Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Mar 1;124(5):807–815. doi: 10.1083/jcb.124.5.807

Two distinct, calcium-mediated, signal transduction pathways can trigger deflagellation in Chlamydomonas reinhardtii

PMCID: PMC2119959  PMID: 8120101

Abstract

The molecular machinery of deflagellation can be activated in detergent permeabilized Chlamydomonas reinhardtii by the addition of Ca2+ (Sanders, M. A., and J. L. Salisbury, 1989. J. Cell Biol. 108:1751- 1760). This suggests that stimuli which induce deflagellation in living cells cause an increase in the intracellular concentration of Ca2+, but this has never been demonstrated. In this paper we report that the wasp venom peptide, mastoparan, and the permeant organic acid, benzoate, activate two different signalling pathways to trigger deflagellation. We have characterized each pathway with respect to: (a) the requirement for extracellular Ca2+; (b) sensitivity to Ca2+ channel blockers; and (c) 45Ca influx. We also report that a new mutant strain of C. reinhardtii, adf-1, is specifically defective in the acid-activated signalling pathway. Both signalling pathways appear normal in another mutant, fa-1, that is defective in the machinery of deflagellation (Lewin, R. and C. Burrascano. 1983. Experientia. 39:1397-1398; Sanders, M. A., and J. L. Salisbury. 1989. J. Cell Biol. 108:1751-1760). We conclude that mastoparan induces the release of an intracellular pool of Ca2+ whereas acid induces an influx of extracellular Ca2+ to activate the machinery of deflagellation.

Full Text

The Full Text of this article is available as a PDF (991.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  2. Goodenough U. W., Shames B., Small L., Saito T., Crain R. C., Sanders M. A., Salisbury J. L. The role of calcium in the Chlamydomonas reinhardtii mating reaction. J Cell Biol. 1993 Apr;121(2):365–374. doi: 10.1083/jcb.121.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Goodenough U. W. Tipping of flagellar agglutinins by gametes of Chlamydomonas reinhardtii. Cell Motil Cytoskeleton. 1993;25(2):179–189. doi: 10.1002/cm.970250207. [DOI] [PubMed] [Google Scholar]
  4. Hartzell L. B., Hartzell H. C., Quarmby L. M. Mechanisms of flagellar excision. I. The role of intracellular acidification. Exp Cell Res. 1993 Sep;208(1):148–153. doi: 10.1006/excr.1993.1232. [DOI] [PubMed] [Google Scholar]
  5. Hegemann P., Neumeier K., Hegemann U., Kuehnle E. The role of calcium in Chlamydomonas photomovement responses as analysed by calcium channel inhibitors. Photochem Photobiol. 1990 Sep;52(3):575–583. doi: 10.1111/j.1751-1097.1990.tb01802.x. [DOI] [PubMed] [Google Scholar]
  6. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  7. Kostrzewska A., Sobieszek A. Diverse actions of cadmium on the smooth muscle myosin phosphorylation system. FEBS Lett. 1990 Apr 24;263(2):381–384. doi: 10.1016/0014-5793(90)81419-o. [DOI] [PubMed] [Google Scholar]
  8. Lewin R. A., Lee T. H., Fang L. S. Effects of various agents on flagellar activity, flagellar autotomy and cell viability in four species of Chlamydomonas (chlorophyta: volvocales). Symp Soc Exp Biol. 1982;35:421–437. [PubMed] [Google Scholar]
  9. MINTZ R. H., LEWIN R. A. Studies on the flagella of algae. V. Serology of paralyzed mutants of Chlamydomonas. Can J Microbiol. 1954 Aug;1(1):65–67. doi: 10.1139/m55-009. [DOI] [PubMed] [Google Scholar]
  10. Martin N. C., Goodenough U. W. Gametic differentiation in Chlamydomonas reinhardtii. I. Production of gametes and their fine structure. J Cell Biol. 1975 Dec;67(3):587–605. doi: 10.1083/jcb.67.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McNally F. J., Vale R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell. 1993 Nov 5;75(3):419–429. doi: 10.1016/0092-8674(93)90377-3. [DOI] [PubMed] [Google Scholar]
  12. Quarmby L. M., Yueh Y. G., Cheshire J. L., Keller L. R., Snell W. J., Crain R. C. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1992 Feb;116(3):737–744. doi: 10.1083/jcb.116.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenbaum J. L., Carlson K. Cilia regeneration in Tetrahymena and its inhibition by colchicine. J Cell Biol. 1969 Feb;40(2):415–425. doi: 10.1083/jcb.40.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saito T., Small L., Goodenough U. W. Activation of adenylyl cyclase in Chlamydomonas reinhardtii by adhesion and by heat. J Cell Biol. 1993 Jul;122(1):137–147. doi: 10.1083/jcb.122.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sanders M. A., Salisbury J. L. Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1994 Mar;124(5):795–805. doi: 10.1083/jcb.124.5.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sanders M. A., Salisbury J. L. Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1989 May;108(5):1751–1760. doi: 10.1083/jcb.108.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Satir B., Sale W. S., Satir P. Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Exp Cell Res. 1976 Jan;97:83–91. doi: 10.1016/0014-4827(76)90657-1. [DOI] [PubMed] [Google Scholar]
  18. Shiina N., Gotoh Y., Nishida E. A novel homo-oligomeric protein responsible for an MPF-dependent microtubule-severing activity. EMBO J. 1992 Dec;11(13):4723–4731. doi: 10.1002/j.1460-2075.1992.tb05577.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tam L. W., Lefebvre P. A. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics. 1993 Oct;135(2):375–384. doi: 10.1093/genetics/135.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  21. Vale R. D. Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts. Cell. 1991 Feb 22;64(4):827–839. doi: 10.1016/0092-8674(91)90511-v. [DOI] [PubMed] [Google Scholar]
  22. Witman G. B. Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol. 1986;134:280–290. doi: 10.1016/0076-6879(86)34096-5. [DOI] [PubMed] [Google Scholar]
  23. Yueh Y. G., Crain R. C. Deflagellation of Chlamydomonas reinhardtii follows a rapid transitory accumulation of inositol 1,4,5-trisphosphate and requires Ca2+ entry. J Cell Biol. 1993 Nov;123(4):869–875. doi: 10.1083/jcb.123.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES