
Human Vascular Endothelial Cell Adhesion Receptors 
for Plasmoclium s Erythrocytes: 
Roles for Endothelial Leukocyte Adhesion Molecule 1 
and Vascular Cell Adhesion Molecule 1 
By Christian F. Ockenhouse,* Tatsuya Tegoshi,~ Yoshimasa Maeno,~ 
Christopher Benjamin,S May Ho, II Khin Ei Kan,�82 Ye Thway,** 
Kyan Win,**Masamichi Aikawa,~ and Roy R. LobbS 

From the *Immunology Branch, Walter Reed Army Institute of Research, Walter Reed Army 
Medical Center, Washington DC 20307; the *Institute of Pathology, Case Western Reserve 
University School of Medicine, Cleveland, Ohio 44106; SBiogen, Ina, Cambridge, Massachusetts 
02142; the IIHospital for Tropical Diseases, MahidoI University, 10400 Bangkok, Thailand and 
the Department of Microbiology and Infectious Diseases, University of Calgary, Calgary T2N 
4NI Canada; the IDepartment of Medical Research, Yangoon, Myanmar; and **N~ 2., 
Military Hospital, Yangoon, Myanmar 

Summary 
The clinical complications associated with severe and cerebral malaria occur as a result of the 
intravascular mechanical obstruction of erythrocytes infected with the asexual stages of the parasite, 
Plasmodiumfakiparum. We now report that a primary P.fakiparum-infected erythrocyte (parasitized 
red blood cell [PRBC]) isolate from a patient with severe complicated malaria binds to cytokine- 
induced human vascular endothelial cells, and that this adhesion is in part mediated by endothelial 
leukocyte adhesion molecule 1 (ELAM-1) and vascular cell adhesion molecule 1 (VCAM-1). PRBC 
binding to tumor necrosis factor o~ (TNF-c0-activated human vascular endothelial cells is partially 
inhibited by antibodies to ELAM-1 and ICAM-1 and the inhibitory effects of these antibodies 
is additive. PRBCs selected in vitro by sequential panning on purified adhesion molecules bind 
concurrently to recombinant soluble ELAM-1 and VCAM-1, and to two previously identified 
endothelial cell receptors for PRBCs, ICAM-1, and CD36. Post-mortem brain tissue from patients 
who died from cerebral malaria expressed multiple cell adhesion molecules including ELAM-1 
and VCAM-1 on cerebral microvascular endothelium not expressed in brains of individuals who 
died from other causes. These results ascribe novel pathological functions for both ELAM-1 and 
VCAM-1 and may help delineate alternative adhesion pathways PRBCs use to modify malaria 
pathology. 

C ell adhesion molecules (CAM) 1 on postcapillary human 
endothelium play important roles in the recruitment 

of white blood cells to tissue sites of acute and chronic inflam- 
mation (for review see reference 1). Endothelial CAMs mediate 
the initial phase of white cell adhesion preceding diapedesis 
and migration of white blood cells to sites of tissue injury 
and immunologic challenge. Cytokines such as TNF-ol and 
Ib l  regulate and induce the expression of distinct endothelial 
CAMs that bind spedfic counter receptors on human neu- 

1 Abbreviations used in this paper: CAM, cell adhesion molecule; ELAM-1, 
endothelial leukocyte adhesion molecule 1; HUVEC, human umbilical vein 
endothelial cell; ICAM-1, intercellular adhesion molecule 1; PRBC, 
parasitized red blood cell; TSP, thrombospondin; VCAM-1, vascular cell 
adhesion molecule 1. 

