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Abstract. An assay has been developed to quantita- 
tively measure the tension and elasticity of the 
cytoskeleton in living plant cells. The cell optical dis- 
placement assay (CODA) uses a focused laser beam to 
optically trap and displace transvacuolar and cortical 
strands through a defined distance within the cell. 
Results from these experiments provide evidence for 
the classification of at least two rheologically distinct 
cytoskeletal assemblies, cortical and transvacuolar, 
that differ in their tension and response to both signal- 
ing molecules and reagents that perturb the cytoskele- 
ton. It is further demonstrated that the tension of the 
transvacuolar strands can be significantly decreased by 

the addition of either linoleic acid, 1,2 dioctanoyl- 
sn-glycerol, or 1,3 dioctanoylglycerol. These decreases 
in tension could also be induced by lowering the cyto- 
plasmic pH. In contrast, addition of Ca 2+, Mg 2+, or 
the ionophore A23187 to the cells caused a consider- 
able increase in the tension of the transvacuolar 
strands. The data provides evidence that: (a) linoleic 
acid may be a signaling molecule in plant cells; (b) di- 
acylglycerol functions as a signaling molecule through 
a protein kinase C-independent pathway mediated by 
PLA2; and (c) Ca 2+ and pH have regulatory roles for 
controlling cytoskeleton tension and organization. 

T 
HE plant cell cytoskeleton has been demonstrated to 
contain at least two distinct filamentous networks that 
are structurally equivalent to the microfilaments and 

microtubules more extensively described for animal cells 
(Lloyd, 1989; Trams et al., 1987; Gunning and Hardham, 
1982; Tiwari et al., 1984; Parthasarathy et al., 1985). Evi- 
dence for intermediate filaments has also been presented 
(Hargreaves et al., 1989). Actin, tubulin, myosin, and a 
number of other cytoskeletal associated proteins have been 
demonstrated in plant cells (Lloyd, 1989; Hargreaves et al., 
1989; Trams et al., 1987; Gunning and Hardham, 1982; 
Tiwari et al., 1984; Kato and Tonomura, 1977; Jackson, 
1982; Trams, 1990; Parthasarathy et al., 1985). Morphologi- 
cally, the filamentous networks in plants may be further 
subdivided into at least four cellular domains: nuclear, trans- 
vacuolar, subcortical cytoplasm, and plasma membrane as- 
sociated (Trams et al., 1987). Functionally, it appears that 
the control of cell division and nuclear position may involve 
the nuclear and transvacuolar domains (Lloyd, 1989; Trams 
et al., 1987; Katsuta and Shibaoka, 1988). The subcortical 
domain may be more involved in cytoplasmic streaming 
(Jackson, 1982; Trams, 1990; Kaniya, 1981), while the plasma 
membrane-associated network may be important for such 
processes as secretion, endocytosis, cell wall biosynthesis, 
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and initiating transmembrane signals (Traas, 1990). Al- 
though the involvement of individual cytoskeletal domains in 
a particular cell function may vary, e.g., cell wall deposition 
(Lloyd, 1989; Gunning and Hardham, 1982; Tiwari et al., 
1984; Trams, 1990; Heath and Seagull, 1982), lateral 
diffusion of plasma membrane proteins (Metcalf et al., 
1983; 1986), nuclear location (Lloyd, 1989; Traas et al., 
1987; Katsuta and Shibaoka, 1988), it appears that some of 
the networks may be interconnected within a dynamic 
cytoskeletal grid composed of microfilaments and microtu- 
bules (Lloyd, 1989; Trams et al., 1987; Trams, 1990; Koba- 
yashi et al., 1988). 

