 
for the presence of ~sS-labeled macromolecules (1), and then dis- 
carded. The pelleted 3sS-labeled MC were lysed by suspending the 
ceils in 150 #1 of 1% Zwittergent 3-12 (Calbiochem-Behring Corp., 
San Diego, CA) containing protease inhibitors (57) for '~30 s at 
room temperature, and then in 1,350 #1 of TSG buffer (0.1 M Tris- 
HC1, 0.1 M sodium sulfate, 4 M GnHC1, pH 7.0). After cell soni- 
cation, 200/~g heparin (Sigma Chemical Co.) and 200/~g chon- 
droitin sulfate C (ICN Biochemicals, Lisle, IL) were added as non- 
radiolabeled glycosaminoglycan carriers to each supernatant and 
cell lysate. To determine the incorporation of [3SS]sulfate into pro- 
teoglycan, a 5% portion of each sample was chromatographed on 
separate Sephadex G-25/PD-10 (Pharmacia Fine Chemicals, Pis- 
cataway, NJ) gel filtration columns that had been equilibrated in 
TSG buffer. Solid CsC1 was added to the remainder of the cell ex- 
tract samples to achieve final densities of 1.4 g/ml, and these samples 
were centrifuged at 100,000 g for >42 h at 20~ (58, 59). After 
ultracentrifugation, each density gradient was divided into two ap- 
proximately equal fractions. The 3sS-labeled macromolecules 
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present in samples of both the low and high density fractions were 
quantified by Sephadex G-25 chromatography. The high density 
fractions were then dialyzed against distilled water for 1 h at 4~ 
against 0.5 M sodium acetate for "o7 h, and finally against 0.1 M 
ammonium bicarbonate for 48 h. After lyophilization, the samples 
were resuspended in 1 ml distilled water and stored at -200C. 
To determine the hydrodynamic sizes of the 3sS-labeled macro- 
molecules, portions of the purified 3sS-labeled macromolecules 
were made 4 M in GnHC1, and were applied to a 1 x 85-cm 
Sepharose CI~4B (Pharmacia Fine Chemicals) column that had been 
equilibrated at room temperature under dissociative conditions with 
TSG buffer. The radioactivity present in each collected 0.5-ml frac- 
tion was quantified by B-scintillation counting. 

To quantitate the amount of 3SS-labeled heparin and/or heparan 
sulfate glycosaminoglycans in the cell lysates, 25-#1 samples of the 
density gradient-purified 3sS-labeled macromolecules were in- 
cubated for I h at 0~ with 75/xl of a fresh preparation of 0.25 N 
nitrous acid, pH 1.5 (60). The reactions were terminated by the 
addition of 150/A of 1 M sodium carbonate followed by 200/A 
of TSG buffer. The amount of 3sS-labeled chondroitin sulfate in 
each preparation of 3sS-labeled proteoglycans was determined by 
assessing the susceptibility of each preparation to digestion by chon- 
droitinase ABC (ICN Biochemicals) (61, 62). The nitrous acid- 
treated, chondroitinase ABC-treated, and untreated control samples 
were analyzed by Sephadex G-25 chromatography. 

Samples of the cell lysates were also analyzed for their histamine 
content with a radioimmunoassay kit (AMAC, Westbrook, ME) 
(63), and for their MC-CPA activities with a HPLC assay, which 
measures the generation of phenylalanine from hippuryl-t-phenyl- 
alanine (2). 1 mU of MC-CPA activity is defined as the amount 
of enzyme needed to produce 1 nmole of phenylalanine/min from 
hippuryl-t-phenylalanine. 

Results 
Histochem~al and ~a~c@aona! Phenotype of Mo~e MC De- 

rived Directly by Culturing Mouse Bone Marrow Cells in Medium 
Containing either rlL3 or rKL. As assessed by toluidine blue 
staining, >99% of the cells derived by culturing bone marrow 
ceils in the presence of rIL-3 (BMMCIL-3) (Fig. 1 a) or 
WEHI-3 cell-conditioned medium (BMMCw) (data not 
shown) for 3 wk were MC. When stained with alcian blue 
followed by saffanin, the granules of all of the MC in these 
two culture systems were alcian blue+Aafranin - (Fig. 1 c). 
In contrast, <30% of the cells in the rKbtreated bone marrow 
cultures were MC (BMMC~) by vital staining of their 
granules (Fig. 1 b), but almost all of these BMMCKL had 
granules that were alcian blue+/safranin + (Fig. 1 d). 

