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Abstract. The first membrane-spanning domain (ml) 
of the M glycoprotein of avian coronavirus (formerly 
called El) is sufficient to retain this protein in the cis- 
Golgi. When the membrane-spanning domain of a pro- 
tein which is efficiently delivered to the plasma mem- 
brane (VSV G protein) is replaced with ml, the result- 
ing chimera (Gml) is retained in the Golgi (Swift, 
A. M., and C. E. Machamer. 1991. J. Cell Biol. 
115:19-30). When assayed in sucrose gradients, we 
observed that Gml formed a large oligomer, and that 
much of this oligomer was SDS resistant and stayed 
near the top of the stacking gel of an SDS- 
polyacrylamide gel. The unusual stability of the 
oligomer allowed it to be detected easily. Gml mu- 
tants with single amino acid substitutions in the ml 
domain that were retained in the Golgi complex 
formed SDS-resistant oligomers, whereas mutants that 
were rapidly released to the plasma membrane did 
not. Oligomerization was not detected immediately af- 
ter synthesis of Gml, but occurred gradually with a 
lag of ,',,10 rain, suggesting that it is not merely aggre- 
gation of misfolded proteins. Furthermore, oligomer- 

ization did not occur under several conditions that 
block ER to Golgi transport. The lumenal domain was 
not required for oligomerization since another chimera 
(otmlG), where the lumenal domain of Gml was 
replaced by the o~ subunit of human chorionic 
gonadotropin, also formed an SDS-resistant oligomer, 
and was able to form hetero-oligomers with Gml as 
revealed by coprecipitation experiments. SDS resis- 
tance was conferred by the cytoplasmic tail of VSV G, 
because proteolytic digestion of the tail in microsomes 
containing Gml oligomers resulted in loss of SDS re- 
sistance, although the protease-treated material con- 
tinued to migrate as a large oligomer on sucrose gra- 
dients. Interestingly, treatment of cells with 
cytochalasin D blocked formation of SDS-resistant 
(but not SDS-sensitive) oligomers. Our data suggest 
that SDS-resistant oligomers form as newly synthe- 
sized molecules of Gml arrive at the Golgi complex 
and may interact (directly or indirectly) with an actin- 
based cytoskeletal matrix. The oligomerization of Gml 
and other resident proteins could serve as a mecha- 
nism for their retention in the Golgi complex. 

T 
HE Golgi complex is the site of oligosaccharide pro- 
cessing and sorting for proteins that are destined for 
delivery to secretory granules, lysosomes, the plasma 

membrane, and the extracellular space. The Golgi-resident 
proteins that perform these functions must be retained in the 
Golgi despite the large amount of lipid and protein traffic 
through this organelle. Retention of these proteins is thought 
to involve recognition of positive signals that specify Golgi 
localization. 

A useful model protein for studying Golgi retention sig- 
nals has been the M glycoprotein (formerly called El) of the 
avian coronavirus infectious bronchitis virus (IBV)k 
Coronaviruses bud into the intermediate compartment or 
Golgi complex of mammalian cells (Griffiths and Rottier, 
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1992). When cDNA encoding the M protein is expressed in 
animal cells, the protein is targeted to the cis-Golgi 
(Machamer et al., 1990). Structurally, the IBV M protein 
consists of a short glycosylated amino-terminal domain, 
three membrane-spanning domains, and a long carboxy- 
terminal cytoplasmic domain. The first membrane-spanning 
domain (ml) of the M glycoprotein is sufficient to retain this 
protein in the Golgi (Machamer and Rose, 1987). Further- 
more, the ml domain can confer Golgi localization to a well- 
characterized plasma membrane protein (the G protein of 
vesicular stomatitis virus, or VSV G). VSV G is a type I 
membrane protein which is cotranslationally inserted into 
the ER, where it forms homotrimers. It is then rapidly trans- 
ported through the Golgi complex (as determined by the ki- 
netics of N-linked oligosaccharide processing) and delivered 

1. Abbreviations used in this paper: CCCP, carbonyl cyanide m-cldoro- 
phenylhydrazone; hCG, human chorionic gonadotropin; IBV, infectious 
bronchitis virus; VSV, vesicular stomatitis virus. 
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to the plasma membrane (for review see Doms et al., 1993). 
When the membrane-spanning domain of VSV G is replaced 
with the ml domain of IBV M, the resulting chimera (Gml, 
see Fig. 1) is retained in the Golgi complex (Swift and 
Machamer, 1991). Extensive mutagenesis suggests that at 
least four specific amino acids in the ml domain are critical 
for Golgi retention of Gml: asparagine 465, threonines 469 
and 476, and glutamine 480 (Machamer et al., 1993). In- 
terestingly, these residues form an uncharged polar face 
along one side of the alpha helix predicted for ml. The polar 
nature of this face of the helix suggests that protein-protein 
interactions along this face may mediate Golgi retention 
of Gml. 

There are two general ways to envision the specific reten- 
tion of a protein by information contained within its trans- 
membrane domain (for review see Machamer, 1991). The 
first involves the recognition of this domain by a specific 
receptor that either blocks further movement in the exocytic 
pathway or retrieves escaped proteins back to the appropriate 
compartment. A receptor-based model also requires a mech- 
anism for retention or recycling of the receptor itself. The 
second mechanism invokes changes in the tertiary or quater- 
nary structure of the protein that are induced via the 
membrane-spanning domain when the protein encounters a 
particular microenvironment. Changes in protein structure 
could include oligomerization or aggregation (covalent or 
non-covalent) with other proteins or lipids, which would 
prevent movement of the protein into transport vesicles. The 
cis-Golgi may differ from the ER in lipid composition and 
divalent cation concentration. These changes in microen- 
vironment could conceivably trigger a conformational shift 
in Golgi resident proteins upon their arrival in the appropri- 
ate compartment. 

We have been investigating the mechanisms by which ml 
might mediate retention of Gml in the Golgi complex. We 
observed that Gml formed a large oligomer soon after syn- 
thesis when assayed by sucrose gradient centrifugation. 
Here, we show that this oligomer is unusually stable, and 
that its formation correlates with arrival and retention in the 
Golgi complex. Our findings point to a possible role for 
oligomerization in the retention of Gml. 

Materials and Methods 

Reagents 
Aprotinin, colchicine, carbonyl cyanide m-chlorophenylhydrazone (CCCP), 
cytochalasin D, TPCK-trypsin, and soybean trypsin inhibitor were obtained 
from Sigma Chem. Co. (St. Louis, MO). Brefeldin A was from Epieentre 
Technologies (Madison, WI). Stock solutions of reagents were stored at 
-20°C. 