Efforts to understand the relationship between organiza- 
tion and function of the cytoskeleton in living plant cells, in 
most instances, have depended on the use of agents that dis- 
rupt microfilaments or microtubules. Unlike recent work in 
animal cells with "suckers and pokers," mechanical devices 
that perturb the cytoskeleton (Elson, 1988; Evans and 
LaCelle, 1975; Petersen et al., 1982), direct measurements 
of the mechano-chemical properties of cytoskeletons, i.e., 
filament tensions and viscoelastic properties, have been, for 
the most part, technically difficult because of the presence 
of a rigid cell wall surrounding the cell. Past efforts to use 
centrifugation (Marc et al., 1989; Galatis et al., 1984; Qua- 
der et al., 1987) to distort the cytoskeleton have yielded re- 
suits; however, this technique lacks both the temporal and 
spatial resolution that is necessary to accurately explore 
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domain-specific rheological properties. Severing experi- 
ments with laser microbearns have also been useful, although 
invasive, to demonstrate that transvacuolar strands are main- 
tained under tension (Goodbody et al., 1991; Hahne and 
Hoffmann, 1984). In pioneering work, Ashkin and Dziedzic 
(1989) used high-intensity laser light to immobilize or trap 
long, thin filaments in the cytoplasm of scallion cells. These 
filaments were visible using phase contrast optics because of 
their higher index of refraction than the surrounding cyto- 
plasm. Displacement of the stage in x, y, or z relative to the 
fixed laser beam resulted in the intracellular displacement of 
the filament from its normal location. The displacement dis- 
tance, the laser power required for trapping, and the speed 
and extent of rebound were found to be dependent on the 
velocity of displacement. This dependency was analogous to 
the viscoelastic properties observed for the non-Newtonian 
mechanical properties of polymers and actin/actin-tubulin 
networks (Elson, 1988). An attractive feature of this optical- 
based method is that it provides a potentially nondestructive, 
high-resolution technique capable of repetitive measurements 
of the tension in filaments within specific regions of the cy- 
toskeleton. In this manner, it can be used to examine the 
changes in the elasticity and tension of the individual cyto- 
skeletal domains in response to perturbants and biosignaling 
molecules. 

The present communication describes the in vivo use of 
optical trapping in the form of a cell optical displacement as- 
say (CODA)k This technique is shown to measure lipid- 
mediated changes in the physical properties of transvacuolar 
and cortical cytoskeleton networks in soybean root cells. 
These results suggest a heretofore unknown signaling role 
for such molecules in affecting important physical properties 
in plant cells. In particular, linoleic acid, dioctanoyl-sn-glyc- 
erol, Ca 2+, and cytoplasmic pH are demonstrated to modify 
the viscoelasticity of cytoskeletal networks in plant cells. 

Materials and Methods 

Cell Optical Displacement Assay 
A typical experiment is performed in the following manner. A soybean (Gly- 
cine max [L.] Merr. cv. Mandarin) cell suspension (originally derived from 
roots) (2 t~l; 48-72 h of growth) in 1B5C medium (Metcalf et al., 1983) is 
placed on a slide to which a coverslip is applied and then sealed with 
paraffin wax. The slide, coverslip down, is placed on the computer con- 
trolled stage of an ACAS 570 Fluorescence Interactive Laser Cytometer 
(Meridian Instruments, Okemos, M1) (Wade et al., 1993). The cells are 
viewed under phase illumination with an off immersion 100× (1.4 NA) ob- 
jective. A video camera captures the images which are then viewed on 
a monitor and recorded on videotape. To initiate trapping, the two-dimen- 
sional scanning stage is moved to a strand that can be identified either by 
its higher index of refraction or by associated vesicles. An argon ion laser 
beam (~ex = 488 nm; ~l-~m diam) is focused onto the fiber or the as- 
sociated vesicle. This is facilitated by the parfocality of the beam and the 
imaging plane. The intensity of the trapping laser beam is then monotoni- 
cally increased to a level that can maintain the optical trapping of the fiber 
at its initial position as the stage is moved through a defined displacement 
at a constant velocity. For transvacuolar (also referred to as transcytoplas- 

1. Abbreviations used in this paper: APM, amiprophosmethyl; CDPK, 
calcium-dependent protein kinase; CODA, cell optical displacement assay; 
DAG, diacyiglycerol; IP3, inositol 1,4,5-tr/s-phosphate; IR, infrared; 
NRK, normal rat kidney; PLA2, phospholipase A2; 1,2 and 1,3 DiCS, 1,2 
and 1,3 dioctanoyl-sn-glycerol; TPA, 12-o-tetradecanoylphorbol-13- 
acetate. 

mic) strands, measurements were performed in 20 different cells. The maxi- 
mum trapping intensity to achieve success in all 20 displacement attempts 
did not vary from day-to-day by more than 5 mW as recorded at the laser 
head (12% variation). The trapping beam was positioned at a point on the 
filament between the nucleus and the membrane/wall for each attempt in 
the assay. For examinations of cortical strand tension, the number of trap- 
ping measurements varied due to the difficulty in finding either defined or 
vesicle-associated strands from which movement could be easiIy moni- 
tore& To insure that the trapping intensity did not damage the fibers, each 
displacement at a particular power setting was performed five times and in 
all instances the fiber was required to rebound to the original position fol- 
lowing termination of the trap. In some instances, an infrared laser was uti- 
lized to compare its trapping ability with that of the argon ion laser. This 
comparison demonstrated that at low power settings ~150 roW, the 488-nm 
line of the argon ion laser did not induce optical damage (Ashkin and Dzied- 
zic, 1989). All trapping experiments were recorded on videotape and in- 
dividual pictures of the experiments were prepared frame-by-frame from 
the tapes. 

Ionic concentrations for the experiments described in Fig. 7 are: NaCI 
(100 raM), KCl (100 mM), MnC12 (100 raM), CaCI2 (100 mM), and 
MgCI2 (100 mM), respectively. Ceils were maintained in these solutions 
during the experiment. In other experiments, cells were incubated with 
cytoehalasin D (20/~M), amiprophosmethyl (APM) (20/~g/ml), sodium 
azide (20 t~M), phalloidin (20 ttg/ml), and taxol (2/~g/ml). The concentra- 
tions of fatty acids, phospholipids, diacylglyceml analogues, phorboi esters, 
and A23187 used in the experiments am listed in Table I. All effector re- 
agents were incubated with the cells at the concentrations indicated for 30 
min before measurement and were maintained with the cells throughout the 
CODA. Temperature-dependent treatment of cells was performed as fol- 
lows: cells were incubated in ice for 30 rain before measurement and main- 
tained under these conditions throughout the measurement (an ice chamber 
was seated on the slide during the assay). Cells were treated at 47.5"C in 
a water bath for 2 rain and then measured at room temperature. Cytochala- 
sin D, phalloidin, 1,2 dioctanoyl-sn-glyceroi (1,2 DiCS), 1,3 dioctanoyl- 
glycerol (1,3 DiCS), phorbol dibutyrate, phorbol 12,13 didecanoate, all 
phospholipids, and ionophore A23187 were purchased from Sigma Im- 
munochemicals (St. Louis, MO). Unless otherwise stated, the commer- 
cially obtained phospholipids were derived from animal sources or soy- 
beans. No difference in activity was observed when phospholipids derived 
from soybean were compared with the same type of phospholipid derived 
from either brain extracts, egg yolk, or liver. All fatty acids were from Cay- 
man Chemical Co., Inc. (Ann Arbor, MI). APM was a gift from Dr. M. V. 
Parthasarathy (Section of Plant Biology, Cornell University, Ithaca, NY) 
and taxol was a gift from Dr. Steven Heidemarm (Department of Physiology, 
Michigan State University, East Lansing, MI). 

Confocal Fluorescence Microscopy of 
F-Actin l~laments 
Soybean cells were fixed, permeabilized, and stained with NBD-phal- 
lacidin (Molecular Probes, Eugene, OR) as previously described for the 
probe rhodaminyl lysine phallotoxin (Traas et al., 1987). Individual optical 
sections of the fluorescence distribution of the probe were acquired with an 
InSight Bilateral Laser Scanning Confocal microscope (Meridian Instru- 
ments, Okemos, MI) as previously described (Wade et al., 1993; Grabski 
et al., 1993). 

