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Abstract. The stimulation of meiotic maturation of 
starfish oocytes by the hormone 1-methyladenine is 
mimicked by injection of 8)' subunits of G-proteins 
from either retina or brain. Conversely, the hormone 
response is inhibited by injection of the GDP-bound 
forms of O/il or O/t subunits, or by injection of phos- 
ducin; all of these proteins should bind free/33'. 

t~-subunit forms with reduced affinity for 87 (O/il o r  
O/t bound to hydrolysis-resistant GTP analogs, or 
t~irGMPPCP treated with trypsin to remove the amino 
terminus of the protein) are less effective inhibitors of 
1-methyladenine action. These results indicate that the 
/33, subunit of a G-protein mediates 1-methyladenine 
stimulation of oocyte maturation. 

URING oocyte maturation, a fully-grown oocyte re- 
sumes meiosis and also acquires the cytoplasmic 
and membrane properties necessary for successful 

fertilization (Masui and Clarke, 1979). Although maturation 
occurs in oocytes of all species, the stimuli for its occurrence 
vary. Hormones from the follicle cells surrounding the 
oocyte initiate maturation in starfish (1-methyladenine; 
Kanatani et al., 1969; Kanatani, 1985) and frogs (proges- 
terone; Masui and Clarke, 1979; Smith, 1989). In mam- 
mals, however, the stimulus is thought to be the termination 
of an inhibitory message from the follicle cells (Schultz, 
1991). In some other animals, such as clams, the sperm pro- 
vides the signal for the oocyte to resume meiosis (Ruderman 
et al., 1991). 

The action of 1-methyladenine on starfish oocytes has 
provided a particularly useful model for examining signaling 
pathways leading to oocyte maturation. The hormone acts on 
the external surface of the oocyte (Kanatani and Hiramoto, 
1970; Yoshikuni et al., 1988) to cause a characteristic set of 
intracellular responses (Kanatani, 1985). The most promi- 
nent of these is the reinitiation of meiosis, involving break- 
down of the nuclear envelope of the large germinal vesicle 
(GVBD).' This occurs at •30 min after hormone addition 
at 20°C, and is followed by formation of two polar bodies and 
a female pronucleus as a consequence of the two meiotic di- 
visions. To initiate these events 1-methyladenine must be 
present for ,'~5-20 min (Guerrier and Dorte, 1975; Chiba 
and Hoshi, 1989). 

1. Abbreviations used in this paper: GDP, guanosine-5'-diphosphate; 
GVBD, germinal vesicle breakdown; MPE maturation promoting factor. 

Accompanying nuclear maturation, the cytoplasm and 
plasma membrane of the oocyte also mature, in starfish 
(Kanatani, 1985) as well as other animals (Masui and 
Clarke, 1979). Before application of 1-methyladenine, sperm 
can fuse with the oocyte, but they cause very little release 
of calcium (Chiba et al., 1990) and little or no elevation of 
the fertilization envelope. Inseminated immature oocytes do 
not establish blocks to polyspermy, and do not cleave or de- 
velop. After hormone application, by the time of GVBD, the 
oocyte has acquired the ability to respond to sperm by releas- 
ing a much larger amount of calcium (Chiba et al., 1990) and 
elevating its fertilization envelope fully. Polyspermy does not 
occur, and the zygote cleaves and develops normally. Other 
maturation-induced changes include release of the follicle 
cells that surround the oocyte (Kishimoto et al., 1984), 
changes in cortical actin filaments and microtubules (Schroe- 
der and Stricker, 1983; Otto and Schroeder, 1984; Schroe- 
der and Otto, 1984), and decreases in potassium conduc- 
tances in the oocyte plasma membrane (Miyazaki et al., 
1975; Simoncini and Moody, 1990). 

Like all stimuli that lead to cell division, 1-methyladenine 
causes the production in the starfish oocyte cytoplasm of 
maturation promoting factor (MPF). This in turn stimulates 
the reinitiation of meiosis, as well as at least some of the 
other events of oocyte maturation (Kishimoto and Kanatani, 
1976; Kishimoto et al., 1984). A major component of MPF 
is the serine-threonine kinase composed of dephosphory- 
lated p34 ~c2 and a phosphorylated B-type cyclin; MPF may 
contain other components as well (Pondaven et al., 1990; 
Picard et al., 1991; Kobayashi et al., 1991). Additional ki- 
nases, a myelin basic protein kinase resembling MAP-2 ki- 
nase, and an $6 kinase, may function in a cascade leading 
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to GVBD (Pelech et al., 1988; Sanghara et al., 1991; Daya- 
Makin et al., 1991). 

