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S u m m a r y  

We have evaluated the capacity of dendritic ceUs to function as antigen-presenting cells (APCs) 
for influenza and have examined their mechanism of action. Virus-pulsed dendritic cells were 
100 times more ef~dent than bulk spleen ceUs in stimulating cytotoxic T lymphocyte (CTL) 
formation. The induction of CTLs required neither exogenous lymphokines nor APCs in the 
responding T cell population. Infectious virus entered dendritic cells through intraceUular acidic 
vacuoles and directed the synthesis of several viral proteins. If ultravidet (UV)-inactivated or 
bromdain-treated viruses were used, viral protein synthesis could not be detected, and there was 
poor induction of CTLs. This indicated that dendritic cells were not capable of processing 
noninfectious virus onto major histocompatibility complex (MHC) class I molecules. However, 
UV-inactivated and bromdain-treated viruses were presented ef~dently to class II-restricted 
CD4 + T ceils. The CD4 + T cells crossreacted with different strains of influenza and markedly 
amplified CTL formation. Cell lines that lacked MHC class II, and consequently the capacity 
to stimulate CD4 + T cells, failed to induce CTLs unless hdper lymphokines were added. 
Similarly, dendritic cells pulsed with the MHC class I-restricted nucleoprotdn 147-155 peptide 
were poor stimulators in the absence of exogenous hdper factors. We condude that the function 
of dendritic cells as APCs for the generation of virus-spedfic CTLs in vitro depends measurably 
upon: (a) charging class I molecules with peptides derived from endogenously synthesized viral 
antigens, and (b) stimulating a strong CD4 + helper T cell response. 

A part of the host defense against influenza, MHC class 
I-restricted CD8 + CTLs are generated that kill virus- 

infected targets. Whereas neutralizing antibodies recognize 
the highly variable envelope glycoproteins of the virus, CTLs 
are directed primarily against highly conserved internal proteins 
like the nucleoprotein (NP). 1 As a result, most influenza- 
specific CTLs are broadly crossreactive and kill target cells 
infected with viruses bdonging to different subtypes (1-4). 
By diminating infected cells before infectious viral progeny 
can be released, these killer cells appear to be important in 
recovery from infection. In mice, adoptivdy transferred CTLs 
can promote viral clearance and can protect against lethal in- 
fection (5-7). In infected humans, McMichad et al. (8) noted 
a negative correlation between CTL activity and lung virus 
titers. 

1 Abbreviations used in this paper: HA, hemagglutinin; NP, nuchoprotein; 
PD, phosphate saline. 

The study of virus-specific CTLs has yielded several key 
concepts in cell-mediated immunity. Using these CTLs, 
Zinkernagel and Doherty (9, 10) first demonstrated the pre- 
sentation of antigens in association with products of genes 
within the MHC. Subsequently, Townsend et al. (11) demon- 
strated the recognition of processed influenza proteins or pep- 
tides by class I-restricted T cells, providing a basis for the 
corecognition of antigen and MHC. Virus-specific CTL 
systems helped two different pathways for antigen processing, 
one exogenous and the other endogenous (12). Internalized 
exogenous afitigens undergo acid-dependent degradation in 
endocytic vacuoles, and peptides generated in this manner 
are presented in association with MHC class II molecules to 
CD4 + CTLs. In contrast, viral antigens synthesized within 
cells are most likely processed within the cytoplasm, and the 
immunogenetic peptides are presented with newly synthe- 
sized class I MHC molecules to CD8 + CTLs. 

These studies on the recognition of viral antigens by CTLs 
have relied upon activated or chronically stimulated T cells. 
Less is known about the generation of functional class I-re- 
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stricted CTLs from quiescent precursors. Dendritic cells are 
potent stimulators of class II-restricted T cell responses to 
a variety of antigens in vitro and in vivo, and can stimulate 
vigorous CTL responses to influenza (13) and other viruses 
(14-16). To approach the mechanism of dendritic cell func- 
tion, we have studied the development of influenza-specific 
CTLs. Two major issues have interested us. The first is whether 
splenic dendritic cells must support endogenous viral pro- 
tein synthesis to stimulate CD8 + CTLs, or can these APCs 
present viral antigens using the exogenous processing pathway? 
Recent reports suggest that APCs exist within the spleen 
with the capacity to present native OVA to class I-restricted 
CTLs (17, 18), and other studies have documented the pre- 
sentation of class I-restricted minor antigens carried on donor 
cells by host APCs (19, 20). A second area of interest is the 
role of helper T cells. Dendritic calls can support the genera- 
tion of allospecific CD8 + CTL in the absence of CD4 + 
hdper T cells (21-23). We show here that viral protein syn- 
thesis and helper T cells are both significant quantitative ele- 
ments in the dendritic cell-mediated induction of influenza- 
specific CTLs in vitro. 

Materials and Methods 
M/c~ Male or female (BALB/c x DBA/2)Ft (C x D2; H-2a), 

(C3H x DBA/2)F~ (C3D2; H-2 k x H-2a), C3H (H-2~), and 
DBA/2 (H-2 a) mice, 6-8 wk of age, were purchased from the 
Trudeau Institute (Saranac Lake, NY). To prime with influenza virus, 
the animals were anesthetized with metofane, and 5 hemaggluti- 
nation units (HAU) of NT60 virus in a volume of 50/zl were ap- 
plied to the nosepad. The mice were kept in a specific pathogen- 
free facility and used 3-6 wk later. 

