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Abstract. In rodents, the intestinal tract progressively 
acquires a functional regionalization during postnatal 
development. Using lactase-phlorizin hydrolase as a 
marker, we have analyzed in a xenograft model the 
ontogenic potencies of fetal rat intestinal segments 
taken prior to endoderm cytodifferentiation. Segments 
from the presumptive proximal jejunum and distal il- 
eum grafted in nude mice developed correct spatial 
and temporal patterns of lactase protein and mRNA 
expression, which reproduced the normal pre- and 
post-weaning conditions. Segments from the fetal co- 
lon showed a faint lactase immunostaining 8-10 d af- 
ter transplantation in chick embryos but not in mice; 
it is consistent with the transient expression of this en- 
zyme in the colon of rat neonates. 

Heterotopic cross-associations comprising endoderm 
and mesenchyme from the presumptive proximal jeju- 
num and distal ileum developed as xenografts in nude 
mice, and they exhibited lactase mRNA and protein 
expression patterns that were typical of the origin of 
the endodermal moiety. Endoderm from the distal il- 
eum also expressed a normal lactase pattern when it 
was associated to fetal skin fibroblasts, while the 
fibroblasts differentiated into muscle layers containing 

c~-smooth-muscle actin. Noteworthy, associations com- 
prising colon endoderm and small intestinal mesen- 
chyme showed a typical small intestinal morphology 
and expressed the digestive enzyme sucrase-isomaltase 
normally absent in the colon. However, in heterolo- 
gous associations comprising lung or stomach endo- 
derm and small intestinal mesenchyme, the epithelial 
compartment expressed markers in accordance to their 
tissue of origin but neither intestinal lactase nor su- 
crase-isomaltase. A thick intestinal muscle coat in 
which cells expressed c~-smooth-muscle actin sur- 
rounded the grafts. 

The results demonstrate that: (a) the temporal and 
positional information needed for intestinal ontogeny 
up to the post-weaning stage results from an intrinsic 
program that is fixed in mammalian fetuses prior to 
endoderm cytoditferentiation; (b) this temporal and 
positional information is primarily carried by the en- 
dodermal moiety which is also able to change the fate 
of heterologous mesodermal cells to form intestinal 
mesenchyme; and (c) the small intestinal mesenchyme 
in turn may deliver instructive information as shown 
in association with colonic endoderm; yet this effect is 
not obvious with nonintestinal endoderms. 

URING organogenesis, the alimentary tract develops 
as a closed tube comprising the pseudostratified 
endoderm surrounded by a coat of mesodermal 

cells. Concomitantly, the consecutive regions along the an- 
tero-posterior (A-P) 1 axis acquire positional information 
defining the presumptive esophagus, stomach, small intes- 
tine, and the colon; lateral buds form the lung, liver, pan- 
creas, and the gallbladder. In the intestine, organogenesis is 
achieved with the progressive re-organization of the endo- 
derm into a monolayered epithelium that lines basal crypts 
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in which cells proliferate, and villi where the cytodifferentia- 
tion occurs. From this stage onwards, the epithelium is con- 
tinuously renewed from the crypt stem cells. This process in- 
cludes the emergence of cell diversity within the epithelium 
(the appearance of the absorptive, enteroendocrine, goblet, 
and the Paneth ceils), and the proper differentiation of these 
cell types based on the selective expression of their respec- 
tive differentiation markers (Dau~a et al., 1990; Kedinger, 
1994). It has been demonstrated for the last years that cell 
differentiation of the intestinal epithelium is tightly depen- 
dent on the establishment of functional interactions with the 
adjacent mesenchyme (for reviews see Haffen et al., 1989; 
Simon-Assmann and Kedinger, 1993). For instance, the 
effect of glucocorticoids on the expression of digestive en- 
zymes is thought to be mediated by the mesenchyme 
(Kedinger et al., 1989). Moreover, changing the secretory 
pattern of laminin by the mesenchyme in an in vitro cell co- 
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culture system caused respectively a precocious induction 
and an alteration in the expression of differentiation markers 
at the apical side of the epithelium (Simo et al., 1992). 

Rodents represent an attractive model for studying intesti- 
nal ontogeny because their intestine is "immature" at birth, 
and is subsequently subjected to functional re-differentiation 
at weaning (Henning et ai., 1987; Dau~a et al., 1990). In- 
deed, in suckling animals the small intestine expresses 
throughout its length the enzymes required for milk diges- 
tion (i.e., Lactase-Phlorizin Hydrolase, LPH; EC 3.2.1.23- 
62), whereas those needed for the assimilation of the solid 
food of adults appear or rise at weaning (i.e., Sucrase- 
Isomaltase, SI, EC 3.2.1.10-48). Noteworthy, at this stage 
the functional regionalization downwards the A-P axis of the 
small intestine becomes obvious (Tsuboi and Castillo, 1989). 
The rat colon also shows re-differentiation during postnatal 
development. It shares structure and functions with the small 
intestine in neonates, whereas the mucosa flattens a couple 
of days after birth and stops expressing digestive enzymes 
such as LPH (Helander, 1973; Foltzer-Jourdainne et al., 
1989; Freund et al., 1990). 

It has been assumed from the expression pattern of several 
digestive enzyme activities in isografts of fetal intestinal im- 
plants, that the timing of intestinal development is primarily 
directed by an autonomous program (Ferguson et al., 1973; 
Kendall et al., 1979; Montgomery et al., 1981), Yet, modu- 
lation of this program may occur by extrinsic factors such as 
hormones and nutrients (Kendall et al., 1977; Kedinger et 
al., 1983; Yeh and Holt, 1986; Henning, 1987; Duluc et al., 
1992). Using markers whose patterns are fixed transcrip- 
tionally at the onset of expression during endodermal 
cytodifferentiation in fetuses (Sweester et al., 1988; Cohn et 
al., 1992), Rubin et al. (1992) have shown that the functional 
differences acquired at birth along the A-P axis of the intes- 
tine also depend on this autonomous ontogenic program. 

