
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 9037–9041, July 1998
Population Biology

Mortality invariants and their genetic implications
(mortality rateyuniversalityylife tables)

MARK YACOV AZBEL’
School of Physics and Astronomy, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel

Communicated by Yakir Aharonov, University of South Carolina, Columbia, SC, May 18, 1998 (received for review October 25, 1997)

ABSTRACT Old noninbred fly mortality decreases ac-
cording to the inverse linear law and reduces to a single
suborder-specific age. Relative child mortality (the mortality
at a given age related to the mortality at 10 years) from 1 mo
to 11 years is the same with 8% mean accuracy for all humans,
independent of race, country, sex, and birth year (from 1780
to 1995), in contrast to birth mortality, which in developed
countries changed fiftyfold during the last century. The
concept of invariants, which is very powerful in physics, is
applied to mortality of species as remote as humans and flies.
It provides quantitative estimates for the selection of hered-
itary Methuselahs, who live, e.g., over six-mean lifespans and
who may be relatively young biologically. It also demonstrates
that old f ly and relative child mortality are determined
genetically and that the former is related to genetic hetero-
geneity.

1. Mortality Invariants. The evidence that genes influence
aging and longevity is abundant (1–4). It includes identifica-
tion of longevity genes and lifespan extension mutants (3,
5–10), as well as artificial selection for postponed senescence.
Yet, it is still uncertain to what extent mortality is genetic
(11–14). Natural selection seems inconsistent with genetically
programmed mortality because few wild animals live to se-
nescence; it might be consistent with genetically determined
mortality (1, 15–20), which is linked to some other vital
character, such as, e.g., stress resistance (12). Large fly pop-
ulations (13, 16, 17) demonstrated mortality leveling off and
decreasing at older ages. To explain it, demographic hetero-
geneity models (18–20), density effects (21, 22), changes at the
individual-level physiology (23), and extension (24) of the
‘‘disposable soma’’ model (25), a model of both the pleiotropy
(trade-off) and mutation accumulation (26) in age-structured
populations (27) was considered (28) according to the Ham-
ilton–Charlesworth theory. Yet, it still remains a challenge (29,
17, 22), and numerical studies (ref. 30 and refs. therein) of a
model of mutation accumulation yielded only mortality in-
crease in old age. Fly mortality (13, 16) presents an even
greater surprise (31). Eighteen (of 500,000) male medflies in
cages, who survived to 4.3-mean lifespans, all lived almost
another lifespan; three (of 24,000) medflies in cells, who lived
to 4.4-mean lifespans, all survived to almost 8 lifespans. Does
this finding suggest there is no genetically determined mor-
tality and thus no lifespan limit? Why, then, do all humans
rapidly die out in the vicinity of 100 years (i.e., 1.25-mean
lifespans now and 3-mean lifespans two centuries ago (32–36)
and, e.g., in 1780 Sweden) and none of billions of humans lived
beyond 122 years? Clearly, a comprehensive study is called for,
which allows for quantitatively verifiable predictions. Phenom-
enological theory (31, 38) predicts that old age mortality of
certain species is inversely linear with age and reduces to the

only species-specific age. The next section verifies this predic-
tion† (see section 3 for specifics) with all available noninbred
fly data (13, 16, 17) and determines their species-specific age,
which equals 68 days independent of conditions (overcrowded
cages, individual cells, and cups), sexes, and even different
families. These data establish a new empirical law of old fly
mortality, which reduces to the species- (possibly suborder)
specific age. If a quantity (an invariant) is the same for a given
class of objects (‘‘universality class’’), then it depends on what
is common to all representatives of this class. So, this age,
which is the same for all representatives of a given species
(mortality invariant), must be genetically determined together
with the old age mortality, which reduces to it.‡ Therefore,
extremely old flies, which yield it (e.g., 85 medflies that
survived in cups to 4-mean lifespans), also must be genetic
Methuselahs. The established law of their mortality provides
an estimate of the initial f ly population, which is predicted to
produce a desired number of Methuselahs of a given age. Their
preserved eggs and the following successive selection in several
generations may yield the fly population, whose hereditary
mean lifespan is, e.g., six times longer than the lifespan of the
initial population. Mortality study of large populations of
insects like aphids might be of special interest. If they yield
universally decreasing old age mortality, then parthenogenetic
eggs of their Methuselahs may provide hereditary Methuselah
clones. Populations of hereditary Methuselahs might deter-
mine explicit characters linked to longevity. Such characters
may allow for an estimate of the lifespan of an individual and
an easier selection of the populations with increasing mean
lifespans.
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†To be specific, section 2 studies the age decrease in the relative
number of survivors. Its f luctuations are relatively low, and it yields
the predicted mortality.