Although the receptor for l-methyladenine has not been 
identified, the initial action of the hormone appears to be 
mediated by a heterotrimeric G-protein, because its action 
is inhibited by injection of pertussis toxin (Shilling et al., 
1989; Chiba et al., 1992), and because high affinity binding 
of 1-methyladenine to starfish oocyte membranes is inhibited 
by GTP-'y-S (Tadenuma et al., 1992). The pertussis toxin in- 
hibition can be bypassed by injection of MPF, in the form of 
cytoplasm from a maturing oocyte, indicating that the G-pro- 
tein acts prior to the formation of MPF (Shilling et al., 
1989). The pertussis substrate is a Gi-like protein, most 
similar in its c~-subunit sequence to mammalian G~, (Tade- 
numa et al., 1991; Chiba et al., 1992). Evidence that starfish 
Gi is activated by 1-methyladenine comes from the finding 
that 1-methyladenine treatment of oocyte membranes causes 
Oil to acquire the ability to be ADP-ribosylated by cholera 
toxin (Tadenuma et al., 1992). In the present paper, we de- 
scribe the effects of injecting into starfish oocytes mam- 
malian G-protein ct and #~ subunits and phosducin, a protein 
that binds G-protein/3~/-subunits (Lee et al., 1987, 1992). 
Our results indicate that the/3"y-subunit is the primary stimu- 
lus for starfish oocyte maturation. 

Materials and Methods 

Preparation of Gametes and Microinjection 
Starfish (Asterina miniata) were obtained from Bodega Marine Laboratory 
(Bodega Bay, CA) and were maintained in recircuiating natural sea water 
at 14°C. Ovaries were removed and cut apart in calcium free artificial sea 
water at 4°C. The oocytes that were released were washed several times in 
calcium free sea water until most of their follicle cells were removed; this 
process took about 20 rain. The oocytes were then washed repeatedly in nat- 
ural sea water at 20°C to remove all remaining follicle cells. Oocyte di- 
ameters were 180-190/~m. 

For microinjection experiments, oocytes were held between two cover- 
slips separated by two pieces of double stick tape (Kiehart, 1982; Terasaki 
and Jaffe, 1993). The ooc3qes were positioned within 200 t~m of the cover- 
slip edge, to allow rapid introduction of 1-methyladenine or sperm. All ex- 
periments were performed in natural ~ water at 20°C. 1-methyladenine 
(Sigma Chemical Co., St. Louis, MO) was dissolved in natural sea water 
at a concentration of 1 t~M. Sperm were obtained from a dissected testis; 
they were diluted approximately 1:1,000 in natural sea water before addition 
to the chamber containing oocytes. 

Microinjections were made using a constriction pipet (Hiramoto, 1974; 
Kishimoto, 1986) filled with silicon oil (dimethylpolysiloxane, 100 centi- 
stokes, Sigma Chemical Co., St. Louis, MO). Injections were calibrated 
by measuring the diameter of an equivalent volume of oil, and ranged from 
36 to 200 pl (1-5.6% of the 3,600 pl volume of an oocyte of 190-/~m diarn). 
Observations and photographs were made using 10X and 20X objectives 
with differential interference contrast optics (Carl Zeiss, Inc., Thornwood, 
NY), and Tech Pan film (Eastman Kodak Co., Rochester, NY). 

Preparation of Proteins 
Antibodies against G-protein subunit peptides were produced and affinity 
purified as previously described (Simonds et al., 1989; Murakami et al., 
1992). 

Transducin c~ and 83' subunits were purified from bovine retina, and c~t- 
GppNHp was prepared as previously described (Ting et al., 1993). Purified 
proteins were stored in 50% glycerol at -20°C. Glycerol was removed by 
use of a Bio-Spin 6 column (BioRad, Richmond, CA) or a 30,000 MW 
Ultra-Spin filter (USA/Scientific Plastics, Oeala, FL); the buffer was ex- 
changed to 100 mM K aspartate, 10 mM Hepes, pH 7.0. 1 mM MgCI2 was 
included in the buffer for ~x-subunits. Results obtained with two different 
transducin/~ preparations were the same. 

Brain/3~, and/336~'2 were purified as previously described (Sternweis 

and Robishaw, 1984; Muntz et al., 1992). "Brain ~/"  was a preparation like 
that shown in Fig. 6 D of Sternweis and Robishaw (1984), and consisted 
of both 35 and 36 kD ffs and multiple "y's. ~Brain/33672 ~ was derived from 
a heterotrimeric G-protein preparation like that shown in Fig. 6 B of Stern- 
weis and Robishaw (1984). This preparation was enriched in the 36-kD/~ 
and one of multiple "y's ('Y2 refers to its position on the SDS gel in Fig. 6 
B of Sternweis and l/.obishaw (1984), and does not denote the 3'2 DNA 
clone). Proteins were stored at -70°C in a buffer containing 0.8-1.0% cbo- 
late; injections were made in the cholate-contalning buffer. 

Recombinant nonmyristoylated cci~ was synthesized from a rat olfactory 
eDNA in which the amino-terminal glycine-encoding sequence bad been 
changed to code for an alanine (Jones et al., 1990). Using a recombinant 
baculovirus, the protein was expressed in St9 cells and purified (Jones et 
al., 1993). The protein was treated with 1 mM GDP or GTP-3"-S and then 
extensively washed and concentrated; the procedure was the same as previ- 
ously described except that no detergent was used (Yatani et al., 1987). 
Purified proteins were stored in 25% glycerol at -70°C; glycerol was re- 
moved and the buffer was exchanged as described for transducin subunits. 
Results obtained with three different c~it preparations were the same. 