Virus. The PK8 (A/Puerto Rico/8/1934; H1N1 subtype) and 
NT60 (A/Northern Territory/60/1968; H3N2 subtype) strains were 
kindly provided by Dr. P. Palese (Mount Sinai School of Medicine, 
New York) and were grown in the allantoic cavity of 10-d erabryo- 
hated chicken eggs (SPAFAS, Norwich, CT). The allantoic fluid 
was harvested after 2 d and stored at -70~ To purify the virus, 
the allantoic fluid was centrifuged at 100,000 g for 2 h at 4~ 
The virus pellet was resuspended in SM buffer (0.1 M NaC1, 0.05 
M Tris, 10 mM MgSO4, pH 7.4), layered on a 10/35/45% cesium 
chloride step gradient (Bethesda Research Laboratories, Gaithers- 
burg, MD) in SM buffer, and centrifuged in a rotor (SW41; 
Beckman Instruments, Inc., Fulhrton, CA) at 22,000 rpm for 2h 
at 4~ After centrifugation the virus band at the 10 and 35% 
interface was collected, diluted in phosphate saline (PD), and 
pelleted. The virus pellet was then resuspended in PD and stored 
in aliquots at -70~ 

The enzyme bromelain (Sigma Chemical Co., St. Louis, MO) 
was used to remove hemagglutinin (HA) and neuraminidase gly- 
coproteins from the virus particle (24). Pelleted virus, prepared as 
above, was resuspended in bromdain buffer (0.1 M Tris, pH 7.2, 
with 0,05 M/3-mercaptoethanol and 0.001 M EDTA) at a viral 
protein concentration of 0.2 mg/ml, and bromelain at 2 mg/ml. 
After an 18-20-h incubation at 37~ the virus was diluted in PD 
and pelleted. The pelleted virus was resuspended in a small volume 
of PD and applied to a CsCI step gradient as above. Virus cores 
were collected from the interface between the 10 and 35% layers, 
pelleted, resuspended in PD, and stored in aliquots at -70~ 
Removal of the HA was confirmed using a hemagglutination assay. 

Virus was inactivated by diluting the allantoic fluid 1:10 in HBSS 
with Ca 2+ and Mg 2+, and exposing it to shortwave UV radiation 
from a Mineralight UV lamp (UVGL58; Ultraviolet Products, San 
Gabriel, CA) for 10 min at a distance of 10 cm with constant stir- 
ring. V'trus inactivation was confirmed with a modified phque assay. 

Culture Medium. The culture medium for cells was RPMI 1640 
(Gibco Laboratories, Grand Island, NY) containing 5% heat- 
inactivated FCS (JRH-Biosciences, Lenexa, KS), 2 mM glutamine, 
100 IU/ml penicillin, 100/~g/ml streptomycin, 100/~g/ml gen- 
tamicin, and 10/zM 3-mercaptoethanol. 

Responder T Cells. Spleen cell suspensions were prepared and 
passed over nylon wool columns (Polysciences, Inc., Warrington, 
PA). T cells were further purified by labeling the nylon wool-nonad- 
herent cells with rat mAbs from the American Type Culture Col- 
lection (ATCC; Rockville, MD) (B21-2, anti-Ia; M1/70, anti-Mac 
1; RA3-6B2.1, anti-B220) and two rounds of panning. Bacterio- 
logical plates (Falcon Labware, Oxnard, CA) were coated with goat 
anti-rat IgG (H + L) (Kirkegaard & Perry Laboratories, Inc., 
Gaitherburg, MD) at 10/~g/ml for 1 h at room temperature and 
washed. The cells were added and the pans centrifuged in a cen- 
trifuge (RC-3B; Sorvall) at 500 rpm for 5 min. After this spin, 
the plates were swirled, rotated 180 ~ , and centrifuged again. The 
cells were harvested by gently washing the plates with cold RPMI. 
T cells prepared in this manner were 85-90% Thy-l+. Depletion 
of APCs was evident by the fact that the T cells did not respond 
to stimulation with anti-CD3 mAb or with Con A. 

To prepare CD4 § or CD8 + T cell subsets, nylon wool-nonad- 
herent cells were treated with complement (Pel-Freeze Biologicals, 
Rogers, AK) plus anti-Ia b,a (B21-2) and either anti-CD8 mAbs 
(TIB 150 and TIB 211; ATCC) or anti-CD4 mAb (GK1.5). CD8 § 
T cells were further purified by labeling the complement-treated 
cells with a FITC rat anti-mouse CD8 (Becton Dickinson & Co., 
Mountain View, CA) at 0.2/~g/ml and then sorting positively 
stained cells in a FACStar Plus | instrument (Becton Dickinson & 
Co.). Cells prepared with this protocol were >98% CD8 +. 