‡Thus, the concept of invariants allows one to statistically identify
genetic mortality, although the observed mortality depends on un-
specified parameters, describing, in particular, conditions (living and
congenital included), which may be different for different individuals
and change with time. An example of a biological invariant, more
explicit than the species-specific age, is body temperature of all active
and healthy placental mammals. It is the same (within 1% when
measured in degrees Kelvin) independent of conditions, order, age,
sex, and individual. Presumably, for an evolutionary related group an
invariant is determined genetically in the same way for all its
representatives.

In physics, the concept of invariants is crucial. Arguably, relativity
is its most spectacular example. Gravitational acceleration indepen-
dence of (5 invariance to) any properties of a falling object led
Einstein to the idea that gravitation must be determined by what is
common (general) to all objects. Because their only ‘‘common
denominator’’ is space-time, Einstein concluded: gravitation must be
related to the (non-Euclidean) geometry of space-time. This yielded
general relativity, predictions of the finite age and expansion of the
Universe, black holes. Earlier, invariance of the light velocity yielded
the Einstein special relativity—and the prediction of nuclear energy
in 1905. Quantitatively accurate characteristics may be defined for
stochastic phenomena also. For instance, all a-particles, escaping
from decaying radium nuclei, have the same fixed energy, although
the time when a given nucleus decays is unpredictable.
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Mortality is used to quantify senescence in a population (1).
If lower mortality implies younger biological age (for a given
species), then the decreasing old age mortality implies that
biologically older animals die out very rapidly, only biologically
very young (and correspondingly rare) genotypes survive, and
the average biological age of the surviving Methuselah sub-
population decreases with age. Thus, hereditary Methuselahs
may be biologically relatively young (at least in some physio-
logical aspects, which are to be specified).

Infant mortality is determined largely by environment.
Indeed, improvements in social and medical conditions de-
creased it fiftyfold within the last century (32–36). However,
life tables (32–36) prove that mortality always reaches a
minimum§ at the age xm 5 10.5 years, which is a species-
specific mortality invariant and is therefore genetic. The next
section verifies† with 272 life tables (32–36) that, (although
mortality changes fiftyfold) in agreement with the prediction
of phenomenological theory (39), the relative mortality (i.e.,
the mortality at a given age related to the mortality at 10 years)
from 1 mo to 11 years is inversely linear with age and is the
same (with 8% mean square deviation) for all humans, inde-
pendent of race, country, sex, and birth year. So, relative
mortality is (90%) species-specific and thus genetically deter-
mined.

Empirical, species- (possibly suborder) specific mortality
laws are a challenge to any theory. Their biological origin,
implications, and problems are discussed in section 3.

2. Universal Laws. Large noninbred fly populations were
studied for male and female medflies (13, 16) in different
conditions (1,203,646 in 167 cages, 27,181 in individual cells,
and 21,204 in individual cups), and 121,894 male Drosophilas

were reared in mixed-sex cages (17). Even the largest number
of medflies (60% of 1780 and 25% of 1891 Swedish popula-
tion) exhibited large fluctuations in mortality rate (cf. f lies and
humans in Fig. 1A). Semilogarithmic curves in Fig. 1B are more
explicit. The slope presents a mortality rate and demonstrates
its course-grained change with age.¶ Phenomenological theory
predicts (31) that, depending on old population heterogeneity
(see the next section for quantitative details), the inverse
relative number of old survivors is linear or quadratic with age
and that the level age is species-specific. This prediction is
verified in Fig. 1 C and D with all noninbred fly data. Fig. 1C
demonstrates the linear dependence of N85yNx, which pro-
ceeds for medflies from 74 days until the number of survivors
drops down to very low statistics (18 male at 97 days, 26 females
at 120 days in cages, and 30 males and 46 females at 88 days
in cells), i.e., up to 2.5-mean lifespans (and during a more
limited interval for all f lies). Fig. 1D demonstrates the linear
dependence of =N85yNx on x for medflies in cups and
Drosophilas in cages (from 80 to 117 days with 38 male and 59
female medfly survivors and from 70 to 88 days with 39
Drosophila survivors). The level age of X of linear interpola-
tions in Fig. 1C and D is 69 and 67 days respectively. With 1.5%
accuracy, X is the same (68 days) for different conditions,
sexes, and even families (med- and fruitf lies), i.e., it is a
(suborder-specific) mortality invariant. Within the age limits
stated above, the figures verify the theoretical predictions and
make them empirical laws: with 7% accuracy, the inverse
relative number of old fly survivors (correspondingly for Fig.
1 C and D) is

