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Abstract. In vitro studies have shown that keratino- 
cyte growth factor (KGE also known as FGF-7) is 
secreted by fibroblasts and is mitogenic specifically for 
epithelial cells. Therefore, KGF may be an important 
paracrine mediator of epithelial cell proliferation in 
vivo. Because stromal cells are thought to influence 
glandular proliferation in the primate endometrium, 
we investigated the hormonal regulation and cellular 
localization of KGF mRNA expression in the rhesus 
monkey uterus. Tissues were obtained both from natu- 
rally cycling monkeys in the follicular and luteal 
phases of the cycle, and from spayed monkeys that 
were either untreated or treated with estradiol (F_a) 
alone, F_a followed by progesterone (P), F_a plus P, or 
Fa plus P plus an antiprogestin (RU 486). Northern 
blot analysis of total RNA with 32p-labeled probes re- 
vealed that the level of KGF mRNA in the en- 
dometrium was 70-100-fold greater in the luteal phase 
or after P treatment than in untreated, F_a-treated, or 
follicular phase animals. Northern analysis also 
showed that KGF mRNA was present in the myo- 
metrium but was unaffected by hormonal state. RU 
486 treatment prevented the P-induced elevation of en- 
dometrial KGF mRNA. P-dependent elevation of en- 

dometrial KGF expression was confirmed by measure- 
ment of KGF protein in tissue extracts using a two-site 
enzyme-linked immunosorbent assay. In situ hybridiza- 
tion with nonradioactive digoxigenin-labeled eDNA 
probes revealed that the KGF mRNA signal, which 
was present only in stromal and smooth muscle cells, 
was substantially increased by P primarily in the 
stromal cells located in the basalis region. Smooth 
muscle cells in the myometrium and the walls of the 
spiral arteries also expressed KGF mRNA, but the de- 
gree of this expression did not differ with hormonal 
state. P treatment led to increased proliferation in the 
glandular epithelium of the basalis region and to ex- 
tensive growth of the spiral arteries. We conclude that 
the P-dependent increase in endometrial KGF resulted 
from a dual action of P: (a) a P-dependent induction 
of KGF expression in stromal cells, especially those in 
the basalis (zones Ill and IV), and (b) a P-dependent 
increase in the number of KGF-positive vascular 
smooth muscle cells caused by the proliferation of the 
spiral arteries. KGF is one of the first examples in pri- 
mates of a P-induced, stromally derived growth factor 
that might function as a progestomedin. 

M 
ANY reports suggest that the actions of sex steroids 
in target tissues are mediated through locally pro- 
duced growth factors in an autocrine/paracrine 

fashion. For example, EGF (23, 31), insulin-like growth fac- 
tor I (IGF-I) t (15, 30), and TGF-ot (32) are all regarded as 
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1. Abbreviations used in this paper: Dig, Digoxigenin; E2, estradiol; 

possible mediators of the effects of estrogens on uterine 
growth. Extensive evidence also exists that stromally derived 
mediators can promote epithelial proliferation and differen- 
tiation in steroid hormone responsive tissues (10). Such 
stromal-epithelial interactions in adult organs may be a 
special case of the more general phenomenon of mesenchy- 
real-epithelial interactions that occur during embryonic de- 
velopment (9). During the menstrual cycle, the primate 

GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GFAP, glial fibril- 
lary acidic protein; IGF, insulin-like growth factor; KGF, keratinocyte 
growth factor; KGFR, KGF receptor; oligo-DNA, oligodeoxynucleotides; 
P, progesterone. 
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uterus undergoes dramatic, hormonally driven changes in 
tissue structure that resemble developmental processes, and 
we have hypothesized that stromally derived growth factors 
play important roles in such events (27). 

One candidate for such a stromal mediator is keratinocyte 
growth factor (KGF), which was originally purified from 
conditioned medium of human embryonic lung fibrobhsts 
(38). KGF is a unique member of the FGF gene family that 
is mitogenic for a variety of epithelial cell types, but not for 
fibroblasts, melanocytes, or human sapbenous vein en- 
dothelial ceUs (13, 20). KGF mRNA has been detected in a 
variety of tissues (13). Because KGF has a signal peptide se- 
quence and is produced specifically by cells of mesenchymal 
origin, it could function as a paracrine mediator of epithelial 
ceU proliferation in vivo during normal growth cycles (13) 
and in wound healing (40, 43). Moreover, there is evidence 
that KGF functions as an androgen-dependent epithelial 
mitogen (an andromedin) in the prostate (reference 45 and 
Rubin, J., D. Peehl, M. Chedid, W. Taylor, D. Run, and S. 
Aaronson, manuscript submitted for publication) and semi- 
hal vesicle (1). In the present studies, we examined the hor- 
monal regulation and cellular localization of KGF in the rhe- 
sus monkey uterus. Specifically, we examined the effects of 
estradiol (E2) and progesterone (P) on KGF mRNA expres- 
sion by Northern blot analysis, the cellular distribution of 
KGF mRNA in the uterus by nonradioactive in sire hybrid- 
ization (25), and the level of KGF protein by various assays. 