APCs. Spleens were injected with 100 U/ml coLlagenase D 
(Boehringer Mannheim Biochemicals, Indianapolis, IN) and teased 
apart with forceps (25). The released cells were transferred to a 
tube and the remaining fragments incubated in 400 U/ml collagenase 
for 45-60 rain at 37~ After this incubation, the spleen fragments 
were passed through a steel mesh, and the cells were pooled with 
the cells collected earlier and centrifuged. The resuhing pellet was 
resuspended in dense BSA (p = 1.080) and centrifuged in a rotor 
(HS-4; Sorvall) at 7,000 rpm (9,500 g) for 15 rain. The dendritic 
cell-enriched, low-density cells at the interface were collected, 
washed, and plated on 60-ram tissue culture dishes (Falcon Lab- 
ware) aLlowing two to three spleen equivalents per plate. After 90 
min at 37~ the nonadherent ceLls, mainly lymphocyte, were re- 
moved by pipetting over the plates with warm RPMI. The ad- 
herent cells were cultured overnight in medium at 37~ Dendritic 
cells, which become nonadherent upon culture, were collected and 
contaminating macrophages removed by readhering the cells to tissue 
culture plates for 1 h at 37~ Dendritic cells purified in this 
manner were 90-95% pure and contaminated primarily with a few 
B cells (25). 

Cell Lines. The P815 mastocytoma (H-2 a) and the L929 
fibroblast lines (H-2 k) were grown in DME (Gibco Laboratories) 
supplemented with 5% FCS, penicillin, streptomycin, and gen- 
tamicin. To use the L929 cells as targets in 51Cr release assays, they 
were detached by treating with 0.025% trypsin and cultured over- 
night in medium in bacteriologic dishes to which they do not ad- 
here. An L929 cell line transduced with the influenza NP gene 
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via a retroviral vector was kindly provided by Dr. E. Gilboa and 
colleagues (Sloan-Kettering Institute, New York). 

Infection of Cells with Influenza In Vitro. APCs and targets were 
resuspended in serum-free RPMI at 107 cell/ml, containing 1,000 
HAL/of virus/ml, for 90 min at 37~ In the case of freshly iso- 
lated dendritic cells, the low-density adherent spleen cells were in- 
fected by adding serum-free tLPMI plus virus directly to the plate. 
To test if influenza infection required an acidic compartment, the 
cells were incubated in ammonium chloride for 30 min before adding 
virus and throughout the subsequent infection (26). 30 and 10 mM 
NH4C1 blocked infection in P815 and dendritic cells, respectively. 
The block was reversible upon removing the NH4C1, as assessed 
by staining the cells for newly synthesized viral protein. 

Generation of CTLs. Purified T cells from virus-primed animals 
(1-3 x 10S/well) were cultured with graded doses of APCs in 
round-bottomed 96-well tissue culture plates (Coming Ghss Works, 
Coming, NY) in a total volume of 200 gl medium. The APCs 
were irradiated with a 137Cs source (1,000 rad for primary APCs 
and 10,000 tad for cell lines). After 5-6 d of culture, CTL activity 
was assayed by SaCr-release from P815 (H-2 a) and L929 (H-2 k) 
targets. When viable cell counts were obtained, specific cytotox- 
icity of 80-100% was obtained at E/T ratios of 30:1. 

Cytotoxicity Assay. 2 x 106 targets at a concentration of 107 
cells/ml in serum-free RPMI were labeled with 100 #Ci NaSlCrO4 
(New England Nuclear, Boston, MA) and simultaneously infected 
with 200 HALl PR8 virus for 2 h at 37~ The targets were washed 
four times and resuspended in medium at 4 x 10 s cells/ml. 50 
#1 of targets (2 x 104 cells) was added to each microwell in tripli- 
cate. Spontaneous and total release samples were prepared by adding 
the targets to wells containing only RPMI or 0.2% SDS, respec- 
tively. The plates were centrifuged at 100 g for 5 min and incubated 
at 37~ for 5 h. 25 gl of supematant was collected, deposited onto 
a glass fiber filter mat, and counted in a Betaplate Liquid Scintilla- 
tion Counter (LKB Wallac, Wallac Oy, Finland). Percent specific 
S~Cr release was calculated as follows: 100x (release by CTL - 
spontaneous release)/(total release - spontaneous release). Spon- 
taneous release was generally 10-15% of the total release. 

T Cell Proliferation Assay. T cells (3 x 10S/well) were cultured 
in flat-bottomed microwells with graded doses of APCs. After 
72-80 h, proliferation was assessed by pulsing the cultures with 
1/~Ci/well [3H]thymidine (ICN Radiochemicals, Irvine, CA) for 
8-16 h. The plates were harvested using an Automatic Harvester 
(Skatron Inc., Sterling, VA), and the radioactivity was bound to 
filters counted in a Betaplate counter. 

Preparation ofLymphokine-rich Supernatant. 3 x 106 CD4 + T 
ceils were combined with 10 s allogeneic dendritic calls in 16-ram 
macrowells. Supernatants were collected after 60-72 h and con- 
tained 50-100 U IL-2/ml. 

Nucleoprotein Peptides. Peptides corresponding to residues 
147-155 (TYQRTRALV) and 147-161 (TYQRTRALVRTGMDP) 
of the 1968 influenza NP (27) were synthesized with the solid- 
phase procedure (28) using the tertbutoxycarbonyl chemistry on 
0.5 g of Boc-aminoacyl-OCH2-Pam resin (Applied Biosystems, 
Inc., Foster City, CA). The peptide was cleaved off from the resin 
support by the high hydrofluoric acid (HF) method and purified 
using reverse-phase Ca8 on a preparative column eluted with a 
linear gradient from 5-60% of acetonitrile at a flow rate of 15 
ml/min. The major peak was pooled. The acetonitrile was removed 
and lyophilized to give a white powder. Amino acid analyses of 
both peptides after 6 N HC1 hydrolysis were in good agreement 
with the theoretical values of the peptide sequences. 