N85yNx 5 (x 2 X)y(85 2 X) and

ÎN85yNx 5 (x 2 X)y(85 2 X). [1]
§It was related to puberty and extensively studied—see ref. 37 and refs.
therein for more details. To be specific (32, 35, 36), xm is 10.6 6 1.4
in 1891–1990 Japan with a large population and low immigration;
10.4 6 1.5 in 1780–1995 Sweden with low immigration and no major
wars; and 10.5 6 1.5 years in 1871–1990 Germany with two devas-
tating world wars.

¶Note that, beyond 70 days, the largest f ly populations clearly exhibit
as shown in Fig. 1B a decrease in slope.

FIG. 1. (A) Mortality rate for Japanese females (1891y98, thin line; 1935–36, medium line, 1990, thick line), Swedish males, 1990 (dashes), 605,528
female medflies in cages (circles), 10,741 in individual cups (crosses), and 121,894 male Drosophilas in cages (stars). Twenty-six medflies in cages and 53
in cups lived beyond 120 days, to 171 and 241 days respectively (see Fig. 1B); cf. the ratio of the maximal and the mean (thick vertical lines) lifespans
for humans and medflies. Mortality rate is calculated according to qx 5 ,n(NxyNx11), where Nx is the number of survivors to the age x (years for humans
and days for flies). (B–D) Inverse relative number of survivors (N85yNx) to a given age (x) in days for medfly females (1, h, O), males (X, h, O), and
all medflies (L, D, D) in cups, cells, and cages respectively; for male Drosophilas in cages (p) and 5,751 (inbred ones in Fig. 1B only) in vials (l) on
semilogarithmic (B), linear (C), and quadratic (D) scales. For clarity, data beyond the age with reliable statistics in C and D, and before the linear region
for medflies in cups in D, are dropped out. Solid lines are linear interpolations. Note that many data points overlap.
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The 7% accuracy in old age (with significantly higher fluctu-
ations due to low statistics) is remarkable: before the univer-
sality region, N85yNx changes thousandfold, from 0.00005
(male medflies in cages) to 0.05 (female medflies in cups). The
validity interval of the interpolation is very long, significantly
longer (compared with the mean lifespan) than the well-known
Gompertz law (40, 31) (which corresponds to linear regions in
Fig. 2A). According to Eq. 1, mortality rate qx 5 2d,nNxydx
is correspondinglyi

qx 5 1y(x 2 X) and qx 5 2y(x 2 X). [2]

By Eq. 1 and refs. 13 and 16, five million medflies in cages and
150,000 in cups are expected to provide 50 survivors to
10-mean lifespans, i.e., to 200 days in cages and to 300 days in
cups. The validity of Eq. 1 with a species-specific X for insects
like aphids is a litmus test for the possibility to use partheno-
genetic clones to select hereditary Methuselahs.

Consider child mortality. Its statistics in modern, developed
countries is rather low. For instance, 50,208 girls were born in
1995 Sweden. Fifty-one died the first day; 54 the next week; 24 the
next month; 50 more until the end of the first year; and 15, 9, and
6 in their second, fourth, and ninth year, respectively. This yields
large mortality fluctuations (see Fig. 1A). So, let us study the
relative number of deceased children. Phenomenological theory
predicts (39) that it is a universal function of age with no fitting
parameters. Specifically, if the number of survivors to x years is
Nx, and** nx 5 ,n(N1yNx), then beyond a few weeks

nxyn10 5 ,nxy,n10. [3]

The function nxyn10 is presented in Fig. 2A according to
1871–1994 German (35) and in Fig. 2B according to 1871–1994
German, 1891–1990 Japanese (36), and 1780–1995 Swedish
male and female lifetables (32, 34). From 1 to 11 years the
mean quadratic deviation from the average values is 5% in
both figures. (Characteristically, the mean quadratic deviation
at birth is 30 times larger and is presumably nongenetic.) The
mean deviation of the average values from ,nxy,n10 is 2% in
Fig. 2A and 5% in Fig. 2B. The 210 Swedish infant lifetables
(32) (which present raw data daily until 1 mo and monthly until
1 year for every year from 1891 to 1995) yield DNxyDN12 (x is
in months) as shown in Fig. 2C. From 1 to 24 mo, the mean
deviation from the averages and of the averages from ,nxy,n12
is 8%. Thus, from 1 mo to 11 years the relative number of
deceased children is indeed a universal species specific (with
8% mean accuracy) function of age, independent of race,
country, sex and birth year, whereas the birth and the first week
mortality is predominantly nongenetic (premature) and cru-
cially depends on social and medical conditions.