The tryptic cleaved cql was prepared by resusponding the partially 
purified protein in a buffer containing 100/zM GMPPCP after the ammo- 
nium sulfate precipitation. Before chromatography with Blue Sepbarose 
(Pharmacia LKB Biotechnology Inc., Piseataway, NJ), the sample was in- 
cubated at 4°C with 100/~M GMPPCP and TPCK trypsin in a ratio of 1:80 
(trypsin: protein, by weight). After I0 rain, soybean trypsin inhibitor was 
added at a ratio of 10:1 (inhibitor: trypsin, by weight) and the sample was 
immediately applied to the column. The purified protein was stored in 25 % 
glycerol at -70°C; glycerol was removed and the buffer was exchanged as 
described for transducin subunits. 

Phosducin was purified from bovine retina as described previously (Lee 
et al., 1987). Purified protein was stored in 40% glycerol at -20°C;  
glycerol was removed and the buffer was exchanged as described for trans- 
ducin subunits. Results obtained with two different phosducin preparations 
were the same. 

Protein concentrations were determined using the bicinchoninic acid 
(BCA) assay (Pierce Chemical Co., Rockford, IL) with BSA as a standard. 

Tryptic Cleavage of ~-Subunits to Test 
Nucleotide Association 
cqt-GDE oqI-GTP-3'-S, c~t-GDP, and ott-GppNHp were incubated at 4°C 
with trypsin (Boehringer Mannheim, Indianapolis, IN) in a ratio of 1:50 
(trypsin: protein, by weight). After 60 rain, SDS sample buffer was added, 
the samples were heated for 5 rain at 95-1000C, and the cleavage products 
were separated by SDS gel electropboresis. 

Gel Electrophoresis and Immunoblotting 
Oocyte lysates were prepared by adding lx  SDS sample buffer to a pellet 
of defolliculated starfish oocytes. These lysates were then heated to 
95-100°C for 5 rain and subjected to 10% SDS-PAGE according to the 
method of Laemmli (1970). Molecular weight markers were from Bio-Rad 
Laboratories (Richmond, CA). After SDS-PAGE, the separated proteins in 
the gel were electrophoretically transferred to 0.2 /~m nitrocellulose 
(Schleicher and Schuell, Keene, NH). The blot was briefly stained with a 
0.2% Ponceau S solution (Harlow and Lane, 1988) to determine the posi- 
tion of the molecular weight markers and to cut it into individual sample 
strips. These strips were destained with water and then blocked by incuba- 
tion for I h in TST-Blotto (10 mM Tris-HCl, pH 7.4, 150 mM NaC1, 0.075 % 
Tween 20, 0.5% non-fat dried milk, and 0.05% sodium azide). The immu- 
noblot strips were then matted dry and placed on a piece of parafilm. The 
primary antibody, diluted in TST-Blotto to 2.5-3.5/~g/ml, was slowly pipet- 
ted onto the strip, followed by an overlay of parafilm to form a sandwich. 
After an overnight incubation at room temperature, the immunoblots were 
washed four times with TST-Blotto and then incubated for 1 h with an alka- 
line phosphatase-conjngated goat anti-rabbit IgG (Cappel Laboratories, Or- 
ganon Tekuika Corp., Durham, NC). The blots were washed four times 
with TST-Blotto, twice with TST (no milk), once with TSM (100 mM Tris- 
HC1, pH 9.0, 100 mM NaC1, and 5 mM MgCI2), and developed in TSM 
containing 5-bromo-4-chloro-3-indolyl phosphate (BCIP) and nitroblue 
tetrazolium (NBT). 

The purified proteins used for microinjection and the G-protein c~-sub- 
units subjected to proteolysis were both analyzed by 10% SDS-PAGE using 
a Tris-tricine buffer system (Schagger and Von Jagow, 1987). This system 
enables one to examine both high and low molecular weight proteins on the 
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same gel. Upon completion of electrophoresis, the gels were stained with 
Coomassie blue and destained. 

Results 

Identification of  G-Protein Subunits in 
Star rr~h Oocytes 

Immunoblots oflysates of A. m/n/am oocytes showed starfish 
proteins that cross-reacted with antibodies recognizing the 
mammalian G-protein subunits o~,, c~i,.2, and/3 (RM, AS, 
and RA; Simonds et al., 1989; Murakami et al., 1992) (Fig. 
1). The molecular weights of these proteins were 44, 39, and 
37 kD, respectively, similar to the molecular weights of the 
corresponding mammalian proteins (Gilman, 1987), and 
identical to those of the previously described o~, oLi, and/3 
in Asterina pectinifera (Tadenuma et al., 1991, 1992). No 
cross-reactivity with o~ or O~o antibodies (EC and GO; Si- 
monds et al., 1989) was seen. 