In the studies conducted up to now to address the autono- 
mous timing of intestinal development, fetal explants were 
taken after the onset of endodermal cytodifferentiation, at 
days 1%20 of gestation (Ferguson et al., 1973; Kendall et 
al., 1977; Montgomery et al., 1981). In addition, these stud- 
ies did not approach the establishment of the functional re- 
gionalization that progressively emerges during postnatal 
development, in particular at weaning. Furthermore, it has 
not been investigated in mammals whether the temporal and 
positional information needed for intestinal ontogeny is dic- 
tated by the endoderm and/or by the mesenchyme (Rubin et 
al., 1992; Gordon, 1993). Therefore, the aim of the present 
work was to analyze: (a) the autonomous developmental 
potencies of the small intestine and of the colon taken from 
14-d-old rat fetuses, when the endoderm is still undifferen- 
tiated; (b) the ability of the fetal transplants to follow a cor- 
rect spatial and temporal development corresponding to both 
pre- and post-weaning conditions; and (c) the respective in- 
volvement of the endoderm and of the mesenchyme in the de- 
termination of the temporal and positional information. Be- 
cause intestinal explants rapidly degenerate in vitro, we have 
taken advantage of the model of xenograft of fetal intestinal 
segments in nude mice, which allows developmental analysis 
for up to 6-8-wk after implantation and may thus go beyond 
the normal weaning period (Winter et al., 1991). In addition, 
xenografts were combined with the model of tissular associa- 
tion of heterologous endoderm and mesoderm to define the 

specific role of these embryonic anlagen in the determination 
of the temporal and positional information. This study was 
mainly addressed with respect to LPH because this enzyme 
is an interesting marker of the temporal and spatial develop- 
ment of the intestine, whose expression undergoes differen- 
tial regulations at the transcriptional, posttranscriptional, 
and posttranslational levels (Duluc et al., 1993). In rats, the 
onset of expression of small intestinal LPH mRNA and en- 
zyme occurs concomitantly with the cytodifferentiation of 
the fetal endoderm between days 1%20 of gestation (Rings 
et al., 1992). A maximum is reached during the perinatal 
period. Subsequently, the tenfold decline of enzyme activity 
occurring progressively in suckling animals and at weaning 
operates despite the maintenance of a high level of mRNA 
(Freund et al., 1989). In addition, the longitudinal distribu- 
tion of this transcript is modified at weaning in that the LPH 
mRNA selectively disappears in the distal ileum but remains 
abundant in the jejunum and in the proximal ileum through- 
out adulthood (Freund et al., 1991a). In the colon, transient 
lactase gene and enzyme expression is temporarily restricted 
to the few days following birth, when the colonic mucosa ex- 
hibits villi structures (Foltzer-Jourdairme et al., 1989; 
Freund et al., 1990). 

Materials and Methods 

Animals 
Wistar rat fetuses were delivered by Caesarean section at day 14 of gestation 
(the existence of a vaginal plug was designated as day 0). Swiss athymic 
nude mice (nu/nu) (Iffa Credo, France), adult Wistar rats from our own 
breed, and chick embryos were used as hosts for the grafts. 

Tissular Association and Grafting Experiments 
The intestine of 14-d-old rat fetuses comprising the presumptive small intes- 
tine and the colon was removed under the dissecting microscope. The small 
intestine was divided in four segments of identical length. The first and 
fourth segments designated respectively as the proximal jejunum (PJ) and 
distal ileum (DI), as well as the proximal half of the colon (PC) were grafted 
under the dorsal skin of nude mice. Alternatively, the fetal endoderm was 
separated from the mesenchyme by incubation in a 0.03 % coUagenase solu- 
tion (Boehrioger, Mannheim, Germany) for 1 h at 37°C followed by me- 
chanical dissociation (Gumpel-Pinot et al., 1978). The purity of the dis- 
sociated endoderm and mesoderm has been checked morphologically. 
Enduderm and mesenchyme originating from distinct regions along the in- 
testinal tract were re-associated as described by Kedinger et al. (1981). The 
resulting associations were allowed to assemble overnight on a gelified cul- 
ture medium containing 2 g/1 bactoagar (Difco, Detroit, Mr) in MEM/Ham- 
FI2 (GIBCO BRL, Cergy-Fontoise, France) supplemented with 10% fetal 
calf serum (GIBCO BRL) and 10 % chick embryo extract (Wolff and Haffen, 
1952). The chick embryo extract was prepared by mechanical homogeniza- 
tion of 9-10~d-old embryos and clarified by centrif~gation. The tissular as- 
sociations were then grafted under the skin of nude mice. For some experi- 
ments, the endoderm of the presumptive DI was associated to skin 
fibroblasts prepared from 19-d-old rat fetuses as described by Kedinger et 
al. (1990). The presumptive stomach and lung were also taken from rat fe- 
tuses at day 14, the enduderm was isolated as for the small intestine, and 
the fundic or lung enduderm was associated with intestinal mesenchyme and 
grafted under the skin of nude mice. Occasionally, grafting was performed 
into the coelomic cavity of 3-d-old chick embryos above the omphalo-mes- 
enteric vessels or under the kidney capsule of adult rats. Unless otherwise 
stated, the grafts were recovered two and four weeks after transplantation 
for individual analysis. 

mRNA Accumulation Analysis 
Cytoplasmic RNA was extracted from the grafts (0.01 to 0.07 g of tissue) 
according to the method described by Aulfray and Rougeon (1980). RNA 
was separated by electrophoresis on 1% agarose, 17% formaldehyde gels, 
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transferred to nitro-cellulose filters, and hybridized simultaneously to p32_ 
labeled eDNA probes for LPH (Duluc et al., 1991) and/5-actin under stan- 
dard conditions in 50% formamid, 5x SSC (Ix SSC is 0.15 mM sodium 
chloride, 0.015 mM sodium citrate), 0.1% sodium dodecyl sulfate, 0.02% 
polyvinylpyrolidone, 0.02 % ficoll, and 10 % dextran sulfate for 16 h at 42°C 
(Freund et al., 1990, 1991a). The filters were washed twice for 15 rain at 
room temperature in 2x SSC, 0.1% sodium dodecyl sulfate and twice for 
15 min in 0.2x SSC, 0.1% sodium dodecyl sulfate at 60"C. The radioactiv- 
ity retained on the filters was revealed by autoradiography. 