Immunohistochemistry. Suspensions of 3-10 x 103 ceUs/ml were 

cytospun in a Cytospin 2 cytocentrifuge (Shandon, Sewickley, PA) 
and stored with dessicant at -20~ The slides were brought to 
room temperature, fixed in acetone for 10 min, incubated with hy- 
bridoma supematant for 45-60 rain, washed, and then incubated 
with a 1:500 dilution of affinity-purified peroxidase-conjugated 
rabbit anti-mouse IgG (H + L) (Zymed Laboratories, San Fran- 
cisco, CA) for 45-60 rain. The cytospins were washed in PD/I% 
BSA and incubated with substrate, 3,3'-diaminobenzidine tetra- 
hydrochloride (Polysciences, Inc., Warrington, PA). After 7-10 rain 
the slides were washed and mounted in PD-glycerol. The mAbs 
to influenza proteins were kindly provided by Dr. J. Yewdell (Na- 
tional Institutes of Health) and included anti-NP (H16-L10-4R5; 
ATCC HB65), anti-HA (H28E23), and anti-NS1 (29). 

11"2 and 11,6 Assays. Serial dilutions of conditioned medium 
were prepared and added to microwells containing 5 x 103 CTLb2 
cells (1"b2) or 7TD1 cells (Ib6). After 24 h, the cultures were pulsed 
with 1 #Ci/well of [3H]thymidine for 8-12 h and units calculated 
relative to standard recombinant lymphokines. 

R e s u l t s  

The Capacit r of Dendritic Cells to Induce Influenza.specific 
CTL. Recent studies have demonstrated that mouse spleen 
dendritic ceils are potent stimulators of the CTL response 
to influenza (13). We made similar observations using re- 
sponding T cells that had been extensively depleted of APCs 
(see Materials and Methods). When compared with a stan- 
dard APC population of bulk spleen cells, virus-pulsed den- 
dritic cells were ~100 times more efficient as stimulators (Fig. 
1 A). A significant response was generated even when the 
dendritic cell/T cell ratio was as low as 1:1,000. No CTLs 
were induced with virus-pulsed splenic B cells, T cells, or 
peritoneal macrophages (data not shown). 

Contaminants within the enriched dendritic cell prepara- 
tion could conceivably be responsible for the stimulation of 
CTLs. However, removal of the trace B cell contaminants 
with mAb RA3-6B2.1 plus complement did not diminish 
the stimulatory capacity, while removal of dendritic cells with 
33D1 plus complement dramatically reduced APC function 
(data not shown) as in other T-dependent responses (30, 31). 

In additional experiments, which are not shown, we verified 
that the killer cells induced by dendritic cells in culture were 
typical of CTLs generated in more heterogeneous systems. 
Specifically, the killer cells were sensitive to lysis with anti- 
Thy-1 or anti-CD8 mAbs and complement, but not anti- 
CD4 mAbs and complement. The CTL response was directed 
in large part to epitopes in the viral NP, since targets coated 
with the dominant NP147-155 peptide were recognized as 
efficiently as virus-infected targets. 

It could be argued that viral antigens released by the in- 
fected dendritic cells were presented by contaminating APCs 
within the responder T cell population. To test this possi- 
bility, T cells from primed (C3H x DBA/2)Ft mice (H-2 k 
• H-2 d) were restimulated with virus-pulsed dendritic ceils 

prepared from either parental or F1 strains. We then mea- 
sured lysis on both H-2 k (L929) and H-2 a (P815) targets. 
When F1 responders were stimulated with F1 dendritic ceils, 
we detected the lysis of both L929 and P815 targets (Fig. 
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Figure 1. Dendritic cells are potent 
stimulators of influenza-specific CTLs. 
(.4) 3 x 105 purified T cells from 
virus-primed C x D2 mice were cul- 
tured with graded doses of infected 
spleen cells (O and e )  or d~dritic cells 
(rl  and II). After 5 d, CTL activity 
was assayed with uninfected (0 and I-]) 
and infected ( e  and II) P815 targets. 
(B) T cells were prepared from the 
spleens of virus-primed (C3H x 
DBA/2)F1 (C3 x D2) animals. 3 x 
105 T cells were cultured with graded 
doses of infected DBA/2 (H-2d; left), 
C3H (H-2~; middle), or C3 x D2 
(right) dendritic cells. Cytot~wJcity was 
assayed on uninfected (open symboh) and 
infected (filled symbols) L929 (H-2k; A 
and A) and 1'815 (H-2a; O and O) 
targets. 
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Figure 2. Dendritic ceils pulsed with bromdain-treated or UV-inactivated 
virus do not stimulate class I-restricted CTL but do induce proliferation 
of purified CD4 + T cells. Dendritic cells were incubated overnight with 
no addition, 1,000 HAU/ml purified virus, bromelain-treated virus, or 
UV-inactivated virus. The number of the different virus particles added 
to the APCs was equivalent. (.4) 105 virus-primed T cells were cultured 
with graded doses of APCs, and cytotoxicity was assayed on uninfected 
(O) and infected ( e )  1'815 targets. (B) 3 x 105 T cells from unprimed 
(/eft), NT60-primed (m/rid/e), and PR8-primed (right) mice were stimu- 
hted with dendritic cells pulsed with the following: no virus (O), infec- 
tious virus (e ) ,  bromelain-treated virus (W), and UV-inactivated virus 
(m). The cultures were pulsed with [SH]thymidine from 80 to 92 h. 