Transducin /37-Subunits Stimulated 
Oocyte Maturation 

/33"-subunits from bovine transducin (Fig. 2, lane 2) were in- 
jected into starfish oocytes. A /33" concentration in the 
cytoplasm of ~1.8 ~M caused all of the oocytes to undergo 
GVBD (Figs. 3, 4). A/33" concentration of g0.5 #M did not 
cause GWBD. Oocytes that had been induced to undergo 
GVBD by injection of/33'-subunits were frequently observed 
to form polar bodies (Fig. 5 A) and a female pronucleus, al- 

Figure 2. Tricine-SDS-PAGE of mammaiian G-protein ~3,-subunits 
used for injection. Samples were loaded onto a 10% polyacryl- 
amide gel, subjected to Tricine-SDS-PAGE, and then Coomassie 
blue stained. (Lane/) bovine transducin 87 (3/tg); 0ane 2) whole 
bovine transducin (6 ~g); (lane 3) bovine brain/~7 (3 #g); (lane 4) 
bovine brain ~3672 (3/tg). 

Figure 1. Immunoblot of star- 
fish oocyte lysate with at~nity- 
purified antibodies raised 
against peptides of mamma- 
lian G-protein subunits. Ly- 
sate was loaded (70 ~,g/lane) 
onto a 10% polyacrylamide 
gel and subjected to SDS- 
PAGE and immunoblotted as 
described in Materials and 
Methods. (Lane 1) RM anti- 
body ~,ainst mammalian a, 
COOH-terminal decapeptide; 
(lane 2) AS antibody against 
mammal~n ~t COOH-ter- 
minal decapept~, which sho~ 
immunoreactivity against ~i, 
and a~; (lane 3) RA antibody 
a oaln~ bovine transducin ~-sub- 
unit amino acid residues 
256-265. 

though polar bodies were sometimes seen to form partially 
and then recede. Control injections of whole transducin (the 
c~/33' complex, Fig. 2, lane 2), or of/33" that had been heated 
at 90°C for 5-10 min, did not cause GVBD (Figs. 3 B and 4). 

GVBD in response to/33' injection occurred with a time 
course similar to the response to 1-methyladenine (measure- 
ments at 20°C). In oocytes from different animals, the time 
of GVBD in response to 1-methyladenine differs somewhat, 
so comparisons were made for oocytes from individual 
animals. For oocytes from an animal in which OWBD oc- 
curred at 38 + 3 min (SD, n = 19 oocytes) after applying 
1/zM 1-methyladenine, GVBD in response to injection of 1.5 
/tM 133' Occurred at 34 + 3 rain (n = 11). For oocytes from 
another animal, in which GVBD Occurred at 21 :t: 1 min 
(n = 20) after applying 1/~M 1-methyladenine, GVBD in re- 
sponse to injection of 1.5 #M/33" occurred at 22 + 3 rain 
(n = 9). Similar results were obtained when the concentra- 
tion of/33' was increased twofold. 

In addition to causing the reinitiation of meiosis,/33" injec- 
tion caused the oocytes to acquire the ability to respond to 
sperm by elevating a full fertilization envelope (Fig. 5 A). 
These fertilized eggs underwent cleavage (Fig. 5 A) and de- 
veloped at least to blastulae. In contrast, control oocytes in- 
jected with heat-inactivated/~3' or whole transducin did not 
elevate fertilization envelopes or cleave in response to sperm 
(Fig. 5B) .  
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Figure 3. Stimulation of oocyte maturation by injection of trans- 
ducin/33' subunits. (A) An oocyte 47 min after injection of 180 pl 
of 1.3 mg/ml transducin/3% 1.5 #M final concentration in the 
oocyte. GVBD has occurred, as indicated by the absence of the ger- 
minal vesicle and nucleolus (compare to control in B). O indicates 
the oil drop left in the oocyte as a consequence of microinjection. 
(B) Control oocyte 95 min after injection of 180 pl of 3.8 mg/ml 
whole transducin (c~/33'), 2.3 #M final concentration in the oocyte. 
The germinal vesicle (GV) and nucleolus (N) are intact. Bar, 
200 t~m. 

Brain 8"/Subunits also Stimulated Oocyte Maturation 

Transducin /33" was used for the experiments described 
above, because no detergent is required to solubilize it. This 
property may be a consequence of the isoprenylation of 
transducin 3"-subunits with a 15-carbon farnesyl group in- 
stead of a 20-carbon geranylgeranyl group which occurs on 
other 7-subunits (Fukada et al., 1990; Mumby et al., 1990; 
Spiegel et al., 1991). To test the generality of the stimulatory 
effect of/3% we also used brain/3% which was solubilized 
in a buffer containing 0.8-1.0% cholate (Fig. 2, lanes 3 and 
4). These cholate-containing solutions were used at volumes 
not exceeding 1-3 % of the oocyte volume. Larger injections 
of cholate-containing control solutions sometimes caused a 
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Figure 4. Stimulation of GVBD by injection of/33' subunits. Percent 
of oocytes that underwent GVBD by 60 min after injection is plotted 
as a function of the final/33'-subunit concentration in the oocyte. 
90°C indicates a sample that was heat-inactivated. Numbers in 
parentheses indicate the number of oocytes injected (total number 
for all concentrations), and the number of different animals from 
which the oocytes were obtained. 