Immunohistochemical Detection 
of  Differentiation Markers 

Grafted specimens were embedded in Tissue-Tek II (Miles Inc., Elkhart, 
IN) and immediately frozen in liquid freon placed in a nitrogen bath. The 
sections (5/~m) were cut with a Sloe cryostat and transferred to glass slides 
coated with 1% gelatine and 2% paraformaldehyde. The presence of 
specific proteins was analyzed by indirect immunofluoreseent staining. 
Cryosecti0ns were incubated 2 h at room temperature with mouse monocio- 
nal antibodies against rat lactase (Quaroni and Isselbacher, 1985) and su- 
erase (Hauri et al., 1980) at a 1:75 dilution in PBS, or with mouse 
monoclonals against the amino terminal decapeptide of s-smooth-muscle- 
aetin (Sigma Chemical Co., St Louis, MO; dilution 1:400). Other sections 
were incubated with a 1:200 dilution of rabbit polyclonal antiserum directed 
against rat pulmonary surfactant apoprotein A (Sakai et al., 1992) or with 
a 1:100 dilution of rabbit polyclonal antiserum raised against the murine 
gastric pS2 protein (a generous gift from Dr. M-C. Rio, INSERM U184, 
Strasbourg, France). The anti-pS2 antiserum erdights the supranucloer 
cytoplasm of the gastric mouse and rat surface and glandular mueons ceils, 
which is in accordance with the results obtained by in situ hybridization 
(Lefebvre et al., 1993). The slides were rinsed three times with PBS and 
then incubated for 2 h with sheep anti-monse-immtmoglobulin or goat 
anti-rabbit-immunoglobulin antibodies diluted to 1:200 and labeled with 
fluorescoin isothiocyanate (Institut Pasteur, Paris, France; Nordic Labora- 
tories, Turnhout, Belgium). Primary antibodies were omitted for the con- 

trois. The slides were mounted in glycerol/PBS/phenylanediamine and ob- 
served with an Axiophot Microscope (Zeiss). 

Results 

Autonomous Development of  the Fetal Rat Small 
Intestine Grafted in Nude Mice 

Small intestinal segments originating from the presumptive 
PJ and DI were dissected out from 14-d-old rat fetuses, im- 
planted under the dorsal skin of nude mice and harvested for 
analyses 2 or  4 wk after transplantation. 20/21 jejunal  and 
20/21 ileal implants developed into rounded vascularized 
segments showing the expected intestinal morphology with 
a central lumen, well organized villi  and crypts, and typical 
muscular  layers. When possible, RNA analysis and immuno- 
histochemistry were performed on the same specimen. 2 wk 
after implantation, the segments originating from the pre- 
sumptive PJ and DI exhibited a high amount of LPH mRNA 
and intense immunofluorescent staining of  the villi  borders 
with the monoclonal ant i-LPH antibodies; nascent crypts 
were devoid of  labeling (Fig. 1). When the grafting per iod 
was prolonged for two additional weeks, samples deriving 
from the presumptive PJ still contained abundant LPH 
mRNA although the immunofluorescent staining of  lactase 
protein was less intense. However, in the grafted specimens 
originating from the presumptive DI, the LPH mRNA and 
the enzyme were absent. The functional development of  the 
epithelium in the transplants of  the PJ and DI was assessed 

Figure 1. LPH mRNA and 
protein expression in xeno- 
grafts of the presumptive PJ 
and the DI of fetal rats im- 
planted in nude mice. LPH 
and/3-actin mRNA accumula- 
tion (A), and immunofluores- 
cent staining of the lactase 
protein (B) in intestinal seg- 
ments originating from the 
presumptive PJ and DI of 14- 
d-old rat fetuses, transplanted 
for 2 wk (top) and 4 wk (bot- 
tom) under the skin of nude 
mice. 20 #g of cytoplasmic 
RNA were loaded in each lane 
and hybridized simultane- 
ously to the radiolabeled 
probes for LPH and/~-actin. 
c, crypt; v, villus. Bar, 50 gm. 
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Figure 2. SI protein expression in xenografts of the presumptive PJ 
and DI of fetal rats implanted in nude mice. Immunofluorescent 
staining of the SI protein in intestinal segments originating from the 
presumptive PJ and DI of 14 day-rat fetuses, transplanted for 2 wk 
(top) and 4 wk (bottom) under the skin of nude mice. c, crypt; v, 
villus. Bars, 50 ~m. 

using SI as marker because this protein is expressed over the 
whole length of the small intestine after weaning. In the 
grafting model in adult animals, precocious onset of SI ex- 
pression has been reported (Ferguson et al., 1973), most 
likely as a consequence of the high level of endogenous 
glucocorticoids present in the hosts (Kendall et al., 1977; 
Kedinger et al., 1983; Yeh and Holt, 1986). As shown in Fig. 
2, SI was already immunodeteeted in the 2-wk implants. Yet, 
at this stage all the enterocytes lining the villi were SI posi- 
tive in the PJ, whereas SI-expressing enteroeytes were 
confined to the villus base in the DI. This observation indi- 
cated that the onset of SI synthesis occurred according to an 
A-P progression. Indeed, in the DI implanted for 2 wk, un- 
like in the PJ, the resident SI nonexpressing enterocytes were 
not entirely replaced by the new population of cells syn- 
thetizing SI from the crypt mouth. 4 wk after transplanta- 
tion, the whole surface of the villi was immunostained with 
anti-SI antibodies in the samples coming from the PJ and 
from the DI. As for LPH, the crypts were devoid of SI im- 
munofluorescent labeling. 