trophils, monocytes, lymphocytes, eosinophils, and basophils. 
Endothelial CAMs belong to two distinct gene families. The 
Ig-like supergene family of proteins includes three molecules 
expressed on endothelium, intercellular adhesion molecule 
(ICAM)-I (2, 3), ICAM-2 (4) and vascular cell adhesion 
molecule (VCAM)-I (5). Endothelial CAMs ELAM-1 (also 
designated E-selectin) (6, 7) and GMP140 (8) are included 
in a family of molecules called selectins. Selectins are struc- 
turally related proteins with homology to mammalian lectins, 
epidermal growth factor, and complement regulatory pro- 
teins. In addition to their function in normal physiologic 
cell-cell immune recognition and embryogenesis, CAMs ap- 
pear to play important roles in various pathological processes 
including rhinovirus infection mediated by ICAM-1 (9-11) 
and ICAM-l-dependent adhesion to erythrocytes infected with 
Plasmodium falciparum (12-15). 
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Unlike the response of white blood cells to inflammatory 
stimuli, human erythrocytes under normal physiological con- 
ditions do not bind to postcapillary endothdium. However, 
intraerythrocytic parasitization by P. fakilmrum malaria para- 
sites is characterized by the adhesion of infected erythrocytes 
(parasitized red blood cells [PRBCs]) to endothelium in specific 
tissues and organs such as the brain precipitating cerebral 
malaria and other complicated forms of the disease. The se- 
questration of PRBCs within capillaries and postcapiUary 
venules of specific host tissues is dependent upon specific 
receptor-ligand interactions between molecules expressed on 
the endothelial cell surface and parasitized red call counter 
receptors. Two ceU surface molecules CD36 (16-18) and 
ICAM-1 (12-15) and the extraceUular matrix protein throm- 
bospondin (TSP) (19) bind PRBCs from naturally acquired 
infections and are immunocytochemicaUy detected on micro- 
vascular endothelium of brain tissue from patients who have 
died from cerebral malaria (20). 

Pathological functions of VCAM-1, a member of the Ig 
gene superfamily, and members of the selectin gene family 
have not been previously described. In this report, we de- 
scribe the adhesion of malaria-infected erythrocytes to two 
additional CAMs, ELAM-1, and VCAM-1, and discuss clin- 
ical implications ensuing from multifunctional PRBC binding 
to divergent receptor molecules. 

Materials and Methods 

Proteins and Antibodies. Recombinant soluble (rs)ELAM-1 and 
rsVCAM-1 lacking the transmembrane and cytoplasmic domains, 
were constructed and stably expressed in CHO cells as previously 
described (21, 22). rsELAM-1 and rsVCAM-1 were purified by im- 
munoafl~nity chromatography and were fully functional when im- 
mobilized onto phstic tissue culture plates. CD36 was purified from 
the membranes of human platelets (23), and ICAM-1 was purified 
from the detergent-solubilized membranes of Reed-Sternberg cells 
and purified by immunoaf~nity chromatography with ICAM-1 
mAb 84H10 as previously described (24). 

polyclonal rabbit antisera to ELAM-1 (R.347) was obtained by 
immunization of rabbits with purified rsELAM-1 using conventional 
methods, mAb BB11 (anti-ELAM-1) was prepared as previously 
described (25). mAbs 84H10 (anti-ICAM-1) and 4B9 (anti-VCAM-1) 
were gifts from Drs. S. Shaw (National Cancer Institute, National 
Institutes of Health) and J. Harlan (University of Washington) 
respectively. 

Endothelial Cells. Human umbilical vein endothelial cells 
(HUVECs) were isolated and cultured as described (26). HUVECs 
(1@/well) were cultured and grown to confluence in 24-well tissue 
culture plates before adhesion assays. TNF-oe (200 U/ml) (Advanced 
Biotechnologies, Inc., Columbia, MD) was added to cultures 4 or 
24 h before adhesion assays. 

Paras/tes. Four wild-type primary parasite isolates were obtained 
from patients infected with P. fikiparum from the western prov- 
ince of Kanchanaburi, Thailand and adapted to continuous culture 
in vitro. A strategy to enrich for a subpopulation of parasitized 
erythrocytes which bind to multiple adhesion receptors by sequen- 
tial panning was developed from one such patient (CY36) and is 
illustrated in Fig. 1. Purified rsELAM-1 (10/zg/ml), rsVCAM-1 
(10/~g/ml), ICAM-1 (70 ng/ml), and CD36 (1/zg/ml) were ad- 
sorbed overnight at 4~ to tissue culture dishes (model 1007; Falcon 