RNA blot analyses indicated that starting mouse bone 
marrow cells contained abundant amounts of SG-PG mRNA, 
but no detectable levels of those transcripts that encode MC- 
CPA, MMCP-2, -4, -5, -6, or FceRI,~ (Fig. 2). During cul- 
ture of bone marrow cells for 1-3 wk in the presence of 200 
ng/ml rKL, there was a progressive increase in the mRNA 
levels that encode MC-CPA, MMCP-4, -5, -6, and FceRI~ 
in the nonadherent population of cells. The MMCP-2 tran- 
script that is preferentially expressed by mucosal MC (5) was 
not detected in any of the cultures. No MMCIX4 or -2 mRNA 
was present in BMMCIL-3 or  BMMCw derived by culturing 
bone marrow cells for 3 wk in enriched medium containing 

40 U/ml rlL-3, or 50% WEHI-3 cell-conditioned medium 
respectively, (Fig. 2). Nevertheless, these two populations of 
MC contained abundant amounts of those mRNAs that en- 
code MC-CPA, MMCP-5, SG-PG, and FceRI~. Although 
the MMCP-6 gene was transcribed in BMMCIr-3, the 
amount of this transcript per MC was less than in BMMCKt 
or BMMCw. 

Histochemical and Transc@tional Pkenotype of BMMCw Sub- 
sequently Exposed to rlL3, rKL, or both Cytokines. When 
BMMCw were exposed for 1 wk to 20-40 U/ml rIL-3, 200 
ng/ml rKL, or these same concentrations of both cytokines 
together, the number of ceils in the cultures increased 1.3 
_+ 0.3, 6.0 _+ 4.3, and 10.5 _+ 1.9-fold (mean + SD, n = 
5), respectively. All of the cells in the 1- and 2-wk cultures 
remained toluidine blue + (data not shown). All of the 
granules in the 1- (data not shown) and 2-wk (Fig. 1 e) 
BMMCw/m-3 (BMMCw cultured for 1 and 2 wk in en- 
riched medium containing 20 U/ml [n = 2], 40 U/m1 In 
= 1], or 100 U/ml [n = 3] rlL-3) remained safranin- when 
stained. Only a few of the cells in the 1-wk BMMCw/~ 
cultures (BMMCw cultured for 1 and 2 wk in enriched 
medium containing 200 ng/ml rKL [n = 6]) contained 
safranin + granules (data not shown). However, most of the 
2-wk BMMCw/gL had at least one safranin + granule, and 
in many instances, 100% of the granules in individual MC 
were safranin § (Fig. l f ) .  No safranin + MC were detected 
in the 1-wk (data not shown) or 2-wk (Fig. 1 g) cultures 
of BMMCw/ir-3,gt (BMMCw cultured for 1 and 2 wk in 
enriched medium containing a combination of 20-100 U/ml 
rlL-3 and 200 ng/ml rKL [n -- 6]). 

Analysis of the transcription phenotype of these different 
populations revealed that BMMCw/IL-3 (Fig. 3) were similar 
to BMMCw (Fig. 2) in that they continued to express those 
transcripts that encode MC-CPA, MMCP-5 and -6, SG-PG, 
and FceRI,~. All but MMCP-6 mRNA remained abundant 
and apparently unchanged. In contrast, BMMCw/IcL ex- 
pressed detectable levels of MMCP-4 mRNA at 1 wk, and 
high levels at 2 wk, in addition to those transcripts that en- 
code MC-CPA, MMCP-5 and -6, SG-PG, and FceRI,~ (Fig. 
3). However, there was no expression of the MMCP-4 gene 
in BMMCw/IL-3,~, and the amount of MMCP-6 mRNA 
was also reduced (Fig. 3). No MMCP-2 mRNA was detected 
in any of these populations of BMMC. 