Altogether, these data provide evidence that small intesti- 
nal segments taken from rat fetuses prior to endodermal 
cytodifferentiation (and hence, prior to the onset of lactase 
expression) develop in a xenograft model and exhibit typical 
patterns of LPH mRNA and protein expression regarding to 
the position of the segments along the A-P axis of the small 

intestine. Thus, the normal pre- and post-weaning conditions 
are reproduced despite the different hormonal status of the 
adult hosts compared with sucklings, and despite the absence 
of exogenous nutrients in the lumen of the transplants. In the 
glucocorticoid-rich environment of the adult host, the onset 
of expression of SI soon after transplantation mimics the pre- 
cocious appearance of this enzyme, which occurs in suckling 
rats treated with glucocorticoids. 

Autonomous Development of the Fetal Rat Colon 
Grafted in Nude Mice and in Chick Embryos 

In the rat colon, a transient expression of lactase is obvious 
during the perinatal period when the mucosa exhibits a small 
intestinal-like structure. The question arose whether this 
transient phase results from an intrinsic developmental pro- 
gram or from a hormonal stimulation linked to birth. To try 
to answer this question, the presumptive PC was taken from 
14-d-old rat fetuses and implanted for 6, 8, 10, and 12 d un- 
der the skin of nude mice. 17 of 23 of the implants developed. 
However none of them exhibited detectable levels of lactase. 
A faint and focal immunostaining with the anti-SI antibodies 
was observed at the apex of restricted groups of epithelial 
cells in two samples (not shown). When the grafting period 
was prolonged for 3 and 4 wk, LPH and SI could not be de- 
tected at the surface of the epithelium (see for instance Fig. 
7 d). 

In rats, the transient expression of lactase in the neonatal 
colon is inhibited by exogenous administration of hormones 
and growth factors (Foltzer-Jourdainne et al., 1989; Freund 
et al., 1990). To test whether the hormonal environment of 
the adult host may have prevented LPH expression in the im- 
planted colon, the PC of fetal rats was grafted in the coe- 
lomic cavity of 3-d-old chick embryos. 11 out of 15 of the 
implants developed. No trace of lactase was found by im- 
munohistocheimstry for up to 8-d after implantation (Fig. 3 
a). In three out of the four specimens grafted for 8 and 10 d, 
a faint and fuzzy LPH immunofluorescent staining was ob- 
served in the epithelium (Fig. 3 b). This signal was less po- 
larized at the cellular apex of the grafts than in situ in the 
neonatal colon. 

These results indicate that the fetal colon exhibits the tran- 
sient postnatal small intestinal-like phase in the xenograft 
model in chick embryos, which suggests the autonomous na- 
ture of this process. Yet, the hormonal status of the host may 
interfere with this intrinsic program, as shown by the experi- 
ments performed in nude mice. 

Prominent Role of the Endoderm in the Development 
of SmaU Intestinal Functions 
Since the emergence of the regional specialization occurring 
in sire along the small intestine at weaning is reproduced in 
the xenograft model in nude mice, we have conducted ex- 
periments to investigate if the endoderm and/or the mesen- 
chyme holds the positional information. For this purpose, in- 
testinal segments from the presumptive PJ and DI of 14-d-old 
rat fetuses were dissected out, and the endoderm was dis- 
sociated from the mesenchyme. Jejunal endoderm was as- 
sociated to ileal mesenchyme (ePJ/mDI) and ileal endoderm 
was associated to jejunal mesenchyme (eDI/mPJ). Both 
types of tissular association were grafted under the skin of 
nude mice. Absence of cross-contamination of epithelial 
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Figure 3. LPH protein expression in xenografts of the presumptive 
proximal colon (PC) of fetal rats implanted in chick embryos. Im- 
munofluorescent detection of the LPH protein in intestinal seg- 
ments originating from the presumptive PC of 14 day-rat fetuses im- 
planted for 6 days (a) and 10 days (b) into the coelomic cavity of 
chick embryos. Bars correspond to 100 ttm for (a) and 50/~m 
for (b). 

Figure 4. Morphological aspect of the PJ of 14-d-old rat fetuses (a), 
of the dissociated endoderm (b), and ofePJ/mDI associations devel- 
oped for 2 wk in nude mice (c). PAS-Schiff staining has been per- 
formed on 5-t~m sections. In b, note the absence of cellular cross- 
contamination of the endoderm by mesodermal cells. In c, the 
ePJ/mDI association developed typical small intestinal structures 
with villi (v) and crypts (c) lined by a single epithelium (e) com- 
posed of absorbtive cells and goblet cells. A thick muscle coat (m) 
is surrounding the mucosa. Bar, 50 ttm. 

cells in the mesodermal source has already been assessed 
(Kedinger et al., 1986). Histological examination further 
established the absence of mesodermal cellular cross-con- 
tamination in the dissociated endoderm (Fig. 4, a and b). 