1 B). In contrast, when the F1 T cells were stimulated with 
C3H (H-2 k) dendritic cells, only H-2Lrestricted CTLs 
recognizing infected L929 cells were induced. Kestimulation 
with DBA/2 (H-2 a) dendritic cells generated CTLs that 
were largely restricted to infected P815 (H-2 a) targets. 
Therefore, dendritic cells efficiently present viral antigens 
directly to developing CTL. 

The Need.for Viral Infection of Dendritic Cells for CTL Induc- 
tion. The viral antigens presented by dendritic cells could 
theoretically be derived either from the input virus or from 
proteins newly synthesized within the APCs. To explore these 
alternatives, we compared presentation of wild-type influenza 
with two types of noninfectious virus. UV irradiation blocks 
viral RNA replication, while bromelain proteolyticaUy re- 
moves the external glycoproteins, including the HA that is 
essential for fusion with intracellular membranes and virus 
entry. These forms of noninfectious influenza did not yield 
viral progeny, as determined using a modified plaque assay 
with MDCK cells, and did not direct viral protein synthesis 
in P815 cells as detected by staining with antiviral mAbs (see 
below). 

Dendritic cells pulsed with UV-inactivated virus did not 
stimulate a strong CTL response (Fig. 2 A). At the highest 
dose of APCs, there was a low level of specific lysis on in- 
fected target ceils ranging from 5% to 25%, but in all ex- 
periments, dendritic cdls pulsed with infectious virus were 
much more potent than APCs pulsed with UV-inactivated 
virus. Dendritic cells pulsed with bromdain-treated virus also 
failed to stimulate influenza-specific CTLs (Fig. 2 A). The 
UV- and bromelain-treated virus did not contain "preproces- 
sed" peptides, since neither could sensitize targets for lysis 
by CTL (data not shown). 

The inability of dendritic cells to present noninfectious virus 
to class I-restricted T cells could reflect poor internalization 
of viral antigens. However, dendritic cells readily presented 
either U-V-inactivated or bromelain-treated virus to class II-re- 
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stricted T cells, as evidenced by strong proliferative responses 
of purified CD4 + T cells (Fig. 2 B). In fact, dendritic cells 
pulsed with noninfectious virus stimulated the proliferation 
of CD4 + T cells almost as effectivdy as dendritic ceils ex- 
posed to infectious virus (Hg. 2/3). The response was blocked 
by >80-90% with anti-class II or anti-CD4 mAbs (data not 
shown). 

Unprimed CD4 + T cells did not proliferate in response 
to infected dendritic cells (Figs. 2 B, left). Superantigens can 
stimulate unprimed T cells, so our data suggests that influenza 
virus does not carry significant superantigens for BALB/c x 
DBA/2 T ceils. The hdper T cell iesponse we observed was 
for the most part crossreactive (Fig. 2 B). T cells prepared 
from mice primed with the NT60 strain (H3N2 subtype) 
or the PK8 strain (H1N1 subtype) responded similarly to 
antigens in PR8 virus, including bromdain-treated virus. We 
conclude that internal virion components in noninfectious 
influenza are presented in a potent fashion to CD4 + but not 
CD8 + T cells. 

Visualization of Viral Uptake and Infection in Dendritic 
Cells. We used immunocytochemical techniques to deter- 
mine directly if dendritic cells were capable of supporting 
the synthesis of influenza proteins. Standard direct metabolic 
labeling methods using [3SS]methionine did demonstrate the 
synthesis of NP in infected dendritic cells (data not shown), 
but the approach was not pursued because very large numbers 
of dendritic cells (5 x 106) were needed for each experi- 
ment. Instead, we found that dendritic cells exposed to in- 
fectious virus could be stained positively with mAbs to the 
influenza NP or HA. Both mAbs stained the dendritic cells 
diffusely, consistent with endogenous viral protein synthesis 

(Hg. 3, A and B). The number of positively stained cells varied, 
ranging from 20 to 50%. We also stained the cells with a 
mAb to the nonstructural protein, NSL NS1 is not part of 
incoming virions but is a vitally encoded protein synthesized 
within infected ceUs. The NS1 staining consisted of granular 
deposits in the nucleus (Fig. 3 C). Control studies indicated 
that infected dendritic cells did not stain with an isotype- 
matched antibody against human CD8 (Hg. 3 D). Uninfected 
dendritic cells did not stain with any of the mAbs tested (data 
not shown). 