Materials and Methods 

Animals and Tissues 
Uteri and oviducts were obtained from rhesus monkeys (Macaca mulana) 
in the midfollicular (n ffi 2) and midhteal (n = 4) phases of natural ovula- 
tory cycles, as determined by prospective assessment of serum E2 and P 
levels (5), and from spayed animals that were either untreated (n = 3), 
treated with E2 alone (14 d of E2; n = 5), E2 then P alone (14 d E2, then 
14 d P; n = 2), E: + P (14 d E2, then 14 d E2 + P; n = 6), or with E2 
+ P + RU 486 (14 d E2, then 14 d of E,2 + P + RU 486; n = 2) ,  where 
RU 486 (1 mg/Iqg) was injected daily intramuscularly in ethanol (39). Ex- 
cept for RU 486, all hormones were sdministered in Sllastic capsules filled 
with crystalline steroid, as described previously (44). At the end of each 
treatment, the animals were laparotomized, the uteri were lemoved and dis- 
sected into endometrial and myometrlal segments, and the oviducts were 
dissected into flmbrial and ampullary regions. For RNA extraction, tissues 
were frozen in liquid propane and stored in liquid nitrogen. For in situ hy- 
bridization, tissues were cut into small pieces, embedded in OCT com- 
pound (Tissue Tek, Elkhart, IN), frozen in liquid propane, and then stored 
in liquid nitrogen (25). 

Cells 
M426 human embryonic lung fibroblasts were grown in DME (CAbco 
Laboratories, Grand Island, NY) supplemented with 10% FBS, 2 mM 
g]utamine, 50 U/m] penicillin, and 50/~g/mi streptomycin as previously de- 
scribed (38). B5/589 human maxmnary epithelial cells (41) (a gift of M. 
Stampfer, Univenity of California at Berkeley) were grown in RPMI 1640 
(Gibco Lahoratories), to which 10% FBS, 2 mM ghtamine, 50 U/ml peni- 
cillin, 50/tg/mi streptomycin, and 4 ng/mi human EGF were added. 

Probes and Labeling 
Human KGF cDNA [0.68 kbp, corresponding to the 5' untranslated region 
and first exon (13, 24)], rhesus glial fibrlllary acidic protein (GFAP) eDNA 
(1.2 kbp) (26) human glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
cDNA [PstI-XbeI fragment of cDNA obtained from American Type Cul- 
ture Collection (Rockvllle, MD) (no. 57090) (42)], and linearized pBR 328 
DNA 0B bringer Mannheim Corp., Indianapolis, IN) were labeled with 

[32p-c~]dCTP (3,000 Ci/mmol, New England Nuclear, Boston, MA) by 
nick translation or random prlmins yielding 2.0- 2.4 x 109 cpm//~g DNA. 
Also, the DNAs were labeled with Digoxigenin-dUTP (Dig-dUTP) by ran- 
dom priming with a labeling kit (Boehringer Mannheim Corp.). After etha- 
nol precipitation, the pellet was suspended in 10 mM Tris-HCl buffer (pH 
7.4) containing 1 mM EDTA and 0.1% SDS. The concentration of Dig- 
labeled probe was expressed as the amount of template DNA used in the 
labeling ~action. lmmunohistochemical detection (25) of Dig-labeled 
DNA on nylon membranes (Nytran; Schleicher & SchneU, Inc., Keene, 
NH) revealed equivalent levels of Dig-labeling among these template 
DNAs. 

Sense and antisense strands corresponding to nucleotidas 539-583 of the 
human KGF eDNA sequence (13) were synthesized on a DNA synthesizer 
(Applied Biosystems, Inc., Foster City, CA). These 45-met oligedeoxynu- 
cleotides (oligo-DNAs) were labeled at the T-end with [32P-c~] ATP (3,000 
Ci/mmol; New England Nuclear) (21) by terminal deoxynucleotidyl trans- 
ferase (Bochringer Mannheim Corp.). ~2P-labeled oligo-DNAs were sepa- 
rated from unincorporated [32P-cd ATP by Nick Colunm TM (Pharmacia Fine 
Chemicals, Piscataway, NJ). The specific activities of these oligo-DNAs 
were 0.6-1.4 × 109 cpm//zg DNA. 