Results 

Optical Trapping of Transcytoplasmic Strands 
and Associated Vesicles 
Ashkin and Dziedzic (1989) demonstrated that cytoplasmic 
filaments could be immobilized or trapped within a focused 
laser beam at power levels in the tens of milliwatts. In their 
experiments, the filament maintained its position within the 
stationary beam while the surrounding cell is displaced over 
micron distances, In Fig, 1, the trapping results of Ashkin 
and Dziedzic (1989) using an infrared laser (IR) (1.06 t~m 
line) are reproduced for a perinuclear localized vesicle (fo- 
cus to the top of the vesicle) associated with a viscoelastic 
strand in the cytoplasm of a soybean root cell grown in sus- 
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Figure 1. Optical displacement of a perinuclear localized vesicle in a soybean root cell using an infrared laser. Phase views of a single 
soybean root cell grown in suspension culture. The optical trap is focused on a vesicle (arrow) associated with the nucleus (A). The vesicle 
is displaced to the left (B) and then to the right (C) within the cell. Termination of the trap results in the return of the vesicle to its original 
location (D). Bar, 2.5 #m. 

pension culture. The trapping is initiated in Fig. 1 A and the 
vesicle/strand is displaced towards the left (Fig. 1 B) and 
then right (Fig. 1 C) within the cytoplasm. Removal of the 
trap results in rebound to the original position (Fig. 1 D). 
The stretched strand that is associated with the vesicle is seen 
as a long defocused tail from the vesicle to the nucleus in Fig. 
1 C. It is important to emphasize that for the optical displace- 
ments demonstrated in Fig. 1, an IR laser was used to create 
the optical trap. The use of an IR laser was previously sug- 
gested to minimize potential optical damage induced at 
energy levels that might be necessary to initiate an optical 
trap (Aslddn and Dziedzic, 1989). The arrow in Fig: 1 A in- 
dicates the target vesicle of the trapping beam. Optical trap- 

ping is initiated by focusing the laser beam on the vesicle, 
not to the center of the cross-hairs in the image. The cross- 
hairs in this and all subsequent images serve as a reference 
to demonstrate the movement of the cell in relation to the 
trap. Movement of the stage results in the displacement of 
the vesicle and associated strand through the cell interior 
(Fig. 1, B-D). The trap is then removed and the vesi- 
cle/strand rebound to its original position (Fig. 1 D). If the 
displacement is performed too quickly, the filament breaks 
or can no longer contract completely (data not shown). Such 
velocity-dependent effects on filament integrity were also ob- 
served by Ashldn and Dziedzic (1989). 

Fig. 2 provides evidence that an argon ion laser can also 
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Figure 2. Optical displace- 
ment of a vesicle associated 
with a transvacuolar strand 
using an argon ion laser. The 
vesicle (arrow) is trapped (a) 
and then displaced throughout 
the cell (b-e). Termination of 
the trap results in the return of 
the vesicle to its original posi- 
tion (f) .  Bar, 2.5 #m. 
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Figure 3. Optical displacement of a transvacuolar strand. The trap is focused to a strand (arrow) (tl) and the strand is displaced within 
the cytoplasm (B). In another sample, the trap is focused to the center of a vesicle associated with a strand (C) and is then dis- 
placed (D). 

be successfully used to create a nondestructive optical trap. 
The trap is, again, initiated on a vesicle associated with 
cytoskeletal elements in the transvacuolar strand (Fig. 2 a, 
arrowhead). The stage is displaced and the strand can be 
stretched through the cytoplasm (Fig. 2, b-e) and then re- 
bound to its original position when the trap is released (Fig. 
2 f ) ,  This displacement can be performed multiple times 
with the same result, the strand returns to its origin. This 
data provides supporting evidence that at the low power lev- 
els used for the CODA, an argon ion laser can be used to 
produce nondestructive traps. Although cytoplasmic vesi- 
cles are a good target for the optical trap, Fig. 3 demonstrates 
that displacements can be performed by directly focusing on 
a strand that does not have an associated vesicle (note the in- 
crease in distance between the cross-hairs and the cell wall 
following displacement of the cell) (Fig. 3, A and B). This 
was also observed by Ashkin and Dziedzic (1989). Using an- 
other sample, the focus of the laser beam was shifted slightly 
to the focal plane of the strand (Fig. 3, C and D) rather than 
towards the top of vesicles associated with strands as previ- 
ously observed in Figs. 1-3 (,4 and B). The arrows in Fig. 
3 (A-D) point to the target for the laser beam, the cross-hairs 
serve as a reference to demonstrate the movement of the 
stage. 