Figure 5. Fertilization and cleavage of an oocyte inseminated after 
induction of maturation by injection of transducin/37. (A) An em- 
bryo which developed from an oocyte injected with 1.5/~M trans- 
ducin/37 and inseminated 1.7 h later. Photographed 3 h after insem- 
ination. The small dots beneath the embryo are sperm. The 
fertilization envelope (FE) has elevated, and the embryo has 
cleaved to form four cells. A polar body (PB) is also visible. (B) 
A control ooeyte injected with 2.3 gM whole transducin and in- 
seminated 2.5 h later. Photographed 3 h after insemination. The 
germinal vesicle is intact, the fertilization envelope has not 
elevated, and no cleavage has occurred. Bar, 200 tzm. 

gradual and partial shrinking of the germinal vesicle, but did 
not cause the breakdown of the nuclear envelope that charac- 
terizes the normal GVBD response. 

Injection of 0.47 ftM brain/33' caused GVBD in all oo- 
cytes; thus brain/33, was effective at a somewhat lower con- 
centration than transducin/33" (Fig. 4). 0.09 #M brain/33' did 
not cause GVBD. Similar results were obtained with a prepa- 
ration containing a mixture of the various forms of 13 and 7 
present in brain G-proteins, and with a preparation enriched 
in/336 and 72. Brain/33" that had been heated at 90°C for 10 
min did not cause GVBD. Oocytes injected with brain/37 
also formed polar bodies and acquired the ability to elevate 
a fertilization envelope in response to sperm. 

arSubunits in the 
Guanosine-5'-diphosphate-Bound Form Inhibited 
Germinal Vesicle Breakdown in Response 
to l-Methyladenine 

Because/33'-subunits stimulated GVBD, we tested whether 
GVBD would be inhibited by injection of ot-subunits, or-sub- 
units can be bound to either GDP or GTP; the GDP-bound 
form, which is present in the absence of receptor stimula- 
tion, has high affinity for/57 . After receptor stimulation, 
GDP dissociates and GTP binds; the GTP-bound form has 
low affinity for/33' (Gilman, 1987). Because of these proper- 
ties, we used o~-subunits in the GDP-bound form, which 
would be expected to bind free/33" in the oocyte. We used 
the c~-subunit of mammalian Gil, because of its similarity to 
the G-protein that is apparently activated in starfish oocytes 
in response to 1-methyladenine (Tadenuma et al., 1991, 
1992; Chiba et al., 1992). To allow free solubility of the 
ot-subunit in the absence of detergent, we used a recombinant 
form of c~, that had been modified to prevent myristoyla- 
tion (Fig. 6, lane /) (Jones et al., 1990). This mutant O/il 
can effectively combine with /33"-subunits, although its 
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Figure 6. Tricine-SDS-PAGE of mammalian G-pro- 
tein t~-subunits and phosducin used for injection, 
and tests of nucleotide association by tryptic di- 
gestion. Samples were loaded (3/~g/lane) onto a 
10% polyacrylamide gel, subjected to Tricine- 
SDS-PAGE, and then Coomassie blue stained. 
(Lane 1) Recombinant nonmyristoylated cti~- 
GDP; (lane 2) recombinant nonmyristoylated Otil- 
GDP, treated with trypsin; (lane 3) recombinant 
nonmyristoylated t~-GTP--y-S; (lane 4) recombi- 
nant nonmyristoylated O t i l - G T P - " t , - S  , treated with 
trypsin; (lane 5) ctt-GDP; (lane 6) ctt-GDE 
treated with trypsin; (lane 7) at-GppNHp; (lane 
8) c~cGppNHp, treated with trypsin; (lane 9) re- 
combinant nonmyristoylated ai~-GMPPCP that 
was treated with trypsin and then isolated by col- 
umn chromatography; (lane 10) phosducin. 

affinity for/5~ is lower than that of wild-type ol~t (Jones et 
al., 1990, 1993; see also Linder et al., 1991). 

Injection of ct~t-GDP at a final concentration of >12.2 #M 
inhibited GVBD in response to 1/xM 1-methyladenine (Figs. 
7 A and 8). Injections were made 5-110 min before applying 
the hormone, and oocytes were observed at 60 min after hor- 
mone application to determine whether GVBD had oc- 
curred. With the light microscope, these oocytes showed no 
morphological changes and appeared normal. Injection of 
0.4 #M etit-GDP did not inhibit GVBD in response to 1-meth- 
yladenine (Fig. 8). 

at Subunit  Forms with Lower Affinity for 
[3"t Were Less Effective or Ineffective in Inhibiting 
Germinal Vesicle Breakdown in Response 
to 1-Methyladenine 

As controls, we injected forms of ot~ that had reduced 

Figure 7. Inhibition of 1-methyladenine-induced oocyte maturation 
by injection of txil-GDP. (,I) An oocyte injected with 200 pl of 1.6 
mg/ml txlt-GDP (final concentration in the cytoplasm 2.2 ttM) and 
exposed to 1 tiM 1-methyladenine starting at 35 min after injection. 
Photographed 60 min after application of 1-methyladenine. GVBD 
has not occurred. (B) A control oocyte injected with 200 pl of 1.6 
mg/ml otlt-GTP-y-S (final concentration in the cytoplasm 2.2/~M) 
and exposed to 1/~M 1-methyladenine starting at 45 min after injec- 
tion. Photographed 60 min after application of 1-methyladenine. 
GVBD has occurred. Bar, 200 tLm. 