Cells and Transfection 
COS-'/and HeLa cells were maintained in DME with 10 and 5% FCS, 
respectively. COS-7 cells plated in 35-mm dishes (40-70% confluent) were 
transfected with an SV40-based expression vector using DEAE-dextran 
(Machamer et al., 1985). Expression was analyzed at 40--48 h posttransfec- 
tion. For expression using the vaccinia-T7 system, HeLa cells (40-70% 
confluent) were infected with the recombinant vaccinia virus vTF7-3 encod- 
ing T7 RNA polymerase (Fuerst et al., 1986) at a multiplicity of infection 
of 10-20. After adsorption for 30 min at 37°C, the inoculum was replaced 
with 0.75 ml of serum-free medium containing 2/~g of a vector (pAR2529) 
encoding the appropriate gene behind the T7 promoter and 5-10/~1 of the 
cationic lipid ~TransfectACE" (GIBCO BRL, Gaithersburg, MD; Rose et 

al., 1991). Expression level was varied by changing the amount of DNA 
added per well (0.02-5 ~tg/dish). In coexpression experiments, cells were 
transfected with 1/~g of DNA encoding each construct. Expression was ana- 
lyzed by metabolic labeling starting 3 h after infection. 

Mutagenesis and Production of Chimeric Proteins 
Gml and related mutants were generated using the Kunkel method of 
oligonucleotide-direeted mutagenesis as described previously (Swift and 
Machamer, 1991; Machamer et al., 1993). Point mutants were named by 
appending the original amino acid (in single letter code) followed by the new 
amino acid. , m  (Guan et al., 1988a) and TMR (Doms et al., 1988) were 
obtained from Jack Rose (Yale University). Construction of ,~mlG was de- 
scribed previously (Swift and Machamer, 1991). tGml was constructed 
from Gml by inserting a stop codon at position 487 using site-directed 
mutagenesis (Kunkel et al., 1987). 

Indirect Immunofluorescence Microscopy 
Indirect immunofluorescence staining of transiently transfected COS-7 ceils 
was performed as described (Machamer and Rose, 1987; Machamer and 
Rose, 1988). Gml and related mutants were detected using a monoclonal 
anti-VSV G antibody (5/~g/ml; Lefrancois and Lyles, 1982) followed by 
Texas red-conjugated, affinity-purified goat anti-mouse IgG (10 /zg/ml; 
Jackson Immuno Research Laboratories Inc., Avondale, PA). 

Radiolabeling and Immunoprecipitation 
Cells expressing VSV G or mutant G proteins were rinsed once with PBS, 
starved for 15 rain in methionine-free DME, and labeled for the indicated 
times with 100 #Ci/ml Trans35S-Label (ICN Radiochemicals, Irvine, CA) 
or L-[35S] in vitro cell labeling mix (Amersham Corp., Arlington Heights, 
IL) in serum-free, methionine-free DME. Cells were solubilized immedi- 
ately or after the appropriate chase period in serum-free DME containing 
a threefold excess of unlabeled methionine. Cells were lysed in detergent 
solution (50 mM Tris, pH 8.0, 1% NP-40, 0.4% deoxycholate, 62.5 mM 
EDTA, and 0.13 TIU/ml aprotinin). Samples were immunoprecipitated 
using a polyclonal anti-VSV antibody (produced by immunization of rabbits 
with purified VSV) and fixed Staphylococcus aureus (Calbiochem-Behring 
Corp., San Diego, CA). After heating to 100*C for 3 rain in Laemmli sam- 
ple buffer containing 5 % fl-mercaptoethanol, samples were electrophoresed 
on 10% SDS-polyacrylamide gels as described (Laemmli, 1970). Marker 
proteins were 14C-methylated standard molecular weight markers (Amer- 
sham Corp.). Labeled proteins were detected by fluorography (Bonner and 
Laskey, 1974). am chimeras were radiolabeled and solubilized as above but 
immunoprecipitated using anti-human chorionic gonadotropin (hCG) anti- 
body (Organon Teknika-Cappel, West Chester, PA) and electrophoresed on 
12 % SDS-pelyacrylamide gels. 

Cell Treatments 
Brefeldin A (5 /tg/ml final concentration) was diluted into serum-free 
medium from a 5 mg/ml stock in ethanol immediately before use. Colehi- 
cine (25 mM) was prepared in DMSO, diluted 1:10 into serum-free, 
methionine-free medium, and added to cells (50 ~tM final concentration) 
starting 1 h before metabolic labeling. Cytochalasin D (0.1 M in DMSO) 
was added to cells (100/~M final concentration) 2 h after infection and in- 
eluded in subsequent changes of medium. An equal volume of DMSO was 
added to control cells. In experiments involving cell treatment with CCCP, 
ceils were starved in glucose-, methionine-, and cysteine-free medium for 
15 rain before metabolic labeling in the same medium for 5 win. CCCP 
(0.1 M stock in DMSO) was added at the beginning of the chase in glucose- 
free medium to a final concentration of 300 #M. 

Cell Surface Biotinylation 
HeLa cells were transfected, metabolically labeled for 15 min, and chased 
for 45 rain as described above. Cells were rinsed three times in PBS sup- 
plemented with 1 lnM MgCI2 and 0.1 mM CaC12, and then biotinylated 
using sulfo-NHS-biotin (Pierce Chem. Co., Rockford, IL) as described 
(Lisanti et al., 1988). Cells were then solubilized as described above and 
Gml and related proteins immunoprecipitated. Samples were eluted from 
the S. aureus pellets by heating to 100°C in 50/~1 10 mM "Iris, 50 mM NaC1, 
1% SDS, pH 7.4, and divided into two equal aliquots. One aliquot was kept 
at -20°C ("total") while the other was diluted tenfold with 10 mM Tris, 
50 mM NaCI, pH 7.4, and incubated with streptavidin-coupled agarose 
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beads (Pierce Chem. Co.) for 60 min at 4"C. The streptavidin beads were 
then pelleted and washed three times in RIPA buffer. Non-biotinylated pro- 
teins in the supernatant were precipitated using "I~A. Samples were ana- 
lyzed by SDS-PAGE followed by fluorography. 