Labware, Oxnard, CA). To reduce nonspecific binding, the protein- 
coated plates were blocked for 30 rain with PBS/1% BSA before 
the adhesion assay. Synchronized PRBCs in continuous culture were 
enriched for the tropozoite/schizont stage of development by 
sedimentation on gelatin. The CY36 PRBCs were washed, adjusted 
to 1% hematocrit in RPMI 1640 medium, and added to the ELAM- 
1-coated plate. After 60 min incubation, the unattached erythro- 
cytes were removed by aspiration. Plates were rinsed gently three 
times with RPMI 1640, and the PRBCs remaining attached to 
the ELAM-l-coated plate were vigorously pipetted several times 
with tissue culture medium to detach the ELAM-l-binding PRBCs. 
The PRBCs were concentrated by centrifugation and added to a 
second plate coated with rsVCAM-1. This method of PRBC 
binding, washing, and detachment of bound PRBCs was repeated 
with ICAM-1- and CD36-coated plates. The sequential panning 
on plates coated with ELAM-1, VCAM-1, ICAM-1, and CD36 
enriched for a subpopulation of PRBCs (CY36.1B4) that were sub- 
sequently cloned, expanded, and propagated in vitro by continuous 
culture. 

Adhesion Assay. PRBC binding to HUVEC monolayers and 
to purified proteins was done as described previously (16, 27). Briefly, 
mature developmental stage PRBCs enriched by gelatin sedimen- 
tation were resuspended to 1% hematocrit and added to 24-well 
tissue culture plates (400 #I/well) containing HUVECs. In some 
experiments, polyclonal ELAM-1 (R347, 1/200 dilution) antibodies 
and ELAM-1 (BB11), VCAM-1 (4B9), and ICAM-1 (84H10) mAbs 
(50 #g/ml) were incubated with HUVECs for 30 min at room 
temperature before adding PRBCs. After 60 min, unattached 
erythrocytes were aspirated and cells were fixed with 2% glutaralde- 
hyde and stained with Giemsa. 

In binding assays using purified proteins, CAMs were adsorbed 
to plastic tissue culture plates overnight at 4~ blocked with 
PBS/1% BSA and PRBCs (2% hematocrit) added for 60 rain at 
room temperature. In inhibition assays, antibodies were incubated 
on protein-coated plates 30 min before adding PRBCs. Unattached 
erythrocytes were removed and the plates were rinsed in RPMI 
1640, fixed with 2% glutaraldehyde, and stained with Giemsa. 
Results were expressed as the number of PRBCs bound per 100 
HUVECs or PRBCs bound per mm 2 surface area. 

Imraunofluorescence Detection of ELAM-I and VCAM-I. Post- 
mortem brain tissues from patients who died of complications from 
cerebral malaria in Myanmar (Burma) were fixed in periodate-lysine- 
paraformaldehyde (PLP) (28), embedded in OCT compound (Lab- 
Tek, Miles Laboratories, Inc., Naperville, IL) and snap-frozen in 
iso-pentane cooled in liquid nitrogen. Sections (7-#m thickness) 
were air-dried and fixed with acetone at 4~ for 10 min. Control 
samples of brain tissue from post-mortem autopsies were from in- 
dividuals who died from causes other than malaria. An indirect 
immunofluorescence assay was used to detect ELAM-1, VCAM-1, 
ICAM-1, CD36, and TSP expression on the surface of microvas- 
cular endothelium. Nonspecific binding was reduced by incubating 
sections for 1 h with 10% normal goat serum in 0.05 M Tris-buffered 
saline (pH 7.6). All incubations were performed in an humidified 
chamber at room temperature. Tissue sections preincubated with 
the primary antibody (ELAM-1, polyclonal rabbit; VCAM-1, Mab 
4B9; ICAM-1, Mab CL203; CD36, polyclonal rabbit; and TSP, 
polydonal rabbit) for 1 h were rinsed with Tris-buffered saline and 
incubated for 1 h with FITC-conjugated anti-rabbit IgG or 
anti-mouse IgG (Cappel Laboratories, Malveru, PA) diluted 1:200. 
Sections were rinsed and mounted and examined under UV fluores- 
cent microscope. Negative controls included normal rabbit sera or 
mouse sera applied as the primary antibody. Additional controls 
included sections in which the primary antibody was omitted. 
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Figure 1. Flow diagram illustrating the sequential panning of mala~a- 
infected erythrocytes on ELAM-1, VCAM-1, ICAM-1, and CD36. 