To further pursue the capability of the CODA for manipu- 
lating intracellular structures, attempts were made to trap 
and move the cell nucleus. Microscopic evidence has shown 
that the nucleus sits within an F-actin cage in the cytoplasm. 
This cage is continuous with actin cables/bundles that appear 
to anchor the nucleus to the membrane/wall surface (Traas 
et al., 1987). Efforts to move the nucleus were unsuccess- 

fill at power levels that did not cause cellular damage (data 
not shown). Addition of cytochalasin D (20 #M), however, 
resulted in a decrease in the nuclear resistance to displace- 
ment (Fig. 4). The nucleus (Fig. 4, double arrowhead) 
identified by the corona of associated vesicles could be dis- 
placed from its original position (Fig. 4, A-D) within the cell 
and moved through the cytoplasm. This provides support for 
the view that the nucleus is anchored in its position by an ac- 
tin network (Lloyd, 1989). 

Con:focal Fluorescence Views of the Actin Network 
in Soybean Root Cells 

Fig. 5 shows confocal fluorescence views of: (a) the actin 
cage surrounding the nucleus; (b) the actin cables compris- 
ing the transvacuolar strands; and (c) F-actin filaments 
within the cytoplasm of a soybean root cell. Optical sections 
are displayed at 0.5/zm slices throughout the soybean cell 
stained with NBD-phallacidin, a fluorescent probe for F-actin 
(Traas et al., 1987) (Fig. 5 A). As previously discussed by 
Lloyd (1989), there are a variety of filamentous structures 
that vary from thin, wispy filaments to heavily stained cables 
(Fig. 5 B). Thicker filaments (heavier staining) reminiscent 
of stress fibers in animal cells (Burridge, 1981) are found 
to comprise the transcytoplasmic strands. They appear to 
connect the actin cage of the nucleus to the cell periphery 
(Fig. 5 C). 

Cell Optical Displacement Assay: A Dynamic In Vivo 
Measurement of  Cytoskeletal Tension 

The relationship between trapping power and displacement 
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l~gure 4. Optical displacement of the cell nucleus in soybean cells treated with cytochalasin D (20 #M). The optical trap was focused 
to the cell nucleus (double arrow) (A) and the cell was then displaced, resulting in the translocation of the nucleus through the cytoplasm 
(B-D). 

length is shown in Fig. 6 for four separate filaments mea- 
sured in four different cells. To generate these curves, a fila- 
ment was trapped with the focused beam of an argon ion laser 
and the stage was moved at constant velocity through defined 
distance intervals until the filament escaped the trap (maxi- 
mum displacement length). A pause of 5-10 s was introduced 
between each displacement at each power level. Under the 
conditions of the experiment, each filament demonstrates a 
near linear relationship for a range of power settings between 
5 and 40 mW. Similar dependencies were observed for exten- 
sion experiments performed to determine the elasticity of the 
cortical cytoskeleton in erythrocytes (Evans and LaCelle, 
1975). The variability observed for experiments between 

filaments in different plant cells suggested that it would be 
useful to design an assay based on multiple measurements 
in a population of cells. The CODA was developed as de- 
scribed in Materials and Methods to compensate for cell to 
cell variability and provide quantitation for tension. As 
observed in Fig. 7, the displacement curve was created by 
performing 20 displacement attempts at each laser power 
setting. Successful displacements of transvacuolar strands 
through a given length at a constant velocity per 20 attempts 
in different cells were plotted on the ordinate for each power 
setting. A parameter termed the displacement threshold can 
be defined which is the minimum laser power necessary to 
produce 20 successful displacements. The displacement 
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Figure 5. Cortfocal fluorescence 
imaging of the actin network in 
soybean cells. Cells were perme- 
abilized and stained with NBD- 
phallacidin (F-aetin-specific flu- 
oresc~t probe) (Molecular Probes, 
Eugene, OR) (Traas et al., 1987). 
A total of 20 sections (at 0.5/~m 
intervals) were scanned and se- 
lected sections are presented in A. 
The number in the top left comer 
of each image refers to the dis- 
tance (micron) into the cell from 
the bottom closest to the objec- 
tive. The bottom of the cell is the 
first image at 0.0/~m. A section at 
2.0 t~m into the cetl is enlarged to 
highlight fine F-actin ftlamems (B). 
A section at 6.0 t~m into the cell 
is enlarged to demonstrate the ac- 
tin within a distinct transvacuolar 
strand (C). 
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Figure 6. Relationship between laser trapping power and length of  
displacement. Four separate transvacuolar strands in four different 
cells were stretched as a function o f  an increasing laser power as 
described in Results. A unit  is ~0 .25 /~m.  