affinity for/~-y, ot~ that has been activated by preincubation 
with a hydrolysis resistant GTP analog has reduced affinity 
for/~3' (Kohnken and Hildebrant, 1989; Jones et al., 1990); 
correspondingly, o~1-GTP--y-S (Fig. 6, lane 3) was a less 
effective inhibitor of the 1-methyladenine response (Figs. 7 
B and 8). cz,-GTP-3,-S was, however, partially inhibitory at 
higher concentrations. This could be due to the dissociation 
of the GTP--y-S from a fraction of the activated ot-subunits, 
resulting in the introduction of some txil-GDP into the cell. 
To examine this possibility, we compared the tryptic cleavage 
patterns of the ot~I-GTP-~-S and otit-GDP preparations (Fig. 
6, lanes 2 and 4); if GTP-3,-S is bound, ot~ should be pro- 
tected from multiple cleavages (Eide et al., 1987; Neer et al., 
1988). The molecular weight of the major tryptic cleavage 
product of otil-GTP--y-S was only slightly smaller than that 
of the original protein, indicating that the GTP-~/-S was 
bound to at least a significant fraction of the O/i 1 in the stock 
solution; however, some dissociation is likely to have oc- 
curred, because the apparent Ko of otirGTP-q¢-S has been 
measured to be ~30 nM (Carty et al., 1990). Based on this 
Ko and a concentration of 5 #M ot~-GTP-'y-S after injec- 
tion, we estimated that the amount of o~I-GDP present 
would be ,~0.4 #M, close to the concentration at which in- 
hibitory effects of a , -GDP begin to appear. The value of 
0.4 #M is only an estimate, since other factors such as cyto- 
plasmic [Mg] might influence the Ko, and because some 
additional dissociation might have occurred during dialysis 
of the protein. Based on these considerations, the presence 
of otit-GDP seems to be a likely explanation of our results. 
These results were unrelated to the introduction of free GTP- 
~/-S into the cell, because injection of GTP-~/-S, at a concen- 
tration in the cytoplasm of 10/zM, neither stimulated nor in- 
hibited GVBD. 

o~-subunits that have been incubated with a hydrolysis- 
resistant GTP analog and trypsin have reduced affinity for 
B't, not only because they are activated, but also because they 
lack a 2-kD fragment from the amino terminus (Neer et al., 
1988). We used such a form of otis, u~-GMPPCP-TR (Fig. 
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Figure 8. Inhibition of 1-methyladenine-induced GVBD in oocytes 
injected with ~x-subunits. Percent of oocytes that underwent GVBD 
by 60 rain after application of 1-methyladenine is plotted as a func- 
tion of the final a-subunit concentration in the oocyte. 90°C indi- 
cates a sample that was heat-inactivated. Numbers in parentheses 
indicate the number of oocytes injected (total number for all con- 
centrations), and the number of different animals from which the 
oocytes were obtained. 

6, lane 9) as an additional control, and found that it did not 
inhibit the 1-methyladenine response (Fig. 8). Also, 4.4 t~M 
oli~ that had been heated at 90°C for 5 min did not inhibit 
GVBD in response to 1-methyladenine (Fig. 8). 

Neither of the activated oei subunits, ¢xii-GTP-3,-S or oeit- 
GMPPCP-TR, at 5.0 or 6.5 t~M respectively, stimulated 
GVBD. 

Transducin ~ Subunits in the 
Guanosine-5'-diphosphate-bound Form also Inhibited 
Germinal Vesicle Breakdown in Response 
to 1-Methyladenine 

Because ¢x-subunits can in some cases bind/33' without a high 
degree of specificity (Hekman et al., 1987; Iniguez-Lluhi et 
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Figure 9. Inhibition of 1-methyladenine-indueed GVBD in oocytes 
injected with phosducin. Percent of oocytes that underwent GVBD 
by 60 rain after application of 1-methyladenine is plotted as a func- 
tion of the final phosduein concentration in the ooeyte. 90"C indi- 
cates a sample that was heat-inactivated. Numbers in parentheses 
indicate the number of ooeytes injected, and the number of different 
animals from which the ooeytes were obtained. 

al., 1992), we tested whether transducin ot (Fig. 6, lane 5) 
would inhibit GVBD in response to 1-methyladenine. Injec- 
tion of a,-GDP at a final concentration of >12.3 #M in- 
hibited the response to 1-methyladenine; 0.9 #M ot,-GDP 
was not inhibitory (Fig. 8). Thus, similar concentrations of 
ot,-GDP and ¢x,-GDP inhibited the response to the hor- 
mone. Injection of oe, that had been activated with the 
hydrolysis-resistant GTP analog GppNHp (Fig. 6, lane 7), 
and thus having reduced affinity for/33" (Navon and Fang, 
1987; Phillips and Cerione, 1991), was less effective in in- 
hibiting GVBD (Fig. 8). We confirmed that GppNHp was 
bound to O/t by tryptic digestion (Fung and Nash, 1983) 
(Fig. 6, lanes 6, 8). 

We also observed that at-GppNHp, at 4.6 #M, did not 
stimulate GVBD. 