Sucrose Gradient Sedimentation 

Oligomerization of the Gml protein was analyzed by velocity gradient cen- 
trifugetion in sucrose performed essentially as described (Doms et al., 
1987). Continuous 5-20% (wt/wt) sucrose gradients were poured over a 
60% (wt/wt) sucrose cushion (0.4 nil) in SW50.1 tubes. All solutions were 
in MNT (100 mM NaCI, 20 mM Tris, 30 mM MES, pH 5.8) containing 
0.1% Triton X-100. HeLa cells expressing either VSV G or Gml were meta- 
bolically labeled for 5 min and harvested (in MNT containing 1% Triton 
X-100) either immediately or after 60 min of chase. Lysates were loaded 
on top of the gradients and spun at 44-45,000 rpm for 15-16 h. Fractions 
(0.35 ml) were collected from the top using a Buchler Auto Densi-Flow IIC, 
immunoprecipitated with anti-VSV antibody, and electrophoresed to deter- 
mine the location of the proteins in the gradient. For estimating the size of 
the oligomer, gradients (5-20% sucrose [wt/wt] in 100 mM NaC1, 50 mM 
Tris, pH 5.8, 0.1% Triton X-100) were spun at 47000 rpm for 4 h. The mark- 
ers used were thyroglobulin (19.3 $20,,0) and eatalase (11.3 $20,,0). 

Preparation and Proteolytic Digestion of Microsomes 
Microsomes were prepared after metabolic labeling and the appropriate 
chase period from transfected HeLa cells plated in 6-cm dishes. Cells were 
rinsed in PBS and swelled in 0.8 ml swelling buffer (10 mM Tris, 15 mM 
NaCi, t mM MgCI2, pH 7.4) for 5 rain on ice. After scraping with a rub- 
bet policeman, 0.25 ml swelling buffer containing 40% sucrose (wt/vol) was 
added, and the cells were homogenized in a I ml Dounce homogenizer with 
60 strokes of the A pestle. Lysates were centrifuged briefly (90 s 5,000 rpm) 
to remove nuclei and large debris. 0.3 ml swelling buffer containing 10% 
sucrose (wt/vol) was added, and the lysates were centrifuged for 10 min at 
100,000 rpm in a Beckman TL-100 ultracentrifuge (T100.2 rotor). Pellets 
were resuspended gently in PBS and divided into two aiiquots. TPCK- 
Trypsin (20/~g) was added to one aliquot, and both were incubated at 37"C 
for 30 min. Proteolytic digestion was stopped by adding 20 #g of soybean 
trypsin inhibitor to both tubes. Samples were solubilized (in detergent solu- 
tion containing 0.4% SDS or in MNT as noted) and processed further as 
described in the text and figure legends. 

Results 

Oligomerization of Gin1 and Related 
Mutants Correlates with Retention in the 
Golgi Complex 
Previous studies from this laboratory showed that the first 
membrane span (ml) of the M glycoprotein of 1BV (previ- 
ously called the E1 glycoprotein) causes the chimeric protein 
Gml to be retained in the Golgi. The sequence of ml is 
shown in Fig. 1 A. Using site directed mutagenesis, four key 
residues in the ml domain were shown to be critical for Golgi 
retention of Gml: asparagine (N,65), two threonines (T~ 
and T,76), and glutamine (Q~). Some substitutions at Q~0 
are tolerated (e.g., GmlQI'hs0) whereas other changes (e.g., 
GmlQI~o) result in transport of the protein to the cell sur- 
face (Machamer et al., 1993). Another mutation in which 
two isoleucine residues were inserted near the center of the 
transmembrane domain (Gmli,~) also disrupts retention in 
the Golgi complex. These three chimeric proteins (GmL~, 
GmlQLso, and GmlQH_~o) were expressed in transiently 
transfected COS-'/ cells and localized by indirect im- 
munofluorescence (Fig. 1 B). VSV G and GrnlQI~o were 
readily detected at the plasma membrane, while Gml and 
GmlQI-hso were detected only in the Golgi region and 

largely colocalized with lens culinaris lectin staining, even 
after treatment with nocodazole or brefeldin A (Machamer 
et al., 1993). Gmlin~ staining was less prominent at the 
plasma membrane than GmlQI~0, and a considerable 
amount of fluorescence was detected in the Golgi complex. 
The localizations of these proteins were confirmed in HeLa 
cells and BHK cells transfected using a vaccinia-virus- 
mediated expression system (not shown). 

Interestingly, when we analyzed expression of these con- 
structs in HeLa cells and COS-7 cells by metabolic radio- 
labeling and immunoprecipitation, we noticed the appear- 
ance of a radiolabeled SDS-resistant species that migrated 
at the top of the stacking gel, in addition to products migrat- 
ing at the expected molecular masses. The material at the top 
of the stacking gel was more prevalent in samples immuno- 
precipitated from HeLa cells (Fig. 1 C) than in those from 
COS-7 cells (Fig. 1 D). This species was present only in im- 
munoprecipitates from cells that expressed mutants with 
Golgi-resident populations (Gml, Gmli,,  and GmlQH4s0) 
and it appeared regardless of the level of expression (over a 
>50-fold range). Although ~50% of the total radioactivity 
immunoprecipitated from Gml-expressing HeLa cells mi- 
grated at the top of the stacking gel, we have not quantitated 
this information routinely. One problem with quantitation is 
that this material could include radiolabeled components 
other than Gml; furthermore, some of the oligomer may not 
enter the gel at all and be lost during subsequent processing. 
Gmli,, was previously reported to move through the Golgi 
complex rapidly (with a half time of 35 rain in COS-7 cells; 
Swift and Machamer, 1991). However, the kinetics of trans- 
port reflect only the population of protein that enters the 
separating gel. The SDS-resistant protein may therefore rep- 
resent a stable Golgi-resident pool. 