Results and Discussion 
Inducible CAMs on HUVECs are variably expressed and 

regulated by cytokines (for review see reference 29). The ex- 
pression of ELAM-1 on TNF-c~-activated HUVECs is tran- 
sient with maximal expression at 4-6 h, whereas the expres- 
sion of VCAM-1 and ICAM-1 is strongly induced and 
sustained for 48-72 h after TNF-o~ activation. Adhesion of 
a primary wild-type PRBC isolate (CY36) to unstimulated 
HUVECs is augmented as early as 4 h after TNF-o~ treat- 
ment and is additionally increased at 24 h incubation (Fig. 
2 A). Since HUVECs express low amounts of CD36 (30), 
CD36 did not appear to be responsible for the binding of 
PRBCs to the cytokine-activated HUVECs. In an effort to 
uncover additional endothelial receptors for P. fakiparum- 
infected erythrocytes, the PRBC binding properties to TNF- 
activated HUVECs using blocking antibodies was examined. 

Antibodies to CAMs that block important call-cell adhe- 
sion pathways were evaluated for their inhibitory effect on 
PRBC binding. No inhibition of PRBC binding was ob- 
served to TNF-o~-activated HUVECs incubated with either 
anti-ELAM-1 mAb BBll or anti-VCAM-1 mAb 4B9 (Fig. 
2). Anti-ELAM-1 mAb BBll (25) blocks the lectin-like rec- 

ognition binding site on ELAM-1 for the sialylated Lewis x 
tetrasaccharide on human neutrophils (31), whereas mAb 4B9 
blocks VCAM-1 binding to the lymphocyte and eosinophil 
integrin VLA-4 (32, 33). Despite the apparent lack of blocking 
effect demonstrated by these two mAbs, a role for ELAM-1 
and VCAM-1 in the adhesion of PRBCs to activated HUVECs 
could not be discounted. These antibodies had been selected 
originally to block leukocyte-mediated endothelial cell adhe- 
sion, and such epitope-specific mAbs would not necessarily 
block malaria-parasitized erythrocyte binding to spatially dis- 
tinct blocking sites located on the same molecule. In fact, 
we and others (14, 15) have recently confirmed that malaria 
PRBCs bind to ICAM-1 (an alternative endothelial receptor) 
at a site distinct from the binding site for the leukocyte inte- 
grin LFA-1 recognized by mAbs RR1/1 and P,6.5. 

Rabbit polyclonal anti-ELAM-1 antisera nevertheless in- 
hibited PRBC binding to HUVECs activated for 4 but not 
24 h with TNF-o~. The transient expression of ELAM-1 on 
4-h TNF-activated HUVECs accounted for the difference in 
adhesion. The degree of inhibition of PRBC binding on 4-h 
activated HUVECs by polyclonal anti-ELAM-1 did not ex- 
ceed 50% (Fig. 2 B). mAbs to ICAM-1 (84H10) partially 
blocked PRBC binding on both 4-h and 24-h activated 
HUVECs, and the effects were at least additive when com- 
bined with anti-ELAM-1 polyclonal antisera (Fig. 2). The 
lack of complete inhibition suggest s either that PRBCs bind 
alternative endothelial receptors or that they recognize binding 
sites on adhesion receptors partially occupied by the antibodies 
used in these studies. 

Since PRBC binding to dominant or high affinity receptors 
on endothelial cells may mask the function of alternative CAMs 
which also contribute to PRBC adhesion, we investigated 
PRBC binding to purified receptors. Malaria-infected erythro- 
cytes from a naturally acquired infection (CY36) bound to 
recombinant soluble ELAM-1 and VCAM-1, and to mem- 
brane-purified ICAM-1 and CD36 proteins adsorbed onto 
a solid substrate (Fig. 3). PRBCs did not bind to tissue culture 
plates coated with the irrelevant proteins GPlb, fibronectin, 
or BSA. The low level of PRBC binding did not indicate 
a lack of specificity of the interaction with ELAM-1 and 
VCAM-1, rather it reflected high sensitivity in the detection 
of a small subpopulation of malaria-infected erythrocytes that 
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Figure 2. Malaria-infected eryth- 
rocyte adhesion to cytokinc-activated 
endothelial cells. (A) PRBCs were 
added to wells containing HUVECs 
pretreated with TNF-ot for 4 or 
24 h. Results represent the mean + 
SD of three samples. Inhibition of 
PRBC adhesion to HUVECS incu- 
bated with TNF-ot for 4 h (B) or 
24 hours (C) by anti-VCAM-1 
(4B9), anti-ELAM-1 (BB11, R347), 
and anfi-ICAM-1 (841-110) antibod- 
ies. Results represent the mean per 
cent binding of duplicate samples 
compared with samples incubated 
in RPMI 1640 alone. 
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Figure 3. PRBC binding to  cell adhesion molecules. Primary isolates 
of P. fakiparus-infected red cells (CY36) or PRBCs selected by sequential 
priming on adhesion molecules (CY36.1B4) as described in Materials and 
Methods were assayed for binding to plates coated with CAMs and con- 
trol proteins. Results represent the mean PRBCs bound per mm 2 surface 
area of triplicate samples. 