RNA Preparation and Northern Blot Analysis 
Cell monolayers were grown in 100-ram culture dishes, washed in sterile 
PBS, and iysed in the presence of RNAzul (Tel-Test Inc., Friendswood, 
TX). Tissues were pulverized in the presence of liquid nitrogen and 
homogenized in RNAzol. Total RNA was precipitated with isopropanul 
(50% vol/vol), washed in 75% ethanol, and resnspended in TE buffer (10 
mM Tris-HC1 [pH 7.4] I mM EDTA). 20-/~g samples of RNA were electro- 
phoresed on 1% formaldehyde ngarose gels and transferred to Nytran nylon 
membranes (sehleicher & Sehnoll, Inc.). To evaluate the integrity of the 
RNA, gels were stained with ethidium bromide. After cross-llnkins of the 
RNA to the membrane, filters were prehybridized for 2 h and hybridized 
for 20 h at 42°C. When cDNA probes were used, filters were prehybridized 
and hybridized in Hybrisol (Oncor, Gnithersburg, MD) (40% formamide, 
10% dextran sulfate, 1% SDS, 6× SSC, and blockin~ agents) and washed 
twice O0 rain each time) at room temperature in 2x  SSC, 0.1% SDS, and 
twice at 40°C in 0.5x SSC, 0.1% SDS. When 32P-labeled uligonucleotides 
were used as probes, filters were prehybridized at 42°C for 2 h and hybrid- 
ized for 17-72 h at 42-45°C in a solution containin~ 10 mM Tris-HCl (pH 
7.4), 1 mM ElYrA, 0.6 M NaC1, lx  Danhardt's solution, 250/~g/ml yeast 
transfer RNA, 125 ~tg/mi salmon testis DNA, 10% dextran sulfate, and 
40% formamide. Membranes were washed in0.Sx SSC, 0.1% SDS at 45°C. 
Filters were exposed to x-ray film (Eastman Kodak, Rochester, NY) or 
phosphor intensifying screens. Densitometric analysis was performed with 
a scanner densitometer (Bio-Rad Laboratories, Richmond, CA) or a phos- 
phorimnger (ImngeQuant; Molecular Dynamics, Inc., Sunnyvale, CA). 

Measurement of KGF Protein 
Tissue samples were thawed and homogenized with a Polytron tissue disrup- 
ter (Brinkmann Instruments, Inc., Westbury, NY) in a solution (2 ml/g wet 
wt) consisting of 1.0 M NaCI, 20 mM Tris-HCl (pH 7.4), 5 mM ED'FA, 
I mM PMSF, 10 ~tg/ml apmtiuin, 10 ~tg/nfl leupeptin, and 10/~g/ml pepsta- 
tin. After sonication for 30 s x 3 (power setting ffi 10; Heat Systems- 
Ultrasonics Inc., Plalnview, NY) and centrifngation at 40,000 g for 30 min 
at 4°C, supernatants were analyzed for KGF using either a radioimmanoas- 
say (4) or a tw~site ELISA. The total protein concentration of the extracts 
was measured (Bio-Rad Laboratories), and all samples were adjusted to a 
uniform concentration before assay (typically concentrations varied ,10% 
before adjustment). For the ELISA, all steps were performed at room tem- 
perature. In brief, 96-well polyvinyl micmtiter plates (no. 3912; Falcon 
Labware, Oxnard, CA) were precoated with 50/A/weli of a KGF monoclo- 
nul antibody (1G4, 8/~g/ml, (4) overnight and subsequently blocked with 
4% bovine serum albumin_ Serial dilutions of tissue extracts (protein con- 
centrations El i  mg/ml) were incubated at 50 ~l/well for 5 h; then wells were 
washed extensively with 0.05 % Tween, 0.02 % sodium azide in PBS, aad 
further incubated overnight with a rabbit pulyclousl antibody (dealsmtted 
no. 9492) raised against recombinant human KGF. After extensive washing 
as above, alkaline phosphatase-conjngated goat anti-rabbit IsG ('Ihso Inc., 
Burlingmne, CA) (1:15,000) was a dd,~_ to the wells. After 2 h, the wells 
were a~ain washed and p-nitrophenyl phosphate (concentration 2 mg/ml) 
was introduced. Optical density was measured at 405 nm with an ELISA 
scanner (Bio-Rad Laboratories). The concentration of the recombinant hu- 
man KGF standard (37) was based on amino acid analysis and extinction 
coefficient. 
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In Situ Hybridization 
The procedures for preparing frozen sections (5/~m), attaching them to 
gelatin-coated slides, fixation, pretreatments, and hybridization of the sec- 
tions have been described previously (25). Briefly, the slides were fixed in 
4% paraformaldehyde in PBS (pH 7.4) for 20 rain and treated with 0.2 N 
HC1, 0.2 % Triton X-100 in PBS, and proteinase K (1/zg/ml, 37°C, 15 rain), 
successively. Hybridization was carried out at 37°C overnight in medium 
containing 10 mM Tris-HC1 (pH 7.4), I mM EDTA, 0.6 M NaC1, 1× Den- 
hardt's solution, 250/~g/rul yeast transfer RNA, 125/~g/ml salmon testis 
DNA, 10% dextran sulfate, 20 pmol/ml random oligo-DNA (NEP-505; Du 
Pont Pharmaceuticals, W'dmington, DE), 0.01% SDS, 400 U/ml heparin, 
40% deionized formamide, and 0.45-0.5 pg/ml Dig-cDNA. 