11 out of 18 ePJ/mDI implants and 16 out of 18 eDI/mPJ 
implants developed as rounded segments displaying a small 
intestinal structure with villi and crypts (Fig. 4 c). The tissu- 
lar associations were analyzed for LPH expression 2 and 4 
wk after implantation. As illustrated in Fig. 5, the LPH 
mRNA and the brush border membrane laetase were abun- 
dant in the ePJ/mDI and in the eDI/mPJ associations 2 wk 
after implantation. The situation was different 4 wk after im- 
plantation. Indeed, the transcript remained at a high level in 
the ePJ/mDI associations despite the decline of enzyme im- 
munolabeling. However, in the eDI/mPJ associations grafted 
for 4 wk, the LPH mRNA and the protein could no longer 
be detected. As in the case of intact fetal intestinal segments, 
SI expression was obvious in both types of tissular associa- 
tion 2 and 4 wk after implantation (not illustrated). These 
results show that heterotopic associations between endoder- 
real and mesenchymal anlagen originating from distinct 
regions along the fetal small intestine develop and express 
LPH mRNA and protein patterns that are typical of the re- 
gional origin of the endodermal moiety. 

To get further insight into the autonomous potential of the 
endoderm in determining the temporal and positional infor- 
marion, endoderm from the presumptive DI of 14-d-old rat 
fetuses was separated from the mesenchyme, associated to 
nonintestinal mesodermal cells, i.e., skin fibroblasts pre- 
pared from 19-d-old rat fetuses, and grafted under the skin 
of nude mice. Only 2 out of 11 of these associations devel- 
oped with a very slow growing rate. Due to the difficulties 
encountered in these experiments to obtain a consistent de- 
velopment of the grafts under the skin of nude mice, associa- 
tions comprising fetal skin fibroblasts and DI endoderm 
were implanted under the kidney capsule of isogenic rats. 
However the results were not markedly improved as only 3 
implants out of 11 did develop under this condition. Because 
of the very small size of the 5 heterologous associations that 
developed under the skin of nude mice or under the kidney 
capsule of isogenlc rats, the samples were exclusively ana- 
lyzed by immunohistochemistry, 4--8 wk after implantation. 
They exhibited a monolayered epithelium with villi and 
crypt, while muscle cell layers expressing o~-smooth-muscle 
actin had differentiated from the fibroblasts. SI expression 
was obvious in all cases (Fig. 6, b and d). However, in two 
samples, LPH-immunostaining appeared at the border of the 
villi (Fig. 6 a), whereas the staining was absent in the 3 other 
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Figure 5. LPH mRNA and 
protein expression in epithe- 
lial-mesenchymal cross-asso- 
ciations of the presumptive PJ 
and DI of fetal rats implanted 
in nude mice. LPH and ~-actin 
mRNA accumulation (A), and 
immunofluorescent staining 
of the lactase protein (B) in 
associations comprising the 
PJ endoderm and the DI mes- 
enchyme (ePJ/mDl) or the DI 
endoderm and the PJ mesen- 
chyme (eDI/mPJ) of 14-d-old 
rat fetuses. The associations 
were implanted for 2 wk (top) 
and 4 wk (bottom) under the 
skin of nude mice. 20 #g of 
cytoplasmic RNA were loaded 
in each lane and hybridized si- 
multaneously to the radiola- 
beled probes for LPH and 
~-actin. Bar, 50 #m. 

specimens (Fig. 6 c). Taking into account the very slow 
growing rate of  the implants, the results concerning LPH in 
these heterologous DI endoderm/skin fibroblasts associa- 
tions may correspond to those obtained with native fetal DI 

grafted, respectively, for 2 and 4 wk under the skin of  nude 
mice. Thus, the data suggest that the DI endoderm is able 
to express nearly normal expression patterns of  LPH and SI 
when it lies in contact with heterologous nonintestinal 

Figure 6. LPH and SI protein expression in heterologous associations of skin fibmblasts and DI endoderm of fetal rats implanted in nude 
mice. Immunofluorescent staining oflactase (a and c) and sucrase (b and d) proteins in two distinct specimens (respectively, a and b, and 
c and d) of heterologous associations comprising skin fibroblasts and DI endoderm of 14-d-old rat fetuses grafted for 6-8 wk in nude 
mice. Bar, 50 #m. 

The Journal of Cell Biology, Volume 126, 1994 216 



mesenchyme. Yet optimal conditions for growth and devel- 
opment have not been found. 

Heterodifferentiation of  the Colonic Endoderm 
But  Not of  Nonintestinal Endoderms in Association 
with Small Intestinal Mesenchyme 

We have demonstrated above that the endoderm of 14-d-old 
rat fetuses is the primary holder of the positional information 
along the small intestine. Yet, an inductive role of the mesen- 
chyme may have been masked in these experiments, because 
of the prominent intrinsic potency of the endoderm moiety 
to follow its own program of development. Therefore, we 
have analyzed the fate of tissular associations comprising 
small intestinal mesenchyme and a heterologous endoderm 
either of intestinal origin, i.e. the colon, or of nonintestinal 
origin, i.e., the stomach and the lung. 

Endoderm isolated from the presumptive PC of 14-d-old 
rat fetuses was associated either to PJ mesenchyme (ePC/ 
mPJ) or to DI mesenchyme (ePC/mDI) and the resulting het- 
erotopic associations were grafted under the skin of nude 
mice. They were analyzed by immunohistochemistry for the 
presence of LPH and SI proteins 6, 8, 10, 13, 15, 21, 30 and 
60 days after implantation. 25 out of 30 of the ePC/mPJ as- 
sociations and 23 out of 30 of the ePC/mDI associations de- 
veloped. Noteworthy, they showed a typical small intestinal 
morphology with well differentiated villi and crypts, instead 
of the typical morphology of the adult colon characterized 
by the presence of a fiat mucosa and deep glands. Up to 15 d 
after implantation, neither LPH nor SI proteins could be 
detected immunohistochemicaUy in the monolayered epithe- 
lium (Fig. 7 a). However 5 out of 9 of the ePC/mPJ associa- 
tions grafted for 21, 30, and 60 d exhibited SI positive cells 
at their apical side. A similar observation was obvious in 9 
out of 10 ePC/mDI associations after the same periods of im- 

plantation (Fig. 7 b). Despite the emergence of SI in the as- 
sociations comprising colonic endoderm and small intestinal 
mesenchyme, LPH remained absent whatever the grafting 
period (Fig. 7 c). In control experiments, we found that in- 
tact fetal PC implanted for 3 and 4 wk under the skin of nude 
mice did not express SI, indicating that the appearence of this 
enzyme in colonic endoderm/small intestinal mesenchyme 
associations 3--4 wk after implantation did not result from 
the emergence of a small intestinal-like phenotype in the in- 
tact colon placed for long term in the xenograft condition 
(Fig. 7 d). 