bind multiple CAMs. This was demonstrated by the selec- 
tion and propagation of a subpopulation of PRBCs by the 
sequential panning of PRBCs on plates coated with ELAM-1, 
VCAM-1, ICAM-1, and CD36 (Fig. 1). A cloned popula- 
tion of PRBCs, CY36.1B4, showed increased binding to all 
CAMs compared with  the parental wild-type isolate (Fig. 
3). This is the first demonstration that a single cloned popu- 
lation of parasitized erythrocytes possess multiple counter 
receptors for at least four endothelial cell receptors. 

PRBC binding to rsELAM-1 and rsVCAM-1 was directly 
proportional to protein concentration with  maximal binding 
at ,v l0  # g / m l  (Fig. 4 A).  Rabbit  polyclonal ant i-ELAM-1 
antisera blocked P R B C  binding to rsELAM-1, but not to 
rsVCAM-1 demonstrating the specificity of  the interaction 
(Fig. 4 B). mAb BB11 which blocks neutrophil-mediated adhe- 
sion to ELAM-1 had no effect on PRBC binding to rsELAM-1 
(data not shown). The binding of PRBCs to rsVCAM-1 was 
partially blocked by anti-VCAM-1 m A b  4B9 (Fig. 4 C). De- 
spite increasing concentrations of  m A b  4B9, P R B C  inhibi- 
tion to VCAM-l-coated plates never exceeded 60%. Whereas 
no data is available pertaining to the functional binding sites 
on VCAM-1 for PRBCs,  the binding site is probably close 
to but  distinct from the binding site for the integrin receptor 
VLA-4 (34), since adhesion of lymphocytes and eosinophils 
to VCAM-1 is completely blocked by mAb 4B9 (32, 33). 
The above results illustrate that P R B C  binding to ELAM-1 
and VCAM-1 is specific and independent of  other CAMs and 

Table 1. Iraraunofluorescence Detection of Cell Adhesion 
Molecules on Cerebral Vascular Endothelium 

Patient CD36 TSP ICAM-1 ELAM-1 VCAM-1 

Cerebral malafia 
01/90 - + + + + 

02/90 + + + + + 
03/90 - + + + + 
04/90 + + + + + 
05/90 . . . . .  
06/90 - + + + + 

07/90 - + - - + 
08/90 + + + - + 
09/90 - + - + + 
10/90 + + + + + 
01/91 - - - + - 

02/91 + + + + + 
03/91 + + - + - 
Control brain 
91-434 . . . . .  
91-481 . . . . .  

91-492 . . . . .  
92-15 . . . . .  
92-22 . . . . .  

implies the existence of distinct binding domains on one or 
more counter receptors located at the parasitized red cell 
s u r f a c e .  

The multi-functional binding sites on the parasitized red 
cell surface which recognize structurally unrelated CAMs 
ELAM-1, VCAM-1, ICAM-1, CD36,  and the extracellular 
matrix protein TSP (35), demonstrates the versatile adhesive 
properties of  malaria-infected erythrocytes. Adhesion of pri- 
mary wild-type isolates ofP . fak iparum PRBCs to ELAM-1 
and VCAM-1 may be clinically relevant in vivo since we have 
detected low but significant binding to these CAMs from 
three of  four isolates examined to date (data not shown). A 
large retrospective study which will investigate whether  any 
clinical correlation occurs between the severity of clinical disease 
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Figure 4. Malaria-infected erythrocyte ad- 
herence to ELAM-1 and VCAM-l-coated 
surfaces. (A) PRBC (CY36.1B4) binding to 
increasing concentrations of ELAM-1 and 
VCAM-1. (B) Rabbit polyclonal anti-ELAM-1 
antisera blocks adhesion of CY36.1B4 PRBCs 
to rsELAM-l-coated (10 ~g/ml), but not 
rsVCAM-l-coated (10/zg/ml) plates. (C) In- 
hibition of PRBC binding to rsVCAM-1 by 
anti-VCAM-1 mAb 4B9. 
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(uncomplicated infections versus cerebral malaria) and the in 
vitro PRBC binding to functional CAMs may help clarify 
the role of specific CAMs in severe and complicated malaria. 