After hybridization, the slides were washed three times with 2× 
SSC/0.075% Brij 35 (Sigma Chemical Co., St. Louis, MO) at 37°C, twice 
with 0.5 )< SSC/0.075~ Brij 35 at 37°C for 1 h each, and finally washed 
with 0.2 × SSC at 45°C for 30 min. After successive treatments with etha- 
nol and acetone to dellpidate the sections, the signals were detected 
enzyme-immunohistochemically with horseradish peroxidase-labeled anti- 
Dig antibody, as described previously (25). We found in preliminary work 
that delipidation removed nonspecifically bound Dig-cDNA without affect- 
ing specific hybrids. Most of the above protocol was as previously described 
(25), except for the use of an oligonucleotide mixture (Randomer-36) in the 
hybridization medium and for the delipidafion step after hybridization, both 
of which helped to eliminate nonspecific binding of probe to cell nuclei. 
The staining was observed by either bright field or phase microscopy. Be- 
cause stromal cells have very scanty cytoplasm, phase microscopy was used 
to enhance the hybridization signal. Photomicrographs of the nonradioac- 
tive in situ hybridization preparations were prepared with 35-ram film 
(Technical Pan; Eastman Kodak). 

Controls for In Situ Hybridization 
To evaluate the specificity of KGF mRNA signals, various types of control 
experiments were conducted on adjacent sections. As a conU~l probe, 
GFAP cDNA was used, and some sections were treated with RNase A (100 
#g/ml; 37°C, 1 h) before hybridization. Some sections were hybridized with 
labeled KGF cDNA probes in the presence of an excess amount of unlabeled 
KGF cDNA (17-fold) to validate the sequence specificity of the signal. On 
some sections, after hybridization with KGF cDNA, excessively stringent 
washin~ conditions were used. The calculated melting temperature of the 
KGF cDNA-mRNA hybrids in 50% formamide~.2 × SSC is 22-29°C (24) 
assuming 90-95 % homology in KGF base sequences between monkey and 
human. For an excessively stringent wash, we used the same conditions at 
37°C. 

Identification of Proliferating Cells 
A nuclear antigen associated with proliferation was immunohistochemi- 
cally localized in frozen sections of uteri with antibody Ki-67 (DAKO 
PATTS Inc., Santa Barbara, CA). We have described our immunocyto- 
chemical technique for use of this antibody in a previous paper on the mon- 
key endometrium (39). Several studies have shown that quantitation of the 
number of cells positively stained for this antigen in frozen sections pro- 
vides a reliable index of proliferation (14). 

Histology of Monkey Uterus 
Glycolmethacrylate sections of monkey uterus were prepared and stained 
with hematoxylin as described previously (39). 

Results 

Hormonal Regulation of KGF mRNA 
in Primate Uterus 
To investigate possible hormonal influences on KGF expres- 
sion in the primate uterus, endometrial and myometrial 
RNAs were prepared under various treatment conditions. As 
shown in Fig. 1, the 2.4-kb KGF transcript was barely detect- 
able in endometrium of spayed (lane/) or E2-treated 0ane 
3) monkeys. However, the KGF mRNA was abundant in the 

Figure 1. Northern blot of total uterine RNA from hormonally 
treated animals hybridized with 32p-labeled KGF cDNA. (Lanes 1 
and 2) Spayed animals; endometrium in lane 1 and myometrium in 
lane 2. (Lanes 3 and 4) E2-treated animals; endometrium in lane 
3 and myometrinm in lane 4. (Lanes 5 and 6) E2 + P-treatod 
animals; endometrium in lane 5 and myometrium in lane 6. (Lane 
7) KGF-positive M426 cell line. (Lane 8) KGF-negative B5/589 
cell line. 2.4 kb marks KGF mRNA, which was markedly enhanced 
by E2 + P treatment in endometrium, and was present but invari- 
ant in myometrium under all hormonal conditions. The lower por- 
tion of the figure illustrates the signal on these blots after reprobing 
with a cDNA probe against GAPDH, confirming that equivalent 
amounts of RNA were loaded and transferred in all lanes. 