Proteoglycan, Histamine, and MC-CPA Analyses. BMMCw 
were exposed to rib3, rKL, or both cytokines for 1 wk (n 
= 3) or for 2 wk (n = 2), and were then radiolabeled with 
[3SS]sulfate for 3.5 h. In each instance, >98% of the 
3sS-labeled macromolecules produced by the different popu- 
lations of MC remained cell associated, as determined by 
Sephadex G-25 chromatography. After density-gradient cen- 
trifugation of the high salt/detergent extracts of the individual 
cell pellets, >84% of the radiolabeled macromolecules were 
recovered in the bottom fraction, which is consistent with 
the preferential incorporation of this radioisotope into granule- 
associated proteoglycans. Although the hydrodynamic sizes 
of the 3SS-labeled proteoglycans produced by BMMCw/IL-3, 
BMMCw/KL, and BMMCw/IL-3,~ did not differ (Fig. 4), 
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the types of 3sS-labeled glycosaminoglycans bound to these 
peptide cores differed considerably. When analyzed for their 
susceptibility to nitrous acid, 9 + 4, 56 +_ 2, and 2 +_ 2% 
(mean + 50% range, n -- 2) of the purified 3sS-labeled pro- 
teoglycans produced by 2-wk BMMCw/Ir-3, BMMCw/~, 
and BMMCw/IL-3,ro., respectively, contained heparin-like 
glycosaminoglycans (Table 1). 85 + 1, 40 _+ 2, and 95 + 
2% of replicate samples of these same purified 3sS-labeled 
proteoglycans were susceptible to degradation by chon- 
droitinase ABC, indicating the relative amount of chondroitin 
sulfate glycosaminoglycans. Because the relative amount 
of 3sS-labeled heparin proteoglycans produced by 1-wk 
BMMCw/r,L was not significantly different from that pro- 
duced by 1-wk BMMCw/IL-3 (n -- 3), the rKL-induced 
switch to biosynthesis of heparin proteoglycans required more 

Figure 2. R.NA blot analyses of mouse bone marrow cells before (0 
wk) and after 1, 2, and 3 wk of culture in enriched medium containing 
200 ng/ml of rKL, after 3 wk of culture in enriched medium containing 
40 U/ml rll.-3, and after 3 wk of culture in 50% WEHI-3 cell-condi- 
tioned medium (WCM)/50% enriched medium. Blots were probed with 
cDNAs that encode MC-CPA, MMCP-2, -4, -5, -6, SG-PG, FceRI~, and 
actin. 

Figure 3. RNA blot analyses of BMMCw 
cultured for 1 or 2 wk in enriched medium 
containing 200 ng/ml rKL, 40 U/m1 rib3, or 
the same concentrations of both cytokines. 
RNA blots were probed with cDNAs that en- 
code MC-CPA, MMCP-2, -4, -5, -6, SG-PG, 
FceRI,,, and actin. A similar transcription 
phenotype was obtained in two other experi- 
ments of BMMCw exposed to 20 U/ml rlL-3, 
and three other experiments of BMMCw ex- 
posed to 100 U/ml of rlL-3 in the absence or 
presence of 200 ng/ml rKL. 

Figure 1. Histochemistry of MC derived directly from bone marrow (a-d) or from an elicited immature MC population (e-g). Bone marrow cells 
were cultured for 3 wk in enriched medium containing rIL-3 (a and c) or rKL (b and d), and then were stained with toluidine blue (a and b) or alcian 
blue followed by safranin (c and d). Because the cell population is not pure in b, arrows indicate the BMMC~. BMMCw of >99% purity were cultured 
for 2 wk more in the presence of 20 U/ml rIL-3 (e), 200 ng/ml rKL (f), or both cytokines (g), and then were stained with alcian blue followed by safranin. 
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Figure 4. Sepharose CL-4B chromatography of 3sS-labeled pro- 
teoglycans. BMMCw were cultured for an additional 1 wk in the pres- 
ence of 20 U/ml riD3 (BMMCw/IL 3), 200 ng/ml rKL (BMMCw/KL), 
or the same concentrations of both cytokines (BMMCw/IL3,KL). Cells were 
radiolabeled in the presence of fresh enriched medium containing the ap- 
propriate concentration of each cytokine, and then the cell-associated 3sS- 
labeled proteoglycans were partially purified by density-gradient centrifu- 
gation before chromatography. (V,) Total volume of column. 

than 1 wk, and was associated with the histochemical detec- 
tion of saffanin + granules. 

1-wk BMMCw/IL-3, BMMCw/KL, and BMMCw/IL-3,r~ 
contained 180 + 18, 570 + 240, and 520 + 360-ng hista- 
mine (mean + SD/106 cells, n = 3), respectively, and 1.5 
_+ 0.3, 2.5 _ 0.8, and 0.5 + 0.3 mU MC-CPA enzymatic 

activity, respectively. When cultured for 2 wk in enriched 
medium containing the same respective combinations of 
cytokines, their respective histamine contents were 80 _+ 80, 
600 _+ 280, and 110 + 60 ng (mean _+ SD/106 cells, n = 
3), and their respective MC-CPA activities were 2.7 + 2.4, 
6.8 _+ 2.8, and 0.6 _.+ 0.5 mU (Table 1). 