Previously, it had been established that although the severity 
of falciparum malaria did not necessarily correlate with adhe- 
sion to purified CD36 or ICAM-1 (13), the clinical course 
of the disease did vary with serum TNF-c, levels (36, 37). 
It is tempting to speculate that cytokine-activated cerebral 
vascular endothelium induces the transient or sustained ex- 
pression of multiple CAMs including ELAM-1 and VCAM-1 
in organs associated with malaria parasite sequestration. By 
indirect immunofluorescence, we have demonstrated the ex- 
pression of ELAM-1 and VCAM-1 on brain microvascular 
endothelium from 10 of 13 (77%) patients with cerebral 
malaria, but not in brain tissue from patients who had died 
from causes other than malaria (Table 1 and Fig. 5). These 
observations support the hypothesis that circulating TNF-o~ 

and IFN-~/(38) modulate the expression of multiple CAMs 
both in vitro and in patients with cerebral malaria. Whereas 
no single CAM was associated with cerebral malaria as as- 
sessed by immunohistochemistry, the coexpression of mul- 
tiple CAMs may direct PRBC migration to where adhesion 
is the strongest, resulting in vascular occlusion, malaria ro- 
sette formation, and the initiation of endothelial cell patho- 
logic responses. Nevertheless, since the binding of a subpopu- 
lation of PRBC (CY36.1B4) to multiple purified receptors 
is specific and not crossreactive, inhibiting parasite sequestra- 
tion to deep vascular beds by soluble receptor-based analogues 
may be problematic if compensatory binding to alternative 
receptors occur. 

It is interesting that the binding of naturally occurring 
malaria-infected red cels is in part mediated by adhesion mol- 
ecules belonging to three distinct gene families, the Ig-like 
supergene family, the selectin gene family, and the newly de- 

Figure 5. Detection of ELAM-1 
(a) and VCAM-1 (b) by immunoflu- 
orescence on cerebral vascular endo- 
thelium from post-mortem brain 
tissue of patients with cerebral 
malaria, x280. 
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scribed CD36/LIMPII gene family (39). VCAM-1, like 
ICAM-1 belongs to the Ig-like supergene family and is com- 
prised of six extracellular domains (5). The adhesion of PRBCs 
to VCAM-1 and ICAM-1 is not typical of other Ig-like pro- 
teins since PRBCs do not bind cells transfected with cDNAs 
coding for mouse ICAM-1 or human ICAM-2 (14). PRBCs 
bind to the first Ig-like domain of human ICAM-1 at a region 
distinct from the LFA-1 and rhinovirus binding sites. Whether 
PRBCs also bind an analogous site on the first NH2-ter- 
minal domain of VCAM-1 remains to be determined. 

This study also demonstrated that PRBCs bind ELAM-1, 
which structurally comprises an amino terminal lectin-like 
domain, followed by an epidermal growth factor domain, 
and several tandem domains with homology to complement 
regulatory proteins (6). The amino terminal lectin-like do- 

main recognizes carbohydrate structures common to both Sialyl 
Le  (sialylated lacto-N-fucopentaose II) and Sialyl Le' (sialy- 
lated lacto-N-fucopentaose III) on human neutrophils (40). 
The interaction between ELAM-1 and neutrophils is inhibited 
by mAb BBll, which has no effect on PRBC adhesion, indi- 
cating that the primary binding site on ELAM-1 for PRBCs 
(like that on VCAM-1 for PRBCs) is dissimilar from the adhe- 
sion receptor's recognition domain responsible for binding 
to its natural counter receptor. Although no functional ac- 
tivities have as yet been attributed to the epidermal growth 
factor-like or complement regulatory protein-like domains 
on ELAM-1, it would be interesting if the subversion by 
erythrocytes infected with P. fakiparum of ELAM-1 occurs 
at one of these sites. 
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