e n d o m e t r i u m  of  animals  t reated with  E2 and P (lane 5). 
Whi le  the t ranscr ipt  was detectable  at low level in myo-  
metrium of spayed animals (lane 2), its level of expression 
was essentially unchanged by E2 or ~ + P treatment (lanes 
4 and 6). The slight increase in signal from the E2 + 
P-treated myometrial sample is probably caused by contami- 
nation with endometrial tissue. Under the same experimen- 
tal conditions, a typical 2.4-kb band ofKGF mRNA was de- 
tected in total RNA from M426 human fibroblasts, a 
KGF-positive line (lane 7), but not from B5/589 ceils, a 
KGF-negative cell line (lane 8). The lower portion of the 
figure illustrates the signal on these blots after reprobing 
with a cDNA probe against GAPDH, a housekeeping gene, 
confirming that equivalent amounts of RNA were loaded and 
transferred in all lanes. 

Fig. 2 (lanes 1 and 3) shows that in animals treated sequen- 
tially with E2 followed by P, the degree of endometrial KGF 
mRNA expression was very high, whether the E2 was con- 
tinued along with the P treatment (E2 + P; lane/) or the E2 
was stopped and P was administered alone (E2, P; lane 3). 
In striking contrast, administration of RU 486 (lane 2) 
blocked the effect of P in upregulating endometrial KGF 
mRNA. Fig. 2 also shows that during the natural menstrual 
cycle, endometrial KGF mRNA expression was minimal 
during the follicular phase (lane 4) and highly abundant in 
the luteal phase (lane 5). The level of KGF mRNA was 
equivalent in P-dominated tissues, whether sampled during 
the natural cycle or after hormone administration. The lower 
portion of the figure shows the signal obtained with the 
GAPDH probe to control for RNA loading and transfer. 

Fig. 3 A shows that upregulation of KGF mRNA by P was 
tissue specific. When Northern blots of total RNAs from en- 
dometrium and oviduct of E2- or E2 + P-treated monkeys 
were probed with 32p-labeled KGF antisense oligo-DNA, 
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Figure 2. Northern blot of total endometrial RNA from hormonally 
treated and naturally cycling macaques hybridized with 32P-labeled 
KGF cDNA. Hormonal conditions for each lane were as follows: 
Lane 1, E2 + P combined; lane 2, E2 + P + RU 486; lane 3, E2 
followed by P alone (E2, P); lane 4, follicular phase of the men- 
strual cycle; and lane 5, luteal phase of the menstrual cycle. 2.4 kb 
marks KGF mRNA, which was elevated in P-dominated tissues, 
whether E2 was present or absent. This effect of P was suppressed 
by RU 486. The lower portion of the figure illustrates the signal on 
these blots after reprobing with a cDNA probe against GAPDH, 
confirming that equivalent amounts of RNA were loaded and trans- 
ferred in all lanes as above. 

the 2.4-kb band of KGF mRNA was detected in the en- 
dometrial (lane 3), but not the oviductal RNA preparation 
(lanes 1 and 2). Ethidum bromide staining of the agarose gel 
used to prepare the blot in Fig. 3 A indicated that similar 
mounts  of RNA were loaded in each lane (Fig. 3 B). All 
of these results indicated that KGF mRNA was markedly up- 
regulated in the endometrium but not the myometrium or 
oviduct in response to P. 

Elevated KGF Protein Levels in Endometrium 
after P Treatment 

In an effort to determine whether KGF mRNA expression 
was correlated with the detection of KGF protein, we devel- 
oped a sensitive two-site ELISA as described in Materials 
and Methods. In this assay, recombinant KGF was detectable 
at subnanogram amounts (Fig. 4). In this same assay, en- 
dometrial tissue extracts showed readily detectable KGF- 
immunoreactive material. As illustrated in Fig. 4, the titra- 
tion patterns exhibited by these extracts in the ELISA closely 
matched that of the recombinant human KGF standard, 
strongly suggesting that the cross-reactivity resulted from 
endogenous KGF. Moreover, the results summarized in Fig. 
4 and Table I demonstrated that endometriai tissue from 
animals in the luteal phase or treated with F_a + P showed 
more KGF immunoreactivity than tissue from animals in the 
follicular phase or exposed only to E2. Similar findings 
were obtained when samples were surveyed in a KGF radio- 
immunoassay (data not shown). These data indicate that 
KGF protein was present in the endometrium and was 
elevated in P-dominated tissue. 