Eq. 3 implies that child mortality qx is inversely linear with age:

qx 5 10q10yx [4]

(x is in years). This is similar to old fly mortality (2), but the
factor q10 in Eq. 4 is not universal (see, e.g., Fig. 1 A). However,
relative mortality qxyq10, by Eq. 4, is species-specific, > 10yx
and is therefore genetically determined.

An important comment is in order. Although Eqs. 1 and 3
present (with 7% and 8% accuracy, respectively) empirical sur-

vival data, Eqs. 2 and 4 provide mortality rates according to their
interpolations. If qx is calculated according to qx 5 ,n(NxyNx11),
then the nonuniversality of q10yqx is significantly higher.

3. Phenomenological Theory and Human-Fly Universality.
The previous section empirically demonstrates a fly mortality
invariant X (which is independent of conditions, sex, and the
degree of population heterogeneity of a given suborder) and
thus the predominantly genetic nature of old fly mortality,††

which, by Eq. 2, reduces to X. Because an old individual does
iTheory (31, 38, 39) relates Eq. 1 to population heterogeneity (see
section 3). And indeed, inbred male Drosophilas (14) die out much
quicker than noninbred ones in the worst conditions (17) (cages), long
before X and the onset of Eq. 1—see Fig. 1B. In Fig. 2 of ref. 15
genetically homogeneous mortality, apart from fluctuations, steadily
increases. No inbred population provides statistically reliable mor-
tality decrease in old age (by this time the population is too small, e.g.,
mortality decrease in Fig. 2 of ref. 14 is provided by the last six
survivors).

**Usually (32, 34–36) nx is close to the relative number of deceased
children DNxyN1 5 (N1 2 Nx)yN1, and nxyn10 > DNxyDN10 is their
relative number with respect to DN10.

††Thus, nongenetic diseases little hurt genetically robust Methuselahs.
Mortality is predominantly genetic for old humans also (31). (But the
lifespan is not. Much of its variation is nongenetic.) Then why do old
flies and humans die? The nature of mortality with no specific
external causes is an experimental challenge, but physics knows two
such stochastic scenarios: radioactive decay (which occurs with no
external or internal intervention) and freezing (under exceptionally
near-perfect conditions, water may be supercooled to 240°C.)
Similarly, old age deceases may not be the cause but just a mani-
festation of instability of a live state.

FIG. 2. Relative number nx of deceased male and female children
between 1 and x years according to 1871–1994 German (A), 202
combined 1871–1994 German, 1891–1990 Japanese, and 1780–1995
Swedish lifetables (B) and between 1 and x mo according to 210 infant
male and female 1891–1995 Swedish lifetables (C). In A and B, nx 5
[,n(N1yN10)]21 ,n(N1yNx); in C, nx 5 (N1 2 Nx)y(N1 2 N12). Solid
lines are ,n xy,n 10 in A and B and ,n xy,n 12 in C. Each data point
(a cross) corresponds to a lifetable.
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not get younger with age, presumably the chances to die do not
decrease either. So, genetic mortality decrease must be related
to genetic heterogeneity of the fly population. To survive to
very old age, individuals must have very low genetic mortality,
significantly lower than the mortality of the population at
large. Therefore, populations become more and more selected
as they age, and subpopulations with low death rates constitute
the majority of individuals in the oldest age classes. And,
indeed, by Eq. 2 mortality of medfly survivors to 120 days is
10 times lower than mortality of the (much larger number of)
survivors to 80 days. In fact, by Eq. 2, at 120 days it is the same
as the mortality of the population in Fig. 1 A at 10 days (with
90% of survivors). Thus, with respect to mortality, f lies are
genetically very heterogeneous, and old age mortality crucially
depends on the heterogeneity of the initial population and on
the subpopulations that survive to old age under given con-
ditions.‡‡ At very old age, the number of survivors is so low
that the population mortality becomes stochastic, strongly
depending on individual mortalities, and is highly nonuniver-
sal. Usually beyond a certain (nonuniversal) age, it rapidly
increases, in agreement with phenomenological theory (31)
(see Fig. 1B). However, the last survivors may accidentally
have anomalously low genetic mortality and yield long ‘‘sur-
vival plateaus’’ as shown in Fig. 1B, in which flies do not die
(presumably, their genetic mortality is extremely low). Eigh-
teen male medflies in cages (0.003% of the initial population)
survive to 4.3-mean lifespans h. They all live another 0.9 h.
Two female medflies in cups survive to 5.5 h and live until 6.6
h. Three medflies in cells (0.03% of the initial population) who
survive to 4.4 h, all three live another 3.5 h, to 7.9 h. (Such
genetic ‘‘quasi-immortals’’ may be of special interest.) Smaller
old age plateaus in Fig. 1 B and C are multiple. Corresponding
quasi-steps in Fig. 1 B–D may manifest successive extinction of
certain subpopulations.