The presumptive lung and fundic endoderms taken from 
14-d-old fetal rats were associated to the presumptive PJ 
mesenchyme and grafted under the skin of nude mice for 2 
and 4 wk. The results obtained were identical whatever the 
grafting period. 9 out of the 10 associations comprising lung 
endoderm and PJ mesenchyme (eL/mPJ) showed a mixed 
structure which exhibited lung and intestine features. A 
monolayered epithelium lined protruding structures that 
resembled intestinal villi (Fig. 8, a-c). Yet, the epithelium 
abundantly expressed the pulmonary surfactant apoprotein 
A (Fig. 8 a) but neither LPH nor SI (Fig. 8 b). A thick 
muscle coat, like in the intact intestine, surrounded the 
grafts, and showed immunofluorescent staining with anti-or- 
smooth-muscle actin antibodies (Fig. 8 c). 10 out of the 12 
associations comprising stomach endoderm and PJ mesen- 
chyme (eS/mPJ) developed and exhibited a glandular struc- 
ture characteristic of the gastric mucosa. The central lumen 
contained acidic secretions. The surface and glandular epi- 
thelium expressed the gastric pS2 protein but was devoid of 
LPH and SI, as shown by immunofluorescent staining with 
the respective antibodies (Fig. 8, d and e). A similar behavior 
was obtained when stomach endoderm was associated to 
mesenchyme originating from the presumptive DI (not 
shown). 

Figure 7. LPH and SI protein expression in heterologous associations of PC endoderm and DI mesenchyme of fetal rats implanted in nude 
mice. Immunofluorescent staining of sucrase (a and b) and lactase (c) proteins in heterologous associations comprising PC endoderm and 
DI mesenchyme of 14-d-old rat fetuses grafted for 2 wk (a) and 4 wk (b and c) in nude mice. The faint labeling found in a and c reveals 
a reaction of the lamina propria due to the presence of immunocompetent invading host ceils with the second labeled antibody, d shows 
the absence of specific immunofluorescent staining of SI in intact colonic segments from fetal rats transplanted for 4 wk under the skin 
of nude mice. Bar, 100 #m. 
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Figure 8. Expression of differentiation markers in heterologous associations of PJ mesenchyme and lung or stomach endoderm of fetal 
rats implanted in nude mice. Heterologous associations comprising lung endoderm and PJ mesenchyme (eL/mPJ; a-c) or fimdic endoderm 
and PI mesenchyme (eS/mPJ; d and e) were grafted for 4 wk in nude mice. Immunofluorescent staining was performed using primary 
antibodies against pulmonary surfactant apoprotein A (a), SI (b and e), .-smooth muscle actin (c) and pS2 (d). Bars: (a, d, and e) 50 
/~m; and (b and c) 100 ~m. 

Discussion 

In rodents, the functional regionalization along the A-P axis 
of the intestinal tract essentially occurs at two distinct de- 
velopmental stages: first, a proper identity progressively 
emerges in the small intestine and in the colon during endo- 
derm cytodifferentiation around the perinatal period; sec- 
ond, the functional regionalization of the small intestine 
characteristic of the adult condition becomes obvious at wean- 
ing. Combining the use of two markers showing specific spa- 
tial and temp al patterns of expression, i.e., LPH and SI, 
and the techn ues of xenografts, tissular dissociation, and 
heterologous sociation of fetal endodermal and mesoder- 
real anlagen,  present study provides new data concerning 
the intrinsic p cess that governs the temporal development 
of the intestin  tract and the emergence of functional differ- 
ences along i antero-posterior axis. (a) The onset of LPH 
expression du g the perinatal period along the intestine, as 
well as the m
occurring in n

the small intestine) are already determined in rat fetuses of 
14 d. Hence, the spatial and temporal information needed for 
intestinal ontogeny up to the adult stage is fixed in the intes- 
tine prior to endoderm cytoditferentiation, at a stage where 
the intestinal stem cells cannot be identified as such. (b) In 
the presumptive small intestine, this spatial and temporal in- 
formation is primarily held by the endoderm, which is addi- 
tionally capable of inducing changes of the normal fate of 
beterologous mesodermal cells to form intestinal-specific 
mesenchymal-derived concentric layers. (c) The fetal co- 
Ionic endoderm, but not the gastric or lung endoderms, 
shows heterodifferentiation toward a small intestinal pathway 
when it is associated with small intestinal mesenchyme. 