The SDS-resistant oligomerization did not depend on the 
type of cells used for expression, since the same results were 
found using transiently transfected BHK cells and stably 
transfected CHO cells (not shown). Because the SDS- 
resistant material was easiest to detect in HeLa cells, we 
used these cells for subsequent experiments. The material at 
the top of the stacking gel could be detected after transfer 
to nitrocellulose and probing with anti-VSV G antibodies by 
immunoblotting, suggesting that it contained Gml (or the 
related constructs; data not shown). Furthermore, this large 
species was efficiently precipitated by several conformation- 
sensitive anti-VSV G monoclonal antibodies that do not 
recognize grossly misfolded proteins (Doms et ai., 1988). 
We tried to solubilize the Gml oligomer using a wide variety 
of lysis conditions and sample treatments. None of the 
modifications we tested, including changes in salt concentra- 
tion, reducing agents, detergents, chaotropic agents (e.g., 
urea, guanidinium HC1), or temperature of solubilization or 
sample elution disrupted the SDS-resistant oligomer (data 
not shown). A very small amount of SDS-sensitive Gml 
could be produced when the top of the stacking gel (contain- 
ing the SDS-resistant oligomer) was isolated after elec- 
trophoresis, placed in the well of a fresh gel, and re- 
electrophoresed (not shown). Together, these observations 
suggest that SDS-resistant oligomer formation is an intrinsic 
property of Gml and mutant Gml proteins that are retained 
in the Golgi complex, but not of mutants that efficiently 
reach the plasma membrane. 
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Figure 1. Formation of SDS-resistant oligomers correlates with retention in the Golgi complex. (A) Amino acid sequence of the ml domain. 
The positions of mutations Gml~.~, GmlQL¢0, and GmlQI-hso are indicated. (B) Localization of mutant proteins in transiently transfeeted 
COS-7 cells. 40 h after transfeetion, cells were fixed and processed for indirect immunofluorescence microscopy using anti-VSV G antibody. 
Bar, 10/~m. (C and D) Immunopreeipitation of Gml, VSV G, and related mutants. HeLa cells (C) or COS-'/cells (D) expressing these 
constructs were metabolically radiolabeled for 15 rain, and then chased for 45 rain, solubilized, and immunoprecipitated using an anti-VSV 
antibody. The immunoprecipitated proteins were electrophoresed on 10% SDS-polyacrylamide gels and analyzed by fluorography. The 
upper band present in samples containing proteins which are transported to the plasma membrane (VSV G, Gml~, and GmlQIo0) 
represents the mature (sialylated) form of the proteins. Note the SDS-resistant species at the top of the stacking gel (arrowhead) in lanes 
from mutants with Golgi-resident populations. 

The SDS-Resistant Oligomer Is Not Susceptible to Cell 
Surface Biotinylation 

If the oligomerized protein represents a distinct intracellular 
pool of protein(s), it should not be susceptible to cell surface 
biotinylation. Moreover, we predicted that an oligomer that 
formed nonspecifically after cell solubilization would be 
precipitated by streptavidin since incorporation of a few bi- 
otinylated molecules would allow precipitation of the entire 
oligomer. HeLa cells expressing Gml, VSV G, or Gmlin, 
were metabolically labeled for 15 min, and then chased for 
45 min before cell-surface biotinylation with sulfo-NHS- 
biotin. After immunoprecipitation, an aliquot of each sam- 
ple was treated with streptavidin-coupled agarose, and bi- 
otinylated and non-biotinylated proteins were recovered and 
analyzed by SDS-PAGE (Fig. 2). Under these conditions, 
,o50% of the total VSV G was biotinylated and could be 
recovered in the streptavidin pellet. Only the mature (sial- 
ylated) form of VSV G was recovered in this fraction, sug- 
gesting that biotinylation was indeed restricted to cell surface 

proteins. In contrast, essentially none of the Gml was 
precipitated by streptavidin, suggesting that this protein re- 
mained in an intracellular compartment. A small amount of 
SDS-sensitive Gmli~, was recovered in the streptavidin pel- 
let. More importantly, no SDS-resistant material was biotin- 
ylated, suggesting that the SDS-resistant Gmli~ constitutes 
an intracellular (perhaps Golgi-resident) pool that is distinct 
from the SDS-sensitive protein, and that only a portion of 
Gml~, is transported to the plasma membrane where it can 
be biotinylated. This result strongly suggested that oligomer 
formation occurs before cell solubilization. 

Kinetics and Cellular Site of  SDS-Resistant 
Oligomer Formation 
The time course of Gml oligomerization was determined. 
HeLa cells expressing Gml were metabolically labeled for 
5 min, chased for the indicated times, solubilized, and im- 
munoprecipitated with anti-VSV G antibody (Fig. 3). Oligo- 
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Figure 2. SDS-resistant oligomers are not subject to cell surface bi- 
otinylation. Ceils were metabolically radiolabeled for 15 min, and 
then chased for 60 rain. Cell surface-specific biotinylatiun was per- 
formed at 4"C using sulfo-NHS-biotin, and the cells were solubi- 
lized and immunopreeipitated with anti-VSV antibody. The bound 
protein was eluted from S. aureus pellets and divided in half. One 
aliquot was solubilized in sample buffer (T), and the remainder was 
incubated with streptavidin-coupled agarose beads. The supema- 
tant (IS], unbound material) was collected and TCA precipitated, 
and the streptavidin beads (P) were washed and solubilized before 
SDS-gel electrophoresis. 

merization was not detected immediately after synthesis of 
Gml, but occurred gradually with a lag of ~10 min. 

The kinetics of Gml oligomer formation were consistent 
with the time at which newly synthesized proteins arrive at 
the cis-Golgi. To determine if oligomerization occurred in 
a post-ER compartment, we asked whether the SDS- 
resistant oligomer would form when ER to Golgi traffic was 
blocked by incubation at 16°C. At this temperature, newly 
synthesized proteins accumulate in the intermediate com- 
partment (Saraste and Kuismanen, 1984). HeLa cells were 
transfected with constructs encoding Gml or VSV G, meta- 
bolically radiolabeled for 5 min, and then chased at 16 or 
37°C as indicated for up to 90 min (Fig. 4). No oligomer 
formed when cells expressing Gml were chased at 160C; 
however, if cells chased at 16°C were subsequently trans- 
ferred to 370C, oligomer formation occurred. In separate ex- 
periments, we found that the kinetics of oligomer formation 
at 37°C were unaffected by the inclusion of a 160C pretreat- 
ment step (data not shown). In addition, treatment with 0.3 
mM CCCP during the chase period also inhibited SDS-resis- 
tant oligomer formation (not shown). This treatment blocks 
transport of newly synthesized proteins from the ER. These 
experiments suggested that Gml oligomer formation nor- 
mally occurred in a post-ER compartment. However, brefel- 
din A pretreatment (or treatment during chase) did not block 
oligomer formation (not shown), although it did cause redis- 
tribution of Gml to an ER-like pattern (Machamer et al., 
1993). 