Phosducin Inhibited Germinal Vesicle Breakdown in 
Response to l-Methyladenine 

Phosducin is a 33-kD phosphoprotein from retina that binds 
transducin/33, subunits; in a reconstituted phototransduction 
system, phosducin disrupts signal coupling by sequestering 
transducin/33' subunits (Lee et al., 198% 1992). Because of 
its ability to bind/3% we tested whether GVBD in starfish 
oocytes would be inhibited by injection of phosducin. 

Injection of phosducin (Fig. 6, lane 10) at a final concen- 
tration of I> 3.2 t~M inhibited GVBD in response to 1-methyl- 
adenine (Fig. 9). Injections were made 15-60 min before ap- 
plying the hormone, and oocytes were observed to determine 
whether GVBD had occurred at 60 min after hormone appli- 
cation. With the light microscope, these oocytes showed no 
morphological changes and appeared normal. Injection of 
1.2 /~M phosducin did not inhibit GVBD in response to 
1-methyladenine (Fig. 9). As a control, we injected 5.3 #M 
phosducin that had been heated at 90°C for 10 min; this heat- 
treated phosducin did not inhibit GVBD in response to 1-meth- 
yladenine (Fig. 9). 

Discussion 

G-Protein Actions Mediated by B7-Subunits 

Although most actions of G-proteins have been attributed to 
the interaction of the o~-subunit with an effector molecule, re- 
cent evidence indicates that the/33'-subunit complex can also 
activate effector molecules. These actions include stimula- 
tion of type H adenylylcyclase, potentiation of o~, stimula- 
tion of types II and IV adenylylcyclases, and inhibition of 
t~s or calmodulin stimulation of type I adenylylcyclase 
(Katada et al., 1987; Tang et al., 1991; Tang and Gilman, 
1991; Gao and Gilman, 1991; Federman et al., 1992; 
Iniguez-Lluhi et al., 1992; Mangels et al., 1992; Taussig et 
al., 1993), activation of phospholipase A2 (Jelsema and Ax- 
elrod, 1987; Kim et al., 1989), opening of muscarinic K + 
channels (Logothetis et al., 1987; Ito et al., 1992), activation 
of phospholipase C (Blank et al., 1992; Boyer et al., 1992; 
Camps et al., 1992a,b; Katz et al., 1992; Carozzi et al., 
1993), promoting the membrane association of/3-adrenergic 
receptor kinase and thus, indirectly, increasing the kinase ac- 
tivity (Pitcher et al., 1992), and stimulating muscarinic ace- 
tylcholine receptor kinase (Haga and Haga, 1992)./33" also 
binds phosducin (Lee et al., 1987) and calmodulin (Katada 
et al., 1987; Mangels et al., 1992), and mediates responses 
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to mating pheromones in yeast (Blumer and Thorner, 1991; 
Leberer et al., 1992a,b). Injection of/3-y subunits into frog 
oocytes has been reported to either enhance (Dascal et al., 
1986) or inhibit (Moriarty et al., 1988) agonist-induced 
opening of calcium-dependent C1- channels. 

A Role for 133" in Stimulation of Meiotic Maturation 
The stimulation of meiotic maturation of starfish oocytes by 
the hormone 1-methyladenine is mimicked by injection of/33" 
subunits of G-proteins from either retina or brain. Con- 
versely, the hormone response is inhibited by injection of the 
GDP-bound forms of c~ or o~, subunits, or by injection of 
phosducin; all of these proteins should bind free/3% a-sub- 
unit forms with reduced affinity for B7 (oLi, or or, bound to 
hydrolysis-resistant GTP analogs, or ot,-GMPPCP treated 
with trypsin to remove the amino terminus of the protein) are 
less effective inhibitors of 1-methyladenine action. These 
results indicate that the/33" subunit of a G-protein mediates 
1-methyladenine stimulation of oocyte maturation. 

The a-subunit and phosducin inhibition results could also 
be explained by the alternative hypothesis that the activation 
of an effector in response to 1-methyladenine is mediated by 
an .-subunit. Injected a-subunits or phosducin could se- 
quester/33' freed by an initial cycle of G-protein activation, 
thus depleting the/53' available to an endogenous c~-subunit, 
and preventing the reactivation of the endogenous a-subunlt 
by the receptor. This mechanism could only be significant 
if individual G-proteins underwent multiple cycles of activa- 
tion in response to 1-methyladenlne. Also, if a was the pri- 
mary subunit of the G-protein that mediates 1-methyladenine 
action, our/33' results could only be explained as an unnatu- 
ral consequence of the high concentrations of/33' employed. 
This is a possible interpretation, although seemingly less 
likely. 

For transducin/3% stimulation of oocyte maturation re- 
quires ,,o2 #M, and for brain/3% ,xO.5 #M is required. By 
comparison, maximal/33' effects on adenylylcyclase occur at 
~20  nM-0.5 #M (Katada et al., 1987; Tang et al., 1991; Tang 
and Gilman, 1991; Gao and Gilman, 1991; Iniguez-Lluhi et 
al., 1992; Mangels et ai., 1992), and maximal/33" effects on 
K ÷ channels occur at ,,o30 nM (Ito et al., 1992). Maximal 
/57 effects on muscarinlc aeetylcholine and /3-adrenergic 
receptor kinases are seen at concentrations of 30 nM-6 #M 
(Haga and Haga, 1992; Pitcher et ai., 1992). Maximal stim- 
ulation of phospholipase C requires about 0.5--4 #M /33" 
(Blank et al., 1992; Camps et al., 1992a,b; Carozzi et al., 
1993). These comparisons indicate that the stimulation of 
starfish oocyte maturation by/33"-subunits occurs in a con- 
centration range similar to or somewhat higher than that 
seen for/33' stimulation of various responses in mammalian 
systems. 