Discussion 

This study is the first to delineate the transcription pheno- 
types of two populations of MC derived by culturing bone 
marrow hematopoietic progenitor cells in the presence of 
different recombinant cytokines. By comparing the transcrip- 
tion phenotype of the cells derived with either mouse rlL-3 
or rKL, we have identified early and late expressed genes that 
encode the various constituents of the MC's secretory granule. 
Further, whereas the sequential action of rlL-3 followed by 
rKL results in the induction of the full complement of early 
and late expressed protease genes of serosal MC, exposure 
of BMMC to both cytokines simultaneously allows rlLo3 to 
prevail, thereby preventing the changes in both the pro- 
teoglycan and neutral protease phenotypes that occur in cells 
cultured with rKL alone. 

Although rlL-3 and rKL are both capable of inducing 
proliferation and differentiation of bone marrow progenitor 
cells into MC, the resulting BMMCxL-3 and BMMCI(L 
differed in their histochemistry and in their proportion of 
the total cells present in the culture. <30% of the cells in 
cultures of mouse bone marrow cells exposed to rKL for 3 
wk were toluidine blue +/alcian blue + Aafranin + MC (Fig. 
1). BMMCKL contained high levels of mRNAs that encode 
MC-CPA, MMCP-4, -5, -6, and FceRI~, but not MMCP~ 
(Fig. 2). This transcriptional phenotype is indistinguishable 
from that of in vivo differentiated mouse serosal MC, the 
prototype of the connective tissue MC subclass (Table 2). RNA 
blot analyses of the starting mouse bone marrow cells, and 
the 1-, 2- and 3-wk BMMCr, L revealed that the SG-PG gene 
was efficiently transcribed in the starting cells, and that the 
level of this transcript increased in the subsequent weeks of 
the culture (Fig. 2). In BMMC~,  the SG-PG gene was ex- 
pressed before any of the protease genes, most likely so that 
these enzymes could be efficiently packaged in the secretory 

Table 1. MC Histochemistry, and Content of JsS-labeled Heparin, Histamine, and MC-CPA 

Constituent BMMCw BMMCw/IL-3 BMMCw/KL BMMCw/xL.3,KL BMMCw/p Serosal MC 

Predominant histochemistry Safranin- Safranin- Safranin * Safranin- Safranin* Safranin § 
[3sS]Heparin (percent total PG) <10% 9% 56% 2% "o40% >95% 
[3sS]ChS (percent total PG) )90% 85% 40% 95% "o55% (5% 
Histamine (ng/l& cells) <500 80 600 110 'o3,000 >20,000 
MC-CPA (mU/106 cells) "o3 2.7 6.8 0.6 "o100 2,300 

The histochemistry of the different populations of mouse BMMC (as well as their amounts of 3sS-labeled heparin proteoglycan, 3sS-labeled chon- 
droitin sulfate [ChS] proteoglycan, histamine, and MC-CPA) were assessed after 2 wk of culture. The data for BMMCw, BMMCw/F, and serosal 
MC have been previously reported (1, 2, 12, 15, 16, 21, 28, 30, 33). 
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Table 2. Transc@tional Phenotype of Mouse MC Differentiated In Vivo and In Vitro 

In Vivo-differentiated In Vitro-differentiated 

C o n s t i t u e n t  Serosa l  M C  M u c o s a l  M C  B M M C w  BM-MCIt-3 B M M C ~  

M M C P - 2  - + - - - 
M M C P - 4  + N D  - - + 
M M C P - 5  + - + + + 
M M C P - 6  + - + + " + 
M C - C P A  + + / -  + + + 
SG-PG + + + + + 
FceRl  + + + + + 

" BMMCIL-3 contain M M C P - 6  m R N A ,  bu t  the amoun t  per  cell is less than in B M M C w  or BMMCgL.  
The  transcript ion phenotypes of  serosal M C  and mucosal  M C  have been previously reported (3-5,  7, 8, 21). 

granules (2, 30). MC-CPA, MMCpo5 and -6 were expressed 
next, followed by MMCP-4. 