Sucrose Gradient Sedimentation Analysis o f  
Oligomer Formation 

To ask if Gml oligomerization was an artifact generated dur- 
ing SDS-PAGE, we analyzed oligomer formation using ve- 
locity gradient sedimentation in sucrose (Doms et al., 198% 

Figure 3. Time course of Gin1 oligomer formation. 
Transfected HeLa cells were metabolically radio- 
labeled for 5 min, and then chased for the indi- 
cated times. After solubilization, VSV G and Gml 
were immunoprecipitated and analyzed by SDS- 
PAGE as described in Materials and Methods. The 
arrowhead denotes the top of the stacking gel. 
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Figure 4. SDS-resistant oligomerization of 
Gml does not occur at 16°C. Transfected HeLa 
cells were metabolically radiolabeled for 5 
min, and then chased at 16 or 37°C for up to 
90 rain. One set of dishes was incubated for 90 
min at 16°C, then transferred to 37°C for 60 
min. VSV G and related proteins were immu- 
noprecipitated from solubilized cells as de- 
scribed in Materials and Methods. 

1988). HeLa cells were transiently transfected with VSV G 
or Gml, and then metabolically radiolabeled for 5 min and 
solubilized either immediately or after 60 min of chase. Ly- 
sates were loaded onto 5-20% sucrose gradients, cen- 
trifuged, and analyzed as described in Materials and 
Methods. Immediately after synthesis, VSV G migrated as 
a 4S20.~ peak (Fig. 5; Doms et al., 1987). After a 60-min 
chase, all of the VSV G had trimerized, migrating as a dis- 
crete 8S20,~ peak. The behavior of Gml in these gradients 
was markedly different. Immediately after synthesis, Gml 
migrated similarly to the VSV G monomer. After a 60-rain 
chase, however, much of the Gml was found in the pellet in 
an SDS-resistant form (Fig. 5; note top of lane). The time- 
dependent shift in the mobility of the oligomer in sucrose 
gradients suggests that oligomers already exist in the cells at 
the time of lysis and immunoprecipitation. The SDS- 
sensitive material in the Gml pellet fractions may represent 
an intermediate form of oligomer that is not yet SDS- 
resistant. Alternatively, this material could contain protein 
released from the SDS-resistant oligomer during SDS- 
PAGE. In contrast to our findings with Gml, misfolded mu- 
tants of VSV G that aggregate in the ER are found in the pel- 
let (and are SDS-soluble) immediately after synthesis (Doms 
et al., 1988). Using different centrifugation conditions, we 
estimated the average size of the Gml oligomer to be approx- 
imately 22S20.~, or roughly 800 kD (data not shown). 
Therefore, if Gml (MW 66 kD) is the sole component of the 
oligomer, we estimate there would be ,o12 molecules per 
oligomer. 

Role of  the VSV G Head and Tail 
Domains in SDS-Resistant Oligomer Formation 
or Stabilization 

In contrast to the chimeric Gml protein, oligomers of the 
IBV M glycoprotein are not detected when assayed by su- 
crose gradient sedimentation (data not shown). This might 
suggest that oligomerization is not a retention mechanism for 
native M protein; alternatively, M oligomers might readily 
dissociate in detergent. The resistance of the Gml oligomer 
to solubilization suggests a structural feature of VSV G may 
stabilize the complex. We asked whether the lumenal do- 
main of VSV G, which is sufficient for trimerization (Doms 
et al., 1988), was required for oligomer formation. To do 
this, we replaced the lumenal domain ofVSV G or Gml with 
a small soluble glycoprotein, the o~ subunit of hCG. When 
expressed alone, the oL subunit of hCG is secreted from cells 
as a monomer (Guan et al., 1988b). When hCGo~ is fused 
to the membrane-spanning domain and cytoplasmic tail of 
VSV G, the chimeric protein (c~m) is membrane-bound and 
transported to the cell surface (Guan et al., 1988a). When 
the VSV G membrane-spanning domain of c~m is replaced 
with the ml domain of IBV M, the resulting chimera (oemlG) 
is retained in the Golgi complex (Swift and Machamer, 
1991). Interestingly, in metabolically labeled HeLa cells ex- 
pressing cxmlG, we observed the time-dependent accumula- 
tion of an SDS-resistant species at the interface between the 
separating and stacking gels (Fig. 6, arrowhead). This spe- 
cies was not observed in cells expressing am. The smaller 
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l~gure 5. Sucrose gradient sedimentation of Gml and VSV G. HeLa cells transfected with VSV G or Gml were metabolically labeled 
for 5 rain, and then solubilized immediately or after 60 rain of chase. Lysates were loaded onto 5-20% sucrose gradients and centrifuged 
as described in Materials and Methods. Fractions were collected, immunoprecipitated using anti-VSV antibody, and analyzed by SDS- 
PAGE. After the 60-min chase, all of the Gml formed a large oligomer that pelleted under these gradient conditions, and much of it was 
SDS-resistant. 

size of the otmlG SDS-resistant oligomer is consistent with 
the size difference between ctmlG and Gml (28 vs 66 kD). 
On sucrose gradients, c~mlG solubilized 60 min after synthe- 
sis migrated as a larger species (some of which was SDS- 
resistant) than newly synthesized oanlG. In contrast, the mo- 
bility of o~m on sucrose gradients was unaltered during the 
chase (data not shown). Thus the VSV G lumenal domain 
was not required for SDS-resistant oligomer formation. 

We used a coprecipitation assay to ask if otmlG formed 
hetero-oligomers with Gml or other related Golgi-resident 
proteins. HeLa cells were cotransfected to express both 
otmlG and either Gml, Gmlins, or VSV G. After a short 
metabolic labeling period (5 min), cells were solubilized ei- 
ther immediately or after a 60-min chase. Lysates were im- 
munoprecipitated using anti-hCG antibody. When otmlG 
was expressed alone, the time-dependent accumulation of 
SDS-resistant oligomer at the gel interface (arrowhead) was 
observed as described above (Fig. 7, lane 2). Interestingly, 
when otmlG was coexpressed with Gml or Gmlins, the size 

of the oligomer shifted dramatically, and now migated at the 
top of the stacking gel (Fig. 7, lanes 4 and 8). Furthermore, 
some proteins appeared to be solubilized during electropho- 
resis, since a small amount of material migrating with 
authentic Gml and Gmlins w a s  alSO detected in these lanes 
(Fig. 7, arrow). In contrast, no change in the size of the 
oligomer was observed when c~mlG was coexpressed with 
VSV G (Fig. 7, lane 6) or with GmlQLs0 (data not shown), 
which are transported to the plasma membrane. Further- 
more, when cells expressing Gml and c~m (containing the 
VSV G membrane-spanning domain) were immunoprecipi- 
tated using anti-hCG antibody, no Gml was recovered (data 
not shown). 