While the onset of LPH expression in the small intestine 
of rat fetuses is most likely related to the activation of the 
gene transcription (Rings et al., 1992), the enzyme and 
mRNA patterns along the jejunoileum during postnatal de- 
velopment are mainly under posttranscriptional control 
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odifications of the enzyme and mRNA patterns 
eonates (in the colon) and up to weaning (along 

(Duhc et al., 1993). The fact that fetal intestinal segments 
undergo correct development in the xenografi model sug- 
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gests that the ontogenetic autonomous program of the intes- 
tine includes regulatory paths acting at both transcriptional 
and posttranscriptional levels. Additionally, as these data 
show that the spatial and temporal pattern of LPH expression 
is primarily governed by the intrinsic program of develop- 
ment of the intestine, it implies that this pattern is essentially 
independent of the physiological status of the adult host. 
Hence, the regulatory effects exerted by thyroid hormones 
and by the dietary changes at weaning, respectively, on lac- 
tase enzyme activity and on the longitudinal distribution of 
the LPH mRNA (Paul and Flatz, 1983; Freund et al., 1991b; 
Duluc et al., 1992), should be considered as modulators of 
the intrinsic capacities of the intestinal cells. The situation 
is apparently different for SI, because this enzyme preco- 
ciously appears when fetal small intestinal segments are 
transplanted in the glucocorticoid-rich environment of the 
adult host. Yet, glucocorticoids which participate in vivo to 
the maturation process occuring at weaning (Kedinger et al., 
1983; Henning, 1987) may also be regarded as modulators 
of the intrinsic program of development, first because these 
hormones are not absolutely required for the emergence of 
SI at weaning (Martin and Henning, 1984), and second be- 
cause the ability to respond to the glucocorticoid stimula- 
tion, i.e., the presence of glucocorticoid receptors, is ac- 
quired by the intestine long before weaning, at the fetal stage 
(Kedinger et al., 1989). 

Our study brings information on the transient phase of the 
neonatal colon ontogeny where its mucosa shows a small 
intestinal-like structure concomitent to a transient expres- 
sion of LPH. The absence of lactase in colonic segments im- 
planted in the hormone-rich environment of adult mice is 
consistent with the fact that LPH expression is abolished in 
the colon of rat neonates by the administration of factors 
such as thyroid hormones, glucocorticoids, or epidermal 
growth factor (Foltzer-Jourdainne et al., 1989; Freund et al., 
1990). However, in an environment devoid of glucocorti- 
coids and thyroid hormones, i.e., the chick embryo, colon 
transplants are able to synthesize LPH. Thus, we conclude 
from the xenograft experiments in chick embryos that co- 
lonic development is governed by an autonomous on- 
togenetic program, and from the data obtained in nude mice 
that the transition from the small intestinal-like phenotype 
toward the typical colonic phenotype soon after birth is de- 
pendent in part on the hormonal environment. Lactase im- 
munofluorescent staining in the transplanted colon is fuzzy 
and not strictly restricted to the apical membrane of the epi- 
thelial cells. This may correspond to an intracellular ac- 
cumulation of the protein linked to a delayed processing of 
the lactase precursor. In rat neonates a delayed processing 
occurs in colonocytes compared with enterocytes (Bfiller et 
al., 1989; Freund et al., 1990). 

Epithelial-mesenchymal interactions play a crucial role 
during intestinal organogenesis and in the mature organ for 
the continuous renewal of the epithelium from crypt stem 
cells (Haffen et al., 1989; Yasugi, 1993). We have combined 
the models of xenograft and of heterologous endodermal- 
mesenchymal association to investigate the respective role of 
these tissue anlagen in the determination of the temporal and 
positional information fixed by the ontogenetic program in 
the fetal small intestine. Heterotopic associations between 
endoderm and mesenchyme from the presumptive proximal 
jejunum and distal ileum develop and express lactase protein 

and mRNA patterns according to the normal fate of the en- 
dodernud moiety. Similar results were obtained with hetero- 
topic associations comprising small intestinal endoderm and 
colonic mesenchyme (unpublished results). The data re- 
ported here from associations of Heal endoderm and fetal 
skin fibroblasts further emphasize the self-differentiation 
potencies of the small intestinal endoderm, as proper differ- 
entiation occurs even in the presence of nonintestinal meso- 
dermal derivatives. In addition, they show that the skin fibro- 
blasts associated to an intestinal endoderm differentiate into 
typical intestinal mesenchyme expressing smooth muscle 
ct-actin (Kedinger et al., 1990). 

A possible inductive influence of the intestinal mesen- 
chyme on the temporal and positional information held by 
the endoderm has been investigated using tissular associa- 
tions comprising presumptive jejunal or ileal mesenchyme 
and endodermal segments originating from an anterior re- 
gion (stomach, lung) or a posterior region (colon) to the 
small intestine. The results obtained with associations com- 
prising stomach or lung endoderms indicate that the en- 
dodermal and the mesodermal moieties develop according to 
their own fate. Thus, the endodermal-deriving epithelial 
cells respectively express gastric pS2 (Lefebvre et al., 1993) 
or pulmonary surfactant apoprotein A (Sakal et al., 1992) 
but neither intestinal LPH nor SI. In the associations with 
lung endoderm, morphogenesis, and cytodifferentiation are 
obviously dissociated since the overall morphology is of in- 
testinal type whereas the cytodifferentiation of the epithe- 
lium is typical of the lung. Such a phenomenon has already 
been described in the gastrointestinal tract as well as in other 
systems (Yasugi et al., 1985). It is concluded from these 
results that the small intestinal mesenchyme taken from 14- 
d-old rat fetuses is not able to change the fate of the heterolo- 
gous nonintestinal endoderm. The situation reported here in 
mammals differs from that described in birds as small intesti- 
nal mesenchyme of chick embryos is able to induce gizzard 
endoderm to switch its normal fate into an intestinal differ- 
entiation (Gumpel-Pinot et al., 1978; Haffen et al., 1982; 
Ishizuya-Oka and Mizuno, 1992). Two explanations can ac- 
count for the discrepancies observed between mammals and 
birds. On one hand, the mammalian small intestinal mesen- 
chyme at the stage preceding endodermal cytodifferentiation 
may not deliver any instructive information for the spatial 
and/or temporal development of the intestine. On the other 
hand, mammalian small intestinal mesenchyme, like in 
birds, may still exert an instructive influence, but the heterol- 
ogous lung or stomach endoderms are insensitive to this 
effect. We believe the former hypothesis unlikely because the 
small intestinal mesenchyme of rat fetuses is able to exert an 
instructive inhibitory effect on the differentiation of chicken 
proventricular endoderm (Yasugi et al., 1989). The segrega- 
tion of two endodermal cell lineages has been reported in 
chicken early during development in embryos having 15 to 
20 somites: the one, at the level of the presumptive small in- 
testine, invariably follows its own differentiation path ir- 
respective to the mesenchyme to which it is associated; the 
other one, originating from the presumptive esophagus or 
stomach, is sensitive to an induction by small intestinal 
mesenchyme (Yasugi et al., 1992). In mammals, the segrega- 
tion of endodermal cells early in development, and the con- 
sequence on their behavior, have not been investigated. 

Unlike lung or stomach, fetal colon endoderm taken at day 
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14 of gestation exhibits phenotypic heterodifferentiation to- 
ward a small intestinal pattern when it is associated with 
small intestinal mesenchyme. The mucosa organizes into 
well differentiated villi and crypts, and the epithelium abun- 
dantly expresses SI. One explanation for this could be that 
the intrinsic potencies of the colonic endoderm lead to the 
development of a small intestinal phenotype, and that the co- 
lon mesenchyme exerts an instructive inhibitory effect on 
this endoderm leading the latter to express the typical co- 
Ionic phenotype after the neonatal stage. Yet, we believe this 
unlikely because colonic mesenchyme is not able to change 
the fate of jejunal or ileal endoderms (unpublished results). 
Alternatively, the heterodifferentiation of the colon endo- 
derm associated with small intestinal mesenchyme suggests 
that this mesenchyme is able to exert an instructive action 
on a heterotopic intestinal endoderm, i.e., the colon endo- 
derm. Noteworthy, appearance of SI in these associations is 
delayed as compared to the expression of this enzyme in the 
small intestinal endoderm under the same grafting condi- 
tion. This indicates that the inductive effect may result from 
a cascade of complex instructive actions and appropriate re- 
sponses between the mesenchymal and endodermal moie- 
ties. SI expression in the colonic endoderm associated with 
small intestinal mesenchyme has been reported in some 
specimens grafted for 10 d in chick embryos and then in- 
cubated in vitro in the presence of dexamethasone (Foltzer- 
Jourdairme et al., 1989). These experiments suggest that one 
element of these interactions may involve glucocorticoids, 
possibly through the responsive small intestinal mesen- 
chyme (Kedinger et al., 1989). Lastly, since the normal co- 
Ionic mucosa transiently exhibits a small intestinal-like 
phenotype in rat neonates, the nature of the instructive action 
exerted by the small intestinal mesenchyme depends on the 
properties of the stem ceils. Indeed, one can conceive two 
hypotheses: either the colon epithelium contains a single 
population of stem ceils being responsible for the emergence 
of the small intestinal-like phenotype in newborns and later 
for the transition toward the typical colonic phenotype. In 
this case, the instructive action of the heterologous mesen- 
chyme would consist of blocking the transition step. Alterna- 
tively, the colonic epithelium may be endowed with two sets 
of stem cells of small intestinal type and colonic type, 
respectively. In this case, the small intestinal mesenchyme 
would exert a dominant selection of the small intestinal type 
colonic stem ceils. The data reported in this study may be 
extended to the human colon which also transiently exhibits 
a small intestinal-like phenotype in fetuses (Lacroix et al., 
1984). Furthermore, small intestinal enzymes are expressed 
in colon cancers (Zweibaum et al., 1984). These findings 
emphasize the potential role of alterations of the epithelial- 
mesenchymal interactions in the emergence and develop- 
ment of human colon cancers. 

In conclusion this study provides evidence that the tem- 
poral and positional information required to define the 
functional properties of each region of the intestinal tract 
throughout postnatal development is fixed in the presumptive 
intestine prior to endoderm cytodifferentiation. This intrin- 
sic information is primarily carried by the endoderm which 
is also able to change the fate of heterologous mesodermal 
cells toward a typical intestinal mesenchyme. In turn, the 
small intestinal mesenchyme may exert an instructive effect 
as it causes heterodifferentiation of the colonic endoderm. 
This study does not identify the earliest stage at which 

temporal and positional information is acquired by the endo- 
derm. It also remains uncertain whether this early acquisi- 
tion is intrinsic into the endoderm or mediated by interac- 
tions with the mesoderm. In chicken, initial information has 
been suggested to come from the endoderm, not from the 
mesoderm (Le Douarin and Bussonnet, 1966). Homeogenes 
expressed in a region-specific manner in the intestinal endo- 
derm (Duprey et al., 1988; James and Kazenwadel, 1991; 
Freund et al., 1992) and mesoderm (Izpisua-Belmonte et al., 
1991) are molecular candidates for the determination of the 
temporal and positional information, possibly via interac- 
tions with growth factors (Ruiz i Altaba and Melton, 1989). 
For instance, overexpression of Hox-l.4 causes abnormal 
development of the colon (Wolgemuth, 1989). Adhesion 
molecules (Probstmeier et al., 1990), extracellular matrix 
proteins (Simon-Assmann and Kedinger, 1993) and oncopro- 
teins (Nsi-Emvo et al., 1994) are also thought to participate 
in these events. Interestingly, it has been proposed in other 
organs than the intestine, that genes encoding adhesion mol- 
ecules and extracellular matrix proteins may represent tar- 
gets for the products of homeogenes and oncogenes (Jones 
et al., 1992; Kubota et al., 1992). In turn, epithelial-mesen- 
chymal interactions can regulate homeogene expression 
(Takahashi et al., 1991). Thus, the experimental model used 
in the present study should help to get more insight into the 
molecular basis of the cellular interactions involved in mor- 
phogenesis, in the acquisition of positional information and 
finally in the functional development of the intestine. 
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