All of the BMMC derived by culturing bone marrow cells 
in the presence of either rlL-3 (Fig. 1) or WEHI-3 cell- 
conditioned medium were toluidine blue +/alcian blue + / 
safranin- MC. BMMCIL-3 and BMMCw contained high 
levels of those mRNAs that encode MC-CPA, MMCP-5, 
and FceRI~, but lacked MMCP4 mRNA, as well as MMCIX2 
mRNA (Fig. 2). The MMCP-6 gene was expressed in 
BMMCzt-3, but the amount of this transcript was less than 
in BMMCw or BMMC~. Although rlL-3 and WEHI-3 
cell-conditioned media are more effective than rKL in their 
ability to induce a virtually pure population of BMMC, only 
rKL elicits the transcript, MMCP-4. MMCP-4 is a late- 
expressed gene observed only when progenitor cells differen- 
tiate into serosal MC (6). 

As BMMC are the only cells identified in the cultures of 
bone marrow cells that have been exposed for 3 wk to either 
rlI:3 or WEHI-3 cell-conditioned medium, it was possible 
to directly assess the effects of rKL and rlL-3 on the expres- 
sion of MMCP-4 and other phenotypic markers in an imma- 
ture population of MC. BMMCw cultured for 2 wk in 
medium containing rlL-3 remained saffanin- (Fig. 1) and 
continued to produce predominately 35S-labeled chondroitin 
sulfate proteoglycans (Table 1) and secretory granule protease 
mRNAs similar to the starting population of MC except for 
a reduction in MMCP-6 mRNA (Figs. 2 and 3). BMMCw 
cultured in the presence of rKL became saffanin + and pro- 
duced more 3sS-labeled heparin proteoglycans than 3sS-la- 
beled chondroitin sulfate proteoglycans (Table 1), as previ- 
ously observed for BMMC derived with Con A-stimulated 
splenocyte-conditioned medium and then cultured in the pres- 
ence of rat rKL (64). The current focus on transcripts that 
encode secretory granule proteases revealed that mouse rKL 
induced expression of abundant levels of MMCP-4 mRNA, 
in addition to those transcripts that encode MC-CPA, MMCP-5 
and -6, SG-PG, and FceRI~ (Fig. 3). In contrast, MMCP-2, 
a late-appearing phenotypic marker of mucosal MC (5) (Table 
2), was not detected in BMMC~ (Fig. 2) or in BMMCw/gL 
(Fig. 3). Thus, during the differentiation of mucosal MC in 

the intestines of helminth-infected mice, there must be other 
factors that suppress transcription of MMCP-5 and -6 and 
elicit transcription of MMCP-2. Stimulation of BMMCIL.3 
with rlL-10 elicits the late expressed gene MMCP-2 (65). 

KL is produced by fibroblasts (37, 40, 41) and is a cytokine 
that can induce BMMCw to preferentially express those pro- 
tease transcripts and proteoglycan species (Figs. 2-4 and Table 
1) present in serosal MC (2-4, 6-8). Thus, KL was a candi- 
date for the fibroblast-derived activity that induced BMMC 
to increase their histamine and MC-CPA contents 35-100- 
fold during fibroblast coculture (2, 12, 33). The MC-CPA 
enzymatic activity in a 2-wk BMMCw/ra. was only "~0.3% 
of that of a mouse serosal MC, and only *5% of that of 
a 2-wk BMMCw/F (Table 1). Likewise, the amount of hista- 
mine in a 2-wk BMMCw/~ was only '~3% of that of a 
serosal MC and only 20% of that of a BMMCw/F (Table 
1). Thus, except for heparin biosynthesis, rKL is a relatively 
ineffective granule-maturation factor. It is possible that the 
bioactivity of fibroblast-derived KL and purified yeast rKL 
are different because of altered posttranslational modification 
of the cytokine or varied presentation (e.g., soluble versus 
membrane bound) of the cytokine. Alternatively, a second 
fibroblast-derived factor such as nerve growth factor (66) might 
act in concert with rKL to achieve granule maturation during 
fibroblast cocnlture. 

Proliferation was at its highest level when BMMCw were 
cultured for 2 wk in medium containing both rlL-3 and rKL, 
but the rKL-induced differentiation process was suppressed. 
BMMCw/Ir-3.~ remained safranin-, produced predomina- 
tely 35S-labeled chondroitin sulfate proteoglycans rather than 
3sS-labeled heparin proteoglycans (Table 1 and Fig. 4), did 
not express MMCP-4 mRNA, and contained less MMCP-6 
mRNA than the starting BMMCw. This is the first demon- 
stration of an antagonistic effect of rib3 on MC differentia- 
tion. The inability of human rlL-3 to induce human hemato- 
poietic progenitor cells to differentiate into MC (67, 68), and 
the inability to obtain mature Kirsten sarcoma-immortalized 
MC lines in the presence of mouse IL-3 (69) may both have 
been a consequence of this antagonistic effect. 
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