Cellular Localization of  KGF mRNA in the Uterus 

To examine the cellular localization of KGF transcript in the 
uterus, we performed in situ hybridization. During all hor- 
monal conditions, there was a distinct but essentially invari- 
ant, cytoplasmic signal for KGF mRNA in the smooth mus- 

Figure 3. (A) Northern blot of oviductal and endometrial total RNA 
hybridized with 32p-labeled antisense oligo-DNA. Tissues and 
hormonal conditions for each lane were as follows: Lane 1, oviduct, 

treated; lane 2, oviduct, ~ + P treated; and lane 3, en- 
dometrium, F_~ + P treated. 2.4 kb marks KGF transcript that was 
increased by P only in the endometrium, not in the oviduct. (B) 
Ethidium bromide-stained gel used to produce the blot shown in 
Fig. 3. Essentially equivalent amounts of RNA were loaded into 
each lane. 

cle cells within the myometrium (Fig. 5, A-C) and the walls 
of the spiral arteries (Fig. 5, D-F). Endometrial glandular 
epithelial cells (Fig. 5, G-K) and vascular endothelial cells 
(Fig. 5, D-F) were negative for KGF mRNA under all hor- 
monal conditions. Myometrial fibroblasts were also gener- 
ally negative for KGF mRNA under all hormonal conditions 
(Fig. 5, A-C). 

In animals that were spayed or E2 treated (or in the follic- 
ular phase), stromal cells were negative in all endometrial 
zones (Fig. 5, O and H) except for a few stromal cells closely 
associated with spiral arteries (Fig. 5, D and E). In P-treated 
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Figure 4. ELISA analysis of KGF protein in 
homogenates of rhesus monkey endometrium. 
Protein was extracted from the endometrium of 
animals subjected to different hormonal treat- 
ments, and serial dilutions of each sample were as- 
sayed along with dilutions of a recombinant human 
KGF standard as described in Materials and 
Methods. Each data point was the mean value of 
duplicate measurements. 

(or luteal phase) animals, the stromal cells in the functionalis 
zone appeared negative (Fig. 5 I); however, the stromal cells 
of the basaiis zone showed a definite cytoplasmic signal for 
KGF mRNA (Fig. 5 J). The cellular specificity of the posi- 
tive KGF mRNA signal was even more obvious when the sig- 
nal was enhanced by phase microscopy (Fig. 5 K). During 
P domination, the stromal cells in the perivascular regions 
around the spiral arteries also showed a small increase in the 
level of staining (Fig. 5 F). Sequence specificity was shown 
by the great reduction of signal intensity in competition con- 
trois (Fig. 5 L), excess stringency controls (Fig. 5 M), and 
GFAP probe controls (Fig. 5 N). Positive signals were also 
absent in RNase-pretreated controls (Fig. 5 O). Signals were 
also absent from the smooth muscle cells of the myometrium 
and the walls of the spiral arteries in all of the above control 
preparations (data not shown). 

The in situ hybridization signal was stronger in the smooth 
muscle cells of the myometrium and the spiral arteries than 
in the endometrial stromal cells, even though the signal in 
Northern blots was greater in the total RNA extracted from 
endometrium than myometrium. The reason for this dis- 
crepancy is not clear, but may be related to differences in 
probe penetrability between different cell types. 

P-dependent Glandular and Vascular Proliferation 

In E~-treated and follicular phase animals, there was a sub- 
stantial number of Ki-67-positive cells in the glands of the 
functionalis (Fig. 6 A) and only a minimal number in the 
glands of the basalis (Fig. 6 C). In contrast, in F_a + 

Table L KGF Concentration in Rhesus Monkey 
Endometrium 

KGF concentration 
Animal number Hormonal state (ng/mg tissue protein) 

11762 ~ + P 14 d 4.0 
14958 F~ + P 14 d 3.5 
11989 Fa + P 14 d 2.1 
14581 Luteal phase 1.1 
9360 Follicular phase 0.26 

11671* Follicular phase + F.a 0.12 

"Hormonal state" indicates phase of menstrual cycle or hormone treatment. 14 
d Ea + P, treated for 14 d with an E,2 implant and then for 14 d with implants 
of Fa and progesterone. * Rhesus 11671 (follicular phase + F-a) was an 
animal injected with 42 #g/kg F-a 28 h before surgery during late follicular 
phase of the menstrual cycle to produce highly elevated levels of ~ to mimic 
the natural preovulatory Fa surge• 

P-treated and luteal phase animals, glandular proliferation 
was not observed in the functionalis (Fig. 6 B), but was 
stimulated in the basalis (Fig. 6 D). In addition, the spiral 
arteries proliferated under P influence. During the follicular 
phase (Fig. 6 A), there were few Ki-67 cells in the walls of 
the spiral arteries, while in P-dominated animals (Fig. 6 B), 
there were numerous Ki-67-positive vascular smooth muscle 
cells, perivascular strornal cells, and endothelial cells in the 
spiral arteries. The P-dependent growth of the spiral arteries 
was also evident in GMA sections (Fig. 7, A and B). 