curves obtained with this method are shown in Fig. 7. The 
near linear response observed for each displacement experi- 
ment under the variety of incubation conditions represented 
by Figs. 7-11 suggested that it would be possible to utilize 
the 50% point (10 successful displacements out of 20 at- 
tempts) for comparisons of filament tension between differ- 
ent experiments. An examination of the curves in Fig. 7 
shows that filaments exposed to Na +, K +, and Mn 2+ demon- 
strated the same dependency on laser power for displace- 
ment (number of successful displacements for a set displace- 
ment length) as the control. Addition of Mg 2+ and, to a 
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Figure 7. Influence of mono- and divalent cations on the elasticity 
of transvacuolar strands. CODA was performed as described in 
Materials and Methods. The curves represent the following incuba- 
tion conditions: control (--~-), NaCI (100 raM) (-~-), KCI (100 
raM) (--u-), MnCI2 (100 raM) (-<>-), CaCI2 (100 mM) (-m-), and 
MgC12 (100 raM) (43-). 

lesser extent, Ca 2+ to cells induced a shift of the displace- 
ment threshold to higher laser intensities. Although Ca 2+ 
has been previously shown to enhance tension in cytoskele- 
ton networks (Pasternak and Elson, 1985), this appears to 
represent the first demonstration that Mg 2+ can also en- 
hance tension. This effect is reversible; the filaments 
returned to control values following the removal of Mg 2+ 
from the incubation medium (data not shown). 

To demonstrate that the observed displacements of trans- 
vacuolar strands are related to the state of the cytoskeleton, 
specific chemical perturbants of microfilament, and microtu- 
bule networks were used to examine their influence on strand 
tension. As shown in Fig. 8, cytochalasin D (Traas et al., 
1987), APM (Falconer and Seagull, 1987), and incubation 
of cells at 4°C (Marc et al., 1989) all induce a decrease in 
tension of transvacuolar strands, while sodium azide (Paster- 
nak and Elson, 1985), phalloidin (Andersland and Par- 
thasarathy, 1992), and taxol (Schiff and Horwitz, 1980) 
cause an enhanced tension (Fig. 8). Cytochalasin D and 
APM, used simultaneously, appear to maximally decrease 
tension beyond the level of either reagent alone (Fig. 9). This 
enhanced effectiveness in plant cells of using cytochalasin D 
and APM was also observed for colchicine and cytochalasin 
D acting synergistically to reverse the stiffness response in 
lymphocytes induced by anti-IgM (Pasternak and Elson, 
1985). Of particular interest is the observation that incuba- 
tion of cells at 47.5°C for 2 min induces a significant de- 
crease in fiber tension. Since it has been demonstrated that 
incubation of the internodal cell of Nitella at this temperature 
resulted in the denaturation of myosin (Chen and Kaniya, 
1981), this result may be interpreted as: (a) additional evi- 
dence that the tension measured in these experiments is 
mediated by proteins and not phospholipids; and (b) myosin 
may be a component of the tension generating system in 
transvacuolar strands. Since cytochalasin D, APM, and heat 
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Figure 8. Effect on  tens ion in t ransvacuolar  s t rands  o f  agents  and 
perturbing conditions that can modify cytoskeletal organization. 
CODA was performed as described in Materials and Methods. The 
curves represent: treatment of cells at 47.5°C for 2' (-<>-) and 4°C 
for 30 rain (-q~), incubation of cells with sodium azide (-~), 
phalloidin (--e--), cytochalasin D (-l-), APM (-u-), and taxol 
(-~),  respectively. 
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Figure 9. The role of an organized cytoskeleton in mediating the 
Mg+-induced increase in tension• The CODA was performed as 
described in Materials and Methods. The curves represent coincu- 
bation of APM (20 #g/ml) and cytochalasin D (20 I~M) with cells 
for 30 rain before measurement (-q3-), treatment of cells at 47.5°C 
for 2 rain in the presence of Mg 2÷ (100 raM) (4-),  incubation of 
cells with APM (20 #g/ml) for 30 rain before addition of Mg 2÷ 
(I00 raM) (-m-), and incubation of cells with ¢ytochalasin D (20 
ttM) for 30 re.in before addition of Mg ~* (100 raM) (-<>-). 