We were not able to detect the uptake of influenza virus 
particles by light microscopy. However, when infection was 
blocked with ammonium chloride (32), which neutralizes 
acidic resides needed for viral envelope fusion and delivery 
of KNA to the cytoplasm, the dendritic cells accumulated 
dense granules that stained with anti-NP mAb (Fig. 3 E) 
We presume the granules represent endocytic vesicles that 
were neutralized with ammonium chloride. Similarly, when 
we exposed dendritic cells to bromdain-treated virus over- 
night, the cytoplasm again contained granules of anti-NP an- 
tibody staining, and the number of these granules increased 
if ammonium chloride was added (Fig. 3 F). If dendritic cells 
were pulsed with UV-inactivated virus, there was no diffuse 
staining with mAbs to NP and HA (data not shown). There- 
fore, influenza seems to gain access to dendritic ceils via an 
acid-dependent endocytic route, although for unknown 
reasons, only a fraction of the APCs show detectable levels 
of viral protein synthesis. 

The Role of CD4 + Helper Cells and Lymphokine in the In- 
duction of CTLs. Primed CD4 + T cells proliferate vig- 
orously to both infectious and noninfectious influenza (Fig. 

Figure 3. Detection of influenza NP, HA, and NS1 proteins in infected dendritic cells. Dendritic cells were incubated with virus for 90 min and 
then cultured for 16 h. C~os.pins were prepared and stained with the following mAbs: anti-HA (A), anti-NP (B), anti-NS1 (C), and anti-human 
CD8 (D). tn c,, the NS1 stmmng is contmed to the nucleus and consists of granular deposits (arrows). In E, dendritic ceUs were infected in the presence 
of 10 mM NI-I4C1 for 16 h and stained with anti-NP mAb. In F, cells were pulsed with bromehin-treated virus for 16 h in the presence of 10 mM 
of NH4C1, and were stained with anti-NP mAb. In both E and F, granular presumptive endocytic vesicles are seen (arrows) ( x 500). 
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2 B). The role of CD4 + helper cells in influenza-specific an-  

tibody response is established, but we wished to evaluate the 
importance of helper T cells and lymphokines in the CTL 
response. In prior studies of all�9 CTLs, CD4 + helper 
cells were not required when dendritic cells were the APCs 
(21-23). 

When purified CO8 + T cells (see Materials and Methods) 
were stimulated with infected dendritic cells, little (10-20% 
killing) or no induction of virus-specific cytotoxicity was 
observed (Fig. 4 A). The response could be restored by 
adding a lymphokine-rich supernatant to the culture. The 
required soluble factors were not antigen specific since they 
could be generated in dendritic cell-CD4 + T cell, allogenic 
MLRs (33). 

The importance of CD4 + T cells for the generation of 
virus-specific CTLs could be demonstrated using blocking 
mAbs (Fig. 4 B). Anti-CD4 mAb GK1.5 significantly re- 
duced the response, and the block was reversed by adding 
exogenous lymphokines. At the highest stimulator dose, 
GK1.5 did not totally block the CTL response. This is con- 
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Figure 4. Induction of influenza-specific CTLs by dendritic cells requires 
functional CD4 + helper cells or their lymphokine products. (A) 105 bulk 
T or CD8 + T cells were cultured with graded doses of infected dendritic 
cells. (B) 3 x 10 s purified T cells were cultured with graded doses of den- 
dritic cells in flat-bottomed wells. The control mAb to Thy-1, B5-5, and 
the anti-CD4 mAb GK1.5 were both used as ascites, at a final dilution 
of 1:300. Cultures were supplemented with 25% allogeneic MLK super- 
natant as a source of lymphokines. After 5 d, cytotoxic activity was as- 
sayed on uninfected (O) and infected (Q) P815 targets. 

sistent with the fact that GK1.5 did not completely block 
CO4 proliferation to infected APCs (data not shown). 

Capacity of Class II-Negative Cells to Stimulate CTL. The 
above data suggested that one reason for the intense stimula- 
tory capacity of dendritic cells is their capacity to stimulate 
class II-restricted helper T cells and the production of requi- 
site lymphokines. We therefore tested the APC function of 
cells that lack class II MHC molecules, choosing the P815 
cell line, since this line acts as a target for dass I-restricted 
CTLs. In contrast to dendritic cells, infected P815 cells did 
not stimulate CTL development from inactive precursors (Fig. 
5 A). P815 cells functioned as excellent stimulators when sup- 
plemented with a lymphokine-rich supernatant. 

We observed similar results when we used the H-2 k L929 
cell line as the stimulator. Here, instead of using infected cells, 
we used a variant that had been transduced with the influenza 
NP gene carried by a retroviral vector (34). By using this 
L929-NP cell line, we could rule out any inhibitory effects 
of influenza virus, a cytotoxic virus, on APC function. 
L929-NP cells were stained positively with anti-NP mAb (data 
not shown) and were efficiently lysed by H-2k-restricted 
CTLs; however, NP-expressing L cells were poor stimulators 
of a CTL response unless supplemented with exogenous lym- 
phokines (Fig. 5 B). 