To test the role of the cytoplasmic tail of Gml in oligomer 
formation, we inserted a stop codon after the first residue 
(Arg) beyond the transmembrane domain (tGml). The corre- 
sponding tailless VSV G (TMR; Doms et al., 1988) trimer- 
izes with normal kinetics but is transported slowly from the 
ER to the plasma membrane. When tGml was localized by 
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Figure 6. amlG forms an SDS-resistant oligomer. HeLa cells trans- 
fected with amlG or am were metabolically labeled for 5 rain, and 
then solubilized either immediately or after a 60-min chase and im- 
munoprecipitated with anti-hCG antibody. Samples were analyzed 
by SDS-PAGE on 15 % gels. Note the time-dependent accumulation 
of an SDS-resistant species at the interface between the separating 
and stacking gels (arrowhead). The increased mobility of amlG 
and am after 60 min of chase is due to carbohydrate trimming. 

indirect immunofluorescence in transiently transfected COS-7 
cells, some Golgi staining was observed, although a sig- 
nificant amount of the protein was found in the ER. Unlike 
Grid, tGml did not form an SDS-resistant oligomer when ex- 
pressed in COS- ' /or  HeLa cells, and did not sediment as a 
large oligomer in sucrose gradients (although it did appar- 
ently form trimers, not shown). However, because tGml ap- 
pears to exit the ER very slowly (like TMR), the kinetics of 
oligomer formation may have been too slow to detect. 

Because tGml did not form detectable oligomers, we 
asked whether preformed Gml oligomers could be disrupted 
by proteolysis of the cytoplasmic tall. The 29-amino acid 

Figure 7. Gml and c~mlG form hetero-oligomers. HeLa cells were 
transfected with 1 #g each of mlllG and either calf thymus DNA 
(CT), Gml, VSV G, or Gml~n~. After a 5-min pulse, cells were 
solubilized either immediately or after a 60-min chase. Aliquots of 
the solubilized cells were immunoprecipitated with anti-hCG anti- 
body and elcctrophoresed on 12% SDS-polyacrylamide gels. The 
interface between the stacking and separating gels is marked with 
an arrowhead, and the mobility of Gml in the gel is denoted with 
an arrow, amIG forms hetero-oligomers with Gml and Gmlm (but 
not with VSV G) that could be precipitated by anti-hCG antibody. 

tail (depicted in Fig. 8 A) has numerous arginines and lysines 
that are susceptible to proteolysis by trypsin. HeLa cells ex- 
pressing Gml or VSV G were metabolically radiolabeled for 
5 min, and then chased for 0 or 60 rain, and microsomes pre- 
pared as described in Materials and Methods. Microsomes 
were treated with TICK-trypsin for 30 rain at 37°C, and then 
solubilized, immunoprecipitated with anti-VSV antibody, 
and analyzed on SDS-polyacrylamide gels (Fig. 8 B). As 
size standards we used radiolabeled tGml and TMR immu- 
noprecipitated from transfected HeLa cells. Trypsin cleaved 
newly synthesized VSV G protein to a species migrating 
slightly larger than TMR on SDS-PAGE (Fig. 8 B, compare 
lanes 7 and 10). After 60 rain of chase, two proteolytic prod- 
ucts were detected. The upper band corresponded to cleav- 
age of the cytoplasmic tail of mature (sialylated) VSV G, as 
it was resistant to endoglycosidase H, whereas the lower 
band was sensitive to endoglycosidase H treatment (not 
shown). In addition, we frequently observed some residual 
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Figure 8. Trypsin treatment of preformed oligomers eliminates re- 
sistance to SDS. (A) Amino acid sequence (in single letter code) 
of the cytoplasmic tail of VSV G and Gml. Residues susceptible 
to trypsin are underlined. The likely cleavage sites for VSV G (re- 
gion A) and Gml (regions B and C) are indicated. (B) Proteolytic 
digestion of Gml and VSV G in microsomes. HeLa cells expressing 
Gml or VSV G were metabolically labeled for 5 rain, and then 
chased for 0 or 60 rain. Microst,mes were prepared as described 
in Materials and Methods and treated with 20 #g TPCK-trypsin 
(lanes 2, 4, 7, and 9) or mock treated (lanes 1, 3, 6, and 8) for 30 
min at 37"C. Proteolysis was stopped by the addition of trypsin in- 
hibitor (20/zg), the microsomes were solubilized, and Gml (lanes 
1-4) and VSV G 0anes 6-9) were immunoprecipitated and ana- 
lyzed by SDS-PAGE. More inside-out microsomes are generated 
from compartments further along the secretory pathway, account- 
ing for the loss of material recovered after trypsinization of VSV 
G isolated after a 60-min chase (lane 9). tGml (lane 5) and TMR 
(lane 10) immunoprecipitated from HeLa cells labeled under the 
same conditions are included as size standards. 

uncleaved mature VSV G in our experiments. Since the 
trypsin-cleaved form of VSV G migrated more slowly than 
T M R  (whose tail contains a single amino acid), we deduced 
that trypsin cleaves the VSV G tall within region A marked 
on Fig. 8 A. 

The proteolytic profile generated by trypsin cleavage of 
Gml  differed from that of  VSV G. Trypsin treatment of 

Figure 9. Trypsin-treated Gml is still oligomerized. Cells express- 
ing VSV G (A) or Gml (B) were metabolically radiolabeled for 5 
rain, and then chased for 45 rain. Microsomes were prepared and 
treated with 20/zg TICK-trypsin for 30 rain at 37°C, then solubi- 
lized in MNT and centrifuged on 5-20% sucrose gradients. Frac- 
tions were collected, immunoprecipitated using anti-VSV antibody, 
and analyzed by SDS-PAGE. 