Discussion 

Three different phases of epithelial proliferation occur in the 
macaque endometrium during the menstrual cycle. The first 
is the repair phase, immediately after menstruation, when 
the ragged surface of the endometrium heals. This sur- 
face healing, highly analogous to reepithelialization during 
wound healing, is hormone independent (6). The second oc- 
curs during the follicular phase, in which the glandular epi- 
thelium in the functionalis, but not the basalis, proliferates. 
This proliferation is driven by Ea (27). Finally, during the 
luteal phase, the basalis glands and the spiral artery system 
proliferate in a P-dependent manner, while the glands of the 
functionalis cease proliferating. The P dependence of this 
burst of proliferation in the basalis of the macaque en- 
dometrium during the luW.al phase has been well docu- 
mented (2, 3, 33, 35). 

Our present findings revealed that KGF mRNA levels were 
dramatically elevated in the endometrium, specifically dur- 
ing the luteal phase in naturally cycling animals or after 
progesterone administration to estrogen-primed spayed ani- 
mals. This rise in KGF expression also was demonstrated by 
measurement of KGF-immunoreactive protein in tissue ex- 
tracts with a two-site ELISA. In situ hybridization showed 
that the P-dependent increase in KGF mRNA expression was 
strongest in the stromal cells located around and between the 
glands of the hasalis. This temporal and spatial correlation 
between KGF mRNA expression and epithelial proliferation 
in the basaiis implies a possible role for KGF on these 
specific cells as a ~progestomedin; a paracrine factor that 
mediates the actions of progesterone. 

Other potential targets of KGF action in the rhesus mon- 
key are the epithelial cells that form the surface plaque char- 
acteristic of this species (11) during either normal implanta- 
tion or trauma-induced decidualization (17). Ghosh et al. 
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Figure 6. Proliferating cells as indicated by Ki-67 staining. Micrographs on the left (A and C) are from an E2-treated animal, and on the 
right (B and D) are from an animal sampled on day 21 of the natural luteal phase (P dominated). Original matmification in A and B is 
400; bar, 10/an. Original ma~mification in C and D is 160; bar, 12.5/am. (,4) Functionalis, E2 treated. Ki-67 staining is evident in many 
slandular epithelial cells, but is absent from the walls of the adjacent artery. (B) Functionalis, P dominated. Ki-67 stainins is absent from 
the glandular epithelial cells, but is evident in many of the endothelial (arrows) and smooth muscle cells (arrowheads) of the spiral arteries. 
(C) Basalis, E2 treated. A region of the basalis near the myometrial (My) border, Ki-67 staining is evident in some stromal cells but is 
minimal in the glaudular epithelium. (D) Basalis, P dominated. A region of the hasalis near the myometrial border. Ki-67 staining is now 
greatly increased in the glandular epithelium and minimal in the stroma. 

Figure 5. In situ hybridization of KGF mRNA with dig-labeled eDNA. In the upper three rows of this figure (includes A-/), the micrographs 
in the left column are from spayed (untreated) animals, those in the center column are from Fa-treated animals, and those in the right 
colunm are from P-treated animals. In the last two rows (includes J-O), all the micrographs are from P-treated animals. All original 
magnifications were x400. The bar in O represents 10 ttm. (A) Myometrium, spayed. A distinct signal for KGF mRNA is evident in the 
cytoplasm of the smooth muscle cells of the muscle bundles. The fibroblasts (Fi) in the connective tissue separating the muscle bundles 
are negative. (B) Myometrium, Fa treated. The KGF mRNA sjotmal is essentially identical to that in the spayed animals, (C) Myome- 
trium, P treated. The KGF mRNA signal is essentially identical to that in the E2-treat~ and spayed animals. (D) Artery, spayed. A dis- 
tinct signal is evident in the cytoplasm of the smooth muscle cells that constitute the tunica media of the artery (At). Stromal (St) cells 
lack any significant signal. (E) Artery, E2 treated. The signal evident in the cytoplasm of the smooth muscle cells of the artery wall is 
about the same strength as in the spayed animals. A few perivascular stromal cells (arrowheads) show a distinct siotmal. (F) Artery, P treated. 
The signal in the cytoplasm of the smooth muscle cells of the artery wall is about the same as in the E2-treated animals. Some perivascular 
stromal cells show an increased signal. (G) Functionalis, spayed. The glands (G/) and the periglandular stromal regions are negative for 
KGF mRNA. (H) Functionafis, E2 treated. The glands and the periglandular stroma are negative as in the spayed animals. (I) Function- 
alis, P treated. The glands and the peri~Jandular stroma are negative as in the E2-treated animals. (J) Basalls, P treated. The glands are 
negative, but the stroma shows a substantially increased, distinct signal for KGF mRNA. (K) Basalis, P treated. This is a phase micrograph 
of the identical section as in J. The signal in the stroma is enhanced, while the glands remain negative. (L) Basalis, P treated, competition 
control. Competition with e0~cess unlabeled probe greatly suppresses the stromal signal. (M) Basalis, P treated. Excess stringency control. 
Washing at excessively high stringency removes the signal from the stromal cells. (N) Basalis, P treated. GFAP probe control. Hybridization 
with GFAP eDNA probe produces no signal in stromal cells. (O) Basalis, P treated. RNase pretreated control. Treatment with RNase 
before hybridization with the KGF eDNA probe eliminates the signal in the stromal cells. 
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Figure 7. GMA sections to illustrate histology of spiral arteries. A, E2-treated; B, P-treated. xl00; bar, 20/~m. (A) Functionalis, E2 
treated. The perimeter of a spiral artery in a GMA section is indicated with a dashed line. (B) Functionalis, P treated. The dramatic increase 
in the spiral arteries under P influence is indicated by the increase in the perimeter outlined by the dashed line. 