Stimulation of CTLs with a Synthetic NP Peptide. Given 
the need for CO4 + helper cells, it seemed unlikely that den- 
dritic cells pulsed with a class I-restricted NP peptide could 
direct the formation of CTLs. This proved to be the case 
with either NP147-161 or NP147-155 peptides. CTLs could 
only be induced by peptide-pulsed APCs if the cultures were 
supplemented with lymphokines (Fig. 6 A). These findings 
suggested that dendritic cells pulsed with peptide were poor 
stimulators of helper lymphokine production. To assess this 
directly, we examined the production of II~2 and I1,-6, which 
have been shown to enhance CTL development by dendritic 
cells (35). Virus-infected dendritic cells stimulated high levels 
of Ib2 and ID6 secretion from bulk T cells, but peptide-pulsed 
dendritic cells were inactive (Fig. 6 B). It is to be pointed 
out that at higher APC doses, both infected and uninfected 
dendritic cells induce a significant syngeneic MLK from 
primed or unprimed CD4 + T cells, resulting in the produc- 
tion of helper lymphokines (36). 

Discussion 

The recognition of viral antigens by CTLs has been studied 
intensively, so that presentation of viral peptides on MHC 
class I products is now understood in some detail (11). In 
such studies, the CTLs have already been activated, typically 
as long-term cell lines or in the case of primary cultures, by 
stimulating heterogeneous cell populations with virus and 
exogenous lymphokines. In this report, we have confirmed 
prior findings that dendritic cells are specialized APCs for 
generating virus-specific CTLs from inactive precursors 
(13-16). Given the apparently critical role of dendritic cells 
in inducing CTLs (Fig. 1), we have focused on two aspects 
of mechanism: the need for viral protein synthesis and the 
contribution of helper T cells. 
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Figure 6. Dendritic cells pulsed with the NP147-155 peptide do not 
induce CTL or lymphokine secretion. Dendritic cells were left untreated, 
infected, or incubated with 10 #M NF147-155 peptide overnight. (.4) 105 
purified T cells were cultured with graded doses of these dendritic cells. 
Cultures were supplemented with 25% allogeneic MLR supernatant as 
a source of lymphokines. Cytotoxic activity was measured on uninfected 
(O) and infected (0) P815 targets. (B) 3 x 105 purified T cells were cul- 
tured in macrowells with 10 s uninfected (O), infected (O), or peptide- 
pulsed (A) dendritic cells. On the days indicated in the figure, the culture 
supernatants were collected and assayed for Ib2 and Ib6. 

The Need for Viral Protein Synthesis within Dendritic Cells. 
M H C  class I molecules acquire peptides derived from the pro- 
teolysis of  antigens within the cytoplasm (reviewed in refer- 
ence 37). A pathway for the presentation of exogenous pro- 
teins on class I, wi thout  the need for de hove synthesis of  
the antigen within the APC, has also been described (17, 
18). We wondered if dendritic cells, being specialized APCs, 
had such a mechanism for charging class I M H C  in the ab- 
sence of  de nero  viral protein synthesis. If  exogenous pro- 
cessing could occur, dendritic cells would not have to be in- 
fected to act as APCs for many different viruses. 

However, an exogenous pathway could not be demonstrated. 
In agreement with the findings ofMorrison et al., and Bradale 
and Yap (12, 38) in other cells, U V  inactivation of  the virus, 
which inhibits viral replication and protein synthesis, led to 
a dramatic reduction in presentation (Fig. 2). Dendritic calls 
also did not present bromdain-treated virus, which lacks the 
H A  needed for the delivery of viral R N A  into the cytoplasm. 
The UV- and bromelain-treated forms of influenza were taken 
up efficiently, because dendritic cells pulsed with  these exog- 
enous viral antigens stimulated vigorous proliferation of 
CD4  + T ceils (Fig. 3). Therefore, dendritic cells do not ap- 
pear to possess an alternative processing pathway by which 
exogenous antigens can be presented on class I M H C  mole- 
cules. Nair et al. (39) have recently demonstrated that exoge- 
nous antigens can be presented by dendritic cells only if de- 
livered directly to the cytoplasm using add-sensitive liposomes. 
It is not yet clear if this pathway can deliver sufficient quanti- 
ties of  antigen to generate CTLs as efficiently as infectious 
virus. 

Helper Cell Requirements and the Immunogenicity of Class 
1-restricted Peptides. A second issue relates to the need for 
helper T ceils during dendritic cell-mediated C T L  develop- 
ment.  Prior data in the allogeneic M L R  showed that den- 
dritic cells could induce CD8 + CTLs in the apparent absence 
of helper ceils (21-23). CD4  + helper T ceils are known to 
potentiate virus-specific CTL responses in vitro (40) and in 
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vivo (41-43), although prior studies were not carried out using 
dendritic cells as stimulators. 

We noted a marked amplification of the CTL response to 
virus in vitro by CD4 + helper T cells and their lymphokine 
products, even when dendritic calls were used as stimulators 
(Fig. 4). The hdper factors were antigen nonspecific, since 
active factors were present in supernatants derived from 
CD4 + T calls that were not primed with influenza but in- 
stead were stimulated with allogeneic APCs. There are con- 
trasting studies in which virus-specific CTL develop in the 
absence of CD4 + T cells (44-47). Possibly helper cells are 
not essential but accelerate the CTL response, allowing the 
host to develop resistance more quickly or in the face of larger 
viral inocula. Stimulated CD8 + cells can secrete Ib2 and 
IFN-3, (48-50), but the adequacy of lymphokine secretion 
may be influenced by the proportion of responding T calls. 
In a CD4-independent MLR, >1% of the CD8 + cells re- 
spond to antigens presented by dendritic cells. These large 
numbers may produce enough lymphokine to provide help 
(22). In contrast, only 1:14,000 to 1:2,400 of influenza-primed 
populations are responsive to influenza antigens (51, 52). 