newly synthesized Gml  yielded a single species which 
migrated more slowly on SDS-PAGE than the VSV G proteo- 
lyric fragment. Thus, even before oligomers are formed, the 
tail of  Gml  is less accessible to trypsin than that of  VSV G. 
Interestingly, when Gml  was digested after a 60-rain chase, 
there was a large reduction in the amount of  SDS-resistant 
oligomer migrating at the top of the stacking gel on SDS- 
PAGE (Fig. 8 B, compare lanes 3 and 4). Furthermore, we 
saw a second, larger band in addition to the one detected im- 
mediately after the pulse label. Both bands were en- 
doglycosidase H-sensitive, indicating that the proteins they 
represent had not passed through the medial Golgi (not 
shown). In more detailed kinetic experiments, the amount of  
this upper band increased with longer chase times, with a 
concomitant decrease in the amount of  the lower band (not 
shown). Based on the potential trypsin cleavage sites in the 
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Figure 10. Trypsin treatment of Gml and VSV G recovered after 
treatment with cytochalasin D. HeLa cells expressing Gml or VSV 
G were treated with 100 #M cytochalasin D starting 1 h before ra- 
diolabeling. Because fewer microsomes were recovered from 
cytochalasin D-treated cells than from untreated ceils, treated cells 
were radiolabeled with twice the usual concentration of radioactiv- 
ity. Microsomes were prepared after a 15-min pulse and a 45-min 
chase, and aliquots were mock treated or treated with TPCK-tryp- 
sin as described in Materials and Methods. Gml and VSV G were 
immunoprecipitated using anti-VSV antibody and analyzed by 
SDS-PAGE. Cytochalasin D blocked formation of SDS-resistant 
oligomers and accumulation of the larger trypsin-cleaved band. 

cytoplasmic tail and the relative mobility of these bands 
compared to the VSV G proteolytic fragment and tGml, we 
conclude that the upper and lower bands result from trypsin 
cleavage within regions C and B, respectively (Fig. 8 A). The 
upper band may represent material generated exclusively 
from proteolytic digestion of SDS-resistant Gml. This would 
suggest that the last three amino acids of the cytoplasmic tail 
of Gml are required for SDS resistance of the oligomer. Al- 
ternatively, trypsin may destroy another (unlabeled) compo- 
nent of the oligomer that is required to maintain its resis- 
tance to solubilization. 

Sucrose Gradient Sedimentation of l),ypsin-treated 
Gml and VSV G 

Trypsinization of microsomes eliminated the SDS-resistant 
form of Gml. To ask if proteolysis dissociated the oligomers 
as well, we subjected trypsin-treated Gml-containing micro- 
somes to sucrose gradient sedimentation. Microsomes pre- 
pared from HeLa cells after a 5-min pulse and a 60-min 

chase were mock-treated or treated with TPCK-trypsin (20 
#g) for 30 min at 37°C. Samples were diluted tenfold in 
MNT, and aliquots were loaded on sucrose gradients and 
centrifuged as described in Materials and Methods. Gradient 
fractions were collected, immunoprecipitated, and analyzed 
by SDS-PAGE. The trypsin-treated samples are shown in 
Fig. 9. Trypsin digestion did not cause dissociation of VSV 
G trimers (compare Fig. 9 A with Fig. 5). Significantly, the 
larger proteolytic product of Gml migrated at the bottom of 
the gradient, whereas some of the smaller product pelleted 
and some was found throughout the gradient (Fig. 9 B). This 
suggested that removing part of the cytoplasmic tail of Gml 
does not disrupt the oligomer, and further supports the possi- 
bility that digestion of SDS-resistant material gives rise to 
the larger band. 

The Cytoplasmic Tails of Oligomerized Gin1 May 
Interact with Actin 

We tested the possibility of cytoskeletal involvement in SDS 
resistance of Gml by pretreating cells with drugs that disrupt 
microtubules or actin filaments. Depolymerization of micro- 
tubules with colchicine (50/~M) had no effect on the amount 
of SDS-resistant Gml formed (not shown). Interestingly, 
treatment with cytochalasin D (100/zM) starting 1 h before 
metabolic labeling blocked formation of SDS-resistant Gml 
oligomers (Fig. 10, lane 3). The amount of immunoprecipi- 
tated radiolabel migrating at the top of the stacking gel de- 
creased from 43 % of total in untreated cells to 18 % of total 
in cytochalasin D-treated cells (compare Fig. 10, lanes I and 
3). Cytochalasin D did not block the transport of VSV G 
since the rate of sialylation was enhanced relative to un- 
treated cells. On sucrose gradients, Gml solubilized from 
cytochalasin D-treated cells migrated as an SDS-sensitive 
oligomer (in the pellet), and VSV G trimerization was un- 
affected (data not shown). This observation suggests that 
oligomer formation and SDS-resistance are separable char- 
acteristics, and furthermore implies that SDS-resistance 
may result from interaction between Gml and an actin-based 
matrix or cytoskeleton. 

Because cytochalasin D blocked the formation of SDS- 
resistant oligomers of Gml, we tested whether this treatment 
prevented the appearance of the larger proteolytic band. 
HeLa cells expressing Gml or VSV G were treated with 
cytochalasin D (100/zM) for 1 h before a 15-min metabolic 
labeling. Microsomes were prepared after a 45-min chase 
and mock-treated or treated with 20/zg of TPCK-trypsin for 
30 min at 37°C, and then solubilized and immunoprecipi- 
tated using anti-VSV antibody (Fig. 10). As mentioned 
above, treatment with cytochalasin D enhanced the fraction 
ofVSV G that became sialylated during this period (compare 
lanes 5 and 7). We routinely observed that trypsin degraded 
most of the VSV G recovered from cytochalasin D-treated 
cells (lane 8), suggesting that the orientation or durability of 
microsomes was affected by treatment with this perturbant. 
Interestingly, trypsin digestion of Gml recovered from 
cytochalasin D-treated cells yielded predominantly the 
smaller proteolytic species, generated by cleavage within re- 
gion B in Fig. 8 A. We therefore conclude that the larger Gml 
species does indeed represent material digested from SDS- 
resistant oligomers, and furthermore, that the oligomers may 
interact with an actin-based cytoskeleton. 
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Discussion 

The experiments presented here support protein oligomer- 
ization as a mechanism for retaining the chimeric protein 
Gml in the Golgi complex. An unusual feature of the Gml 
oligomer (its resistance to solubflization by SDS) allowed us 
to easily assay oligomer formation. The specificity of oligo- 
merization was mediated by the ml transmembrane domain, 
since mutant Gml proteins that were retained in the Golgi 
formed oligomers, while mutant proteins that were released 
to the plasma membrane did not. This specificity was 
preserved in another construct, otmlG, in which the lumenal 
domain of VSV G was replaced with the o~ subunit of hCG. 
Furthermore, e~mlG was able to form hetero-oligomers with 
Gml and other Golgi-resident Gml mutants, but not with 
mutants that move to the plasma membrane. This suggested 
that the lumenal domain of VSV G was not required for 
oligomerization. 