treatment can modify the organization of structural compo- 
nents of the cytoskeleton (Traas et al., 1987; Falconer and 
Seagull, 1987; Chen and Kaniya, 1981), we next examined 
their ability to block the tension that was induced by Mg 2+. 
As shown in Fig. 9, all these treatments inhibited the Mg 2+- 
induced increase in tension (compare Figs. 9 and 7). 

Modulation of Cytoskeletat Tension by 
Biosignaling Molecules 

Diacylglycerol Analogues and Phorbol Esters. Changes in 
cytoskeletal organization and activity have been demon- 
strated to be integral responses and mitigators of transmem- 
brane signaling events. Microfilament, microtubules, and 
cytoskeletal-associated control and regulatory proteins in 
animal cells have demonstrated changes in their organization 
and patterns of posttranslational modification following ex- 
IX)sure to lipophilic biosignaling molecules (Shariff and 
Luna, 1992; Herman and Pledger, 1985; Luna and Hitt, 
1992; Schliwa et al., 1984)~ These modifications appear to 
regulate the structuraI integrity of filamentous networks. In 
an attempt to examine the influence oflipophilic biosignaling 
molecules on the tension of filaments in the plant cytoskele- 
ton, we incubated cells with the reagents shown in Fig. 10. 
Phorbol dibutyrate, a water-soluble congener of 12-o-tetra- 
decanoylphorbol-13-acetate (TPA), an activator of protein 
kinase C, and phorbol 12,13 didecanoate, a nonactive (in an- 
imal cells) analogue of TPA, demonstrated little effect on the 
tension in transvacuolar filaments. A recent report by Shariff 
and Luna (1992) provided evidence for a role for diacyl- 
glycerol (DAG) as an inducer of actin nucleation at plasma 
membranes of Dictyostelium discoideum in a proposed non- 
pKC-mediated pathway. 1,2 DiCS, but not 1,3 DiC8 (a non- 
physiological diacylglycerol), was found to induce actin 
nucleation (Shariffand Luna, 1992). When used in the plant 
cells, a biological efficacy was observed that was opposite to 
that found in D. discoideum. 1,3 DiC8 caused the most pro- 
nounced decrease in tension observed for all reagents or con- 
ditions; 1,2 DiC8 was less potent. 1,3 DiC8 inhibited the 
tension-inducing activity of Mg ~+ (Fig. 10) while 1,2 DiC8 
initially inhibited the tension-inducing activity of Mg 2+, 
however, following a 30-40-min incubation period, the abil- 
ity of Mg z• to induce tension was regained (data not shown). 
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Figure 10. Inf luence o f  l ipophilic s ignal ing molecu les  on t rans-  
vacuolar tension. CODA was performed as described in Materials 
and Methods. Curves represent the following conditions: incuba- 
tion with phortml dibutyrate (0.5 ~g/ml) (-e-), phorbol 12, 13 
didecanoate (0.5 tzg/ml) (--O-), 1,2 Die8 (-o-), 1,3 DiC8 (--<>-), 1,2 
DiC8 + Mg ~+ (--e-), and 1,3 DiCg + Mg z÷ (-o-), respectively. 