We also examined the stimulatory capacity of cells that 
could not stimulate class II-restricted T cell hdp. Class 
II-negative cell lines, either infected with live virus or trans- 
duced with the gene for influenza NP, were tested as APCs. 
A need for helper lymphokines was observed (Fig. 5), even 
though these cells were excellent targets for mature CTLs 
induced by dendritic cells. Similarly, dendritic cells, when 
pulsed with peptides that could be presented on class I but 
not class II MHC molecules, did not induce CTLs (Fig. 6 
A) or helper lymphokines (Fig. 6 B). Our studies indicate 
that an important mechanism of dendritic cell function is 
the capacity to present antigens to both CD8 § cytotoxic and 
CD4 + hdper T cells. 

The direct stimulation of class I-restricted CTLs with pep- 
tide appears to be difficuh. The NP147-161 peptide, as well 
as peptides representing other CTL epitopes, fail to prime 
CTLs in vivo (53-55). Recently, two groups studied in vivo 
priming of CTLs with peptides derived from the lympho- 
cytic choriomeningitis virus and influenza NPs (56, 57). Both 
concluded that responses required CD4 + helper T cells. In 
some instances, peptides that are effective immunogens are 
longer than those required to sensitize targets for lysis by 
CTLs (54). Perhaps increasing the length has included a helper 
epitope. 

Although the addition of lymphokines increased the potency 
of peptide-pulsed dendritic cells, these stimulators were never 
as efficient as virus-infected dendritic cells (Fig. 6 A). When 
we added lymphokines to T cells that had been stimulated 
by infected APCs in the presence of anti-CD4 blocking mAbs, 
we were able to restore vigorous CTL responses (Fig. 4 B). 
Surprisingly, our preliminary data are that the concentration 
of peptide required by dendritic ceils for presentation to de- 
veloping CTLs is >1,000 times greater than that required 
to sensitize target cell lines for lysis by mature CTLs. Infec- 
tious virus likely differs from peptides as a means for charging 
APCs with antigen. More peptide may gain access to den- 

dritic cell class I molecules via the endogenous route, and/or 
live influenza may affect APC adhesion molecules and 
costimulatory functions. 

Previous studies of influenza-specific helper T cells have 
focused on external proteins as antigens, particularly the viral 
HA. Both strain-specific and broadly crossreactive hdper epi- 
topes have been described (58-60). By priming mice in vivo 
with the NT60 strain (H3N2) and then restimulating in vitro 
with the PR8 strain (H1N1), we generated T cells responding 
to determinants shared between virus strains; therefore, hdp 
had to be derived from crossreactive helper T cells. Indeed, 
bromelain-treated virus that lacked envelope proteins stimu- 
lated the vigorous proliferation of crossreactive CD4 + T 
cells (Fig. 3). The influenza-specific, crossreactive CD4 + T 
call response is a powerful one. It can be detected in spleen 
after intranasal priming, whereas most studies on murine 
helper T cell responses require the use of draining lymph nodes 
and local foot pad immunization. Also, the helper response 
persists for months after infection, whereas lymph node 
priming wanes in weeks. 

Pathways for Generating CTL In ViM During the course 
of infection, influenza productively infects the epithdial cells 
lining the respiratory tract, and 3-7 d later, influenza-specific 
CTLs can be detected in lung tissue and in the airway (61). 
There are several possible mechanisms for the generation of 
these CTLs in vivo. First, CTLs may be induced by virus-in- 
fected, respiratory epithelial cells. However, class II-negative 
cell lines cannot stimulate CTLs in vitro without lymphokines 
derived from activated CD4 + T cells (Fig. 5). Although in- 
fected epithdial ceils can probably be lysed by CTLs, their 
lack of class II MHC molecules, and/or the inability to acti- 
vate CD4 + helper T cells, could obviate the induction of 
CTL responses. 

A second possible pathway is that dendritic cells acting 
alone initiate influenza-specific CTLs. Dendritic cells can ac- 
quire antigens in the lung (62), where the APCs form an 
impressive array in the airway epithelium (63), much like the 
dendritic ceils of the epidermis. Dendritic cells in the respira- 
tory tract, like those in other tissues, may migrate to the 
draining lymph nodes (64), where they can present viral an- 
tigens simultaneously to dass II-restricted helper T ceils and 
to class I-restricted CTL precursors found in the recirculating 
pool of quiescent lymphocytes. 

A third pathway, which pertains more to viruses that do 
not infect dendritic cells, has two stages in which dendritic 
ceils take up virus and stimulate helper T cells. The latter 
synthesize the lymphokines needed for the development of 
CTL by those infected, class I-expressing cells, which are 
the natural targets for a given virus. Since dendritic cells are 
potent inducers of helper T ceils that are broadly crossreac- 
tire (Fig. 2 B), this pathway might be exploited to generate 
more effective vaccines to influenza. Crossreactive helper T 
cells can secrete the antiviral agent IFN-3,, augment the 
production of CTLs as described here, and amplify the for- 
mation of neutralizing antibodies through the mechanism 
of intermolecular help (65). 
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