While the specificity of oligomerization was dictated by 
the sequence of the membrane-spanning region, the cyto- 
plasmic tail of Gml was necessary for SDS-resistance and 
may play a role in oligomer formation. When the cytoplas- 
mic tails of preexisting oligomers were digested with tryp- 
sin, the proteolytic products were soluble in SDS but con- 
tinued to migrate as oligomers on sucrose gradients. Based 
on potential trypsin cleavage sites in the cytoplasmic tail of 
Gml and the migration of the proteolytic fragments on SDS- 
PAGE, it is possible that removal of the last three carboxy- 
terminal residues of Gml destroys its resistance to solubili- 
zation by SDS. Alternatively, trypsin digestion could remove 
another component of the oligomer that is required for SDS 
resistance. Interestingly, cell treatment with cytochalasin D 
blocked the formation of SDS-resistant oligomers, suggest- 
ing that the acquisition of SDS resistance may reflect associ- 
ation of the Gml cytoplasmic tail with an actin-based 
cytoskeleton. We are currently constructing a series of Gml 
proteins with truncated cytoplasmic tails to determine if 
these proteins are correctly targeted and form oligomers. 

Several observations suggest that Gml oligomerization 
normally occurs after the protein leaves the ER. Oligomer- 
ization of Gml was not detected until ~10 min after protein 
synthesis, which correlates with arrival of newly synthesized 
proteins at the cis-Golgi. Oligomers were not observed when 
ER to Golgi traffic was blocked by incubation at 16°C or 
treatment with CCCP. Interestingly, SDS-resistant oligo- 
mers did form in brefeldin A-treated cells, suggesting that 
oligomers can form in pre-Golgi compartments under cer- 
tain conditions. Brefeldin A treatment may generate the con- 
ditions required to stimulate oligomer formation in the ER. 
Conditions which could trigger Gml oligomerization might 
include its concentration in the membrane, the retrieval of 
glycolipids or glycoproteins typical of the Golgi complex, or 
changes in pH or divalent ion concentrations. 

We were unable to solubilize the SDS-resistant oligomer 
using a wide variety of harsh conditions. It is possible that 
some of the Gml oligomer is covalently crosslinked to itself 
or to an actin-based structure via the VSV G tail. However, 
removal of as few as three amino acids from the cytoplasmic 
tail resulted in oligomers that were SDS-sensitive. This indi- 
cates that the SDS resistant phenotype (which requires the 
last three amino acids of Gml) can be separated from oligo- 
merization per se, which is mediated by the membrane- 
spanning domain. 

Transmembrane-mediated Oligomerization of 
Cell-Surface Proteins 
The transmembrane domains of many proteins have been 
shown to mediate dimerization (Sternberg and Gullick, 
1990; Manolios et al., 1990; for review see Bormann and 
Engelman, 1992). The best example is glycophorin A, 
whose single transmembrane domain interacts to form 
homodimers (Bormann et al., 1989). This dimer is resistant 
to solubilization by SDS at ambient temperature, although 
resistance is overcome by dilution or incubation at higher 
temperatures (Furthmayr and Marchesi, 1976). Dimeriza- 
tion ofglycophorin A is highly sequence specific and appears 
to involve interactions between hydrophobic residues in the 
transmembrane domain (Lemmon et al., 1992). The trans- 
membrane domains of the T-cell receptor (Cosson et al., 
1991) and of class H major histocompatibility complex mole- 
cules also appear to mediate dimer formation (Cosson and 
Bonifacino, 1992). In the case of major histocompatibility 
complex molecules, o~ and/~ chains interact to form hetero- 
dimers; dimerization appears to require a pair of oppositely 
charged amino acids at the lumenal edge of the apposing 
membrane spans. A series of glycine residues on each mem- 
brane span forms a nonpolar face which allows close packing 
of the transmembrane domains (Cosson and Bonifacino, 
1992). Similarly, the o~ chain of the T-cell receptor assembles 
with the CD3 6 chain via interaction between charged trans- 
membrane residues (Manolios et al., 1990; Cosson et al., 
1991). 

A Model for the Retention of Golgi-Resident Proteins 
It is not clear how the transmembrane domain of Gml mole- 
cules might interact to form a large oligomer. The large lu- 
menal domain of Gml may sterically prevent direct interac- 
tion between many transmembrane domains to form an 
oligomer. Furthermore, the polar face of the ml domain it- 
self could be expected to interact with at most one or two 
similar domains. The transmembrane domains of these pro- 
teins might interact to form small clusters (dimers or 
trimers) of Gml, mutant Gml proteins, and ~mlG. These 
clusters could be organized into large arrays by interactions 
between the heads and/or tails of proteins in different 
clusters. These structures might contain lipids and other en- 
dogenous Golgi-resident proteins. Association into such an 
array could prevent Golgi-resident proteins from entering 
transport vesicles and thereby function as a mechanism for 
their retention. 

The targeting signals of other Golgi resident proteins from 
different Golgi subcompartments also reside in their trans- 
membrane domains (Aoki et al., 1992; Burke et al., 1992; 
Colley et al., 1992; Munro, 1991; Nilsson et al., 1991; Russo 
et al., 1992; Tang et al., 1992; Teasdale et al., 1992; Wont 
et al., 1992), although flanking domains also contribute to 
retention efficiency. No obvious homologies exist between 
the primary sequences of these membrane-spanning do- 
mains, even in enzymes thought to be enriched in the same 
subcompartment. Thus, the membrane composition of Golgi 
subcompartments may be responsible for specific retention 
of resident proteins throughout this organelle. Consistent 
with this, no soluble resident Golgi proteins have been de- 
tected to date. 

Nilsson et al. (1993) have proposed that the cytoplasmic 
tails of resident proteins in sequential Golgi stacks may in- 
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teract (perhaps via a cytoplasmic linking protein) to main- 
tain the stacks in close apposition. The formation of Gml 
oligomers may reflect association with such endogenous 
structures. The combination of overexpression and our 
metabolic radiolabeling conditions would not be expected to 
reveal any long-lived endogenous Golgi-resident proteins 
that also reside in the oligomer. However, longer radiolabel- 
ing conditions in stable cell lines expressing Gml may reveal 
other putative components of the oligomer. We are currently 
performing such experiments. 
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