(16) recently showed that this response was P dependent, 
since RU 486 could significantly inhibit plaque formation 
during experimental decidualization. Because the fetal tro- 
phoblast and the epithelial cells in zones I and II that form 
the plaque lack progesterone receptors (7, 22, 34), it is likely 
that only those cells that retain their progesterone receptors 
during the luteal phase, such as stromal cells, spiral artery 
wall cells, and glandular basalis cells (7, 22, 34), could play 
a role in plaque formation. Of note, in situ hybridization also 
localized KGF transcripts to the smooth muscle cells of the 
spiral arteries. These vessels terminate in a rich vascular bed 
near the surface of the endometrium where the epithelial 
plaque forms. Consequently, this region might contain KGF 
released from the spiral vasculature that could promote epi- 
thelial proliferation. In addition, KGF produced by cells in 
and around the spiral arteries could directly enhance the 
proliferation and/or migration of the embryonic trophoblast, 
which invades and canalizes the spiral arteries during the 
early stages of implantation (12). 

Endothelial cells and smooth muscle cells in spiral arter- 
ies, as well as some perivascular stromal cells, proliferate 
during P domination, as indicated by positive staining with 
the Ki-67 antibody. KGF does not act as a mitogen in vitro 
for endothelial cells, fibroblasts, or vascular smooth muscle 
cells isolated from other tissues (reference 38 and unpub- 
lished observations). Thus, KGF expression in the spiral ar- 
teries probably does not have a direct impact on the growth 
of these vessels, unless the components of these unique arter- 
ies possess a distinctive responsiveness to KGF. 

In primates and many other mammals, oviductal prolifera- 
tion is E2-dependent and occurs only during the follicular 
phase or during E2 treatment of spayed animals (6). P an- 
tagonizes this effect of E2 (6). Consequently, the lack of 
P-dependent KGF mRNA in this organ is physiologically 
consistent with the absence of P effects on growth in this tis- 
sue. P may only upregulate KGF expression in tissues where 
P stimulates the proliferation and perhaps differentiation of 
epithelial cells (8). 

Members of the IGF system may interact with and comple- 
ment the actions of KGF during P domination in the primate 
endometrium. Together, KGF and IGF-I (or insulin at phar- 

macologic doses) stimulated proliferation of BALB/MK 
mouse epidermal keratinocytes in a chemically defined 
medium more effectively than KGF alone (38). P has been 
shown to increase the levels of several IGF-binding proteins 
(19), and IGF-II mRNA was detected in secretory phase hu- 
man endometrium (18). Thus, during P domination, in- 
creased levels of IGF-binding proteins, IGF-H, and KGF 
may act in concert, together with other growth factors, to 
mediate P action in the primate endomeUium. 

A high affinity KGF receptor (KGFR) has been identified 
as an alternatively spliced variant of FGFR-2 (oek) with exon 
IIIb in place o f m a  (4, 28, 29). A recent report indicates that 
KGF and KGFR mRNA are both present in the human en- 
dometrium (36). We also have evidence that the KGFR is ex- 
pressed in the rhesus monkey endometrium (unpublished ob- 
servations). Studies on the hormonal control, regulation, 
and cellular localization of the KGFR are currently under- 
way to directly identify those cells in the uterus that are capa- 
ble of responding to this newly identified progestomedin. 
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