Although it seems unlikely to us that/33" plays no natural 
role in mediating the action of 1-methyladenlne, it is very 
possible that the a-subunlt of G~ also contributes to the ac- 
tion of the hormone. This question should be addressed by 
injection of activated ot~ from starfish oocytes. Our results 
show that activated mammalian a,, does not stimulate 
GVBD; although rat otit and starfish o~t are 89% identical 
(Chiba et al., 1992), the differences could be significant. The 
protein used in our experiments was nonmyristoylated; how- 
ever, ot~ expressed in Escherichia coli is nonmyristoylated 
(Duronio et al., 1990) and is still capable of at least some 

effector interactions (Yatani et al., 1988; Linder et al., 
1990). 

Possible Targets of [37 Action 

The target of/33' in the oocyte is unknown. 133' could act ei- 
ther by binding to  a G-protein ot-subunit, or by binding to 
an effector enzyme. If in addition to Gt, there was in the 
oocyte another G-protein that had an action opposing matu- 
ration, the/53' released by 1-methyladenine could counteract 
the action of this other G-protein by binding to its ¢x-subunit. 
This mechanism could only be significant if the 133' bound 
to the o~-subunit in its GDP-bound form and interrupted its 
GDP/GTP cycle. 

One possibility for the action of/53' pertains to the hypoth- 
esis that oocyte maturation is mediated by a fall in cAMP 
(see Meijer and Arion, 1991). The evidence for a role of a 
decrease in cAMP in mediating 1-methyladenine action is 
that cAMP in the oocyte has been measured to decrease by 
10-30% in response to 1-methyladenlne (Meijer and Zarut- 
sloe, 1987), that injection of the catalytic subunit of CAMP- 
dependent protein kinase increases the amount of 1-meth- 
yladenine required to cause maturation (Dor~e et ai., 1981), 
and that application of forskolin or injection of cAMP-S de- 
lays GVBD in response to the hormone (Meijer and Zarut- 
sl0e, 1987; Meijer et al,, 1989). However, none of these 
agents inhibit the 1-methyladenine response completely; in 
particular, oocytes treated with forskolin and 1-methylade- 
nine have a measured CAMP content about 10 times the level 
in untreated oocytes, but GVBD is delayed only by ,,o10 rain 
(Meijer and Zarutskie, 1987). Thus, a fall in cAMP is proba- 
bly one, but not the only, factor in mediating 1-methylade- 
nine action./3~subunlts have been demonstrated to inhibit 
type I adenylylcyclase, when the adenylylcyclase has been 
activated by or, or calmodulin (Tang et al., 1991). Such an 
inhibitory action of 13% either by way of interaction with c~s 
or by way of interaction with activated adenylylcyclase, 
could be occurring when starfish oocytes are stimulated by 
1-methyladenine. 

Other possible targets for 133' are kinases and phospha- 
rases. Cyclin phosphorylation and tyrosine phosphorylation 
of a 155-kD cortical protein begin to increase within 2 rain 
after applying 1-methyladenlne (Pondaven et al., 1990; 
Peaucellier et al., 1990). By 4 min, tyrosine dephosphoryla- 
tion of the p34 ~-: protein kinase is occurring (Pondaven et 
al., 1990). In other cells, the activity of at least two other 
kinases (muscarinic acetylcholine receptor kinase and 
/3-adrenergic receptor kinase) is stimulated by way of 
/33"-suhunits (Haga and Haga, 1992; Pitcher et al., 1992) and 
recent evidence suggests that 133, may activate a protein ki- 
nase in yeast (Leberer et al., 1992b). 133' is unlikely to be 
acting by way of stimulating phospholipase C, because the 
response to 1-methyladenine is not mediated by an increase 
in intracellular calcium 0Vitchel and Steinhardt, 1990; 
Kikuyama and Hiramoto, 1991). Another possibility is that 
/33' could stimulate a protease, because application of pro- 
tease inhibitors inhibits production of MPF in 1-meth- 
yladenlne treated starfish oocytes, and the activity of a 650- 
kD proteasome increases within 5 min after hormone addi- 
tion (Kishimoto et al., 1982; Takagi Sawada et al., 1992). 
As the targets of/33"-subunlts become better understood, a 
link should be found between the release of/53'-subunits in 
response to 1-methyladenine and the activation of the various 
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enzymes associated with the reinitiation of meiosis. The role 
of G-proteins as regulators ofoocyte maturation in other spe- 
cies remains to be examined, although there are indications 
that both heterotrimeric and small molecular weight GTP- 
binding proteins may be important in oocyte maturation in 
frogs (Sadler and Mailer, 1985; Smith, 1989). 
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