The previous section demonstrated that, although the child
mortality rate (especially at birth) crucially depends on con-
ditions and strongly fluctuates, its decrease with age is pre-
dominantly species-specific and thus genetic. One may spec-
ulate that mortality decreases because genotypes with anom-
alously high mortality die out anomalously early and
determine the law of mortality decrease (39) (i.e., relative child
mortality is related to genetic heterogeneity). Remarkably,
Drosophila mortality at early age also decreases to a minimum
at the age > Xy10 and yields the same law (39) with the mean
quadratic deviation of 16%. Mortality minimum in human
louse (16) is reached in pupal stage. Possibly, in medflies and
in some other insects mortality also decreases before an adult
stage.

Universally for flies and humans, advanced age yields (31,
38, 39) plateaus in mortality curves. Because mortality strongly
fluctuates, plateaus are more explicit as linear regions in the

curves in Fig. 1B. (For other mortality regions and invariants,
see refs. 31, 38, and 39.)

Similarities in mortality of species as remote as humans and
flies suggest a general mortality pattern. This suggestion is
verified with a general invariant, which unites metabolism and
lifespan (41). All animals (from invertebrates to mammals)
consume 20 oxygen molecules per body atom per lifespan. For
many animals an experimental error may be by a factor of 3;
some animals have anomalous (also by a factor of 3) oxygen
consumption (41, 42). Yet, the relative accuracy of this invari-
ance is remarkably high because 3 should be compared with
1010 (which represents the change in the number of body
atoms). A general invariant suggests a general origin of
genetically determined mortality, which did not change at any
stage in evolution. Indeed, analysis of human and fly data
presents (31) a general mortality law‡‡ applicable to individual
species. In contrast to the Gompertz–Strehler–Mildvan-type
law (see it in refs. 31 and 40 and refs. therein), its mortality may
vanish at any age for certain genotypes.‡‡

A few comments. Small terriers and large Irish wolf hounds,
which belong to the same species of domestic dogs; workers
and much larger queens of ants, social bees, and termites (43),
have significantly different average lifespans. A universal
allometric relation between the average lifespan and the body
mass (refs. 41 and 44 and refs. therein) implies that this is not
accidental. Possibly, some species have several mortality in-
variants (39), but a comprehensive study is called for.

The suggested phenomenological approach yields universal
mortality laws and universal (across all animal species) oxygen
consumption, demonstrates species- and suborder-specific
mortality invariants, establishes predominantly genetic nature
of old fly and relative child mortality, and provides quantita-
tive estimates for the selection of hereditary Methuselah
populations. Once verified, quantitative universal laws, which
generalize empirical data, may serve as a basis for a theory of
their biological origin. The latter was, e.g., suggested for
allometric relations (44) (but a specific universal value of
oxygen consumption remains to be explained). If a population
of hereditary Methuselahs (which may be relatively young
physiologically) is selected, it might elucidate the biology of
mortality invariants and genetic mortality, which is beyond
phenomenological approach.

I am grateful to Profs. S. Edwards, Y. Aharonov, D. Stauffer (in
particular for his specific comments on old fly mortality law), and B.
Vilenkin for stimulating discussions. I am extremely indebted to Profs.
J. R. Carey for medfly and J. W. Curtsinger for Drosophila life tables;
to I. Kolodnaya, S. Hammes, R. Winslow, Y. Kanegae, and Prof. M.
Toltz for Japanese, Swedish, and German life tables—this study would
be impossible without them. If the paper is readable, this is largely due
the to helpful comments from the referees and especially from Prof.
S. M. Jazwinski. I benefited from numerical simulations by L. Kagan.
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