Phospholipids and Fatty A~ids as Modifiers of Cytoskele- 
tal Tension. Recently, a number of investigations have dem- 
onstrated that phospholipids and their metabolites are 
specific effectors for modifying the organization (Ridley and 
Hall, 1992; Ha and Exton, 1993) and tension (Gong et al., 
1992; Kolodney and Elson, 1993) in filamentous networks 
comprised of F-actin and myosin. To examine for this possi- 
bility in plant cells, we added to soybean cells the fatty acids 
and phospholipids shown in Table I and incubated the sample 
as described in Materials and Methods. Since linolenic acid 
was previously demonstrated to be a bioactive molecule in 
plants as a precursor for methyl jasmonate biosynthesis 
(Farmer and Ryan, 1990), its effect on strand tension was ex- 
amined. As shown in Table I, there was no change from con- 
trol when a- or 3/- linolenic acid was added to the cells. In 
sharp contrast, linoleic acid, the predominant fatty acid sub- 
stituent of the sn-2 position in plant phospholipids was found 
to have considerable activity in decreasing tension in trans- 
vacuolar strands at low concentrations (Table I). Arachi- 
donic acid, the predominant fatty acid sn-2 substituent and 
bioactive molecule in animal cells also decreased the tension 
in transvacuolar strands (Table D. The concentrations of 
linoleic and arachidonic acid that were necessary to decrease 
tension in transvacuolar strands were within the range of 
arachidonate concentrations previously observed to sfirnu- 
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Table L Effectors of Cytoskeletal Tension 

Displacement threshold 
Effectors (DT~0) mW 

Control (1B5C media) 15 
Fatty Acids (0.5 ~g/ml) 

Linoleic acid ~5 
Arachidonic acid <5 
~-Linolenic acid 20 
3,-Linolenic acid 20 

Diacylglycerol Analogues and Phorbol Esters 
(0.5 ~,g/n~) 

1,2 Dioctanoyl-sn-glycerol 5 
1,3 Dioctanoylglycerol ~5 
Phorbol dibutyrate 20 
Phorbol 12,13 didecanoate 20 

Phospholipids (0.5 ~tg/rnl) 
Lysophosphatidic acid 20 
Phosphatidylcholine 15 
Lysophosphatidylcholine 20 

Ions (100 mM), Ca 2+ Ionophore A23187, and pH 
NaC1 15 
KCI 15 
MnCI2 15 
BaC12 15 
CaCI2 30 
MgCI2 45 
0.2 t~M A23187 10 
2.0 ttM A23187 35 
5.0 ttM A23187 130 
pH 4.5 <5 
pH 8.0 <5 

Lipids and Phospholipids (0.5 ttg/ml) 
in the presence of A23187 (0.2 #M) 

Linoteic acid 10 
~-Linolenic acid 15 
1,2 Dioctanoyl-sn-glycerol 25 
1,3 Dioetanoylglycerol 40 

late a variety of biological activities in animal ceils (Irvine, 
1982). No similar decrease in tension of transvacuolar 
strands was observed for phosphatidylcholine, lysophospha- 
tidylcholine, or lysophosphatidic acid (Table I). It is impor- 
tant to note that the inability of other phospholipids to elicit 
a response in the CODA may not necessarily reflect their in- 
activity as biological signaling molecules, but rather may 
represent their inability to transfer across the bilayer to the 
cytoplasmic leaflet of the plasma membrane to interact with 
the cellular-signaling enzymes (Pagano and Longmuir, 
1985). This may be relevant for such phospholipids as PA or 
lysoPA, both of which have demonstrated an ability to alter 
the cytoskeleton in animal cells (Ridley and Hall, 1992; Ha 
and Extort, 1993). 

Calcium and pH as Regulators of Cytoskeletal Tension. 
Previously detailed activator/modulator roles for phospho- 
lipids and phospholipid metabolites in cell-signaling path- 
ways have been associated with an enhanced intracellular 
availability of free Ca 2÷. In particular, phospholipase C hy- 
drolysis of PIP2 to release the calcium elicitor inositol 
1,4,5-tr/s-phosphate (IP3) (Berridge and Irvine, 1989). As 
observed in Table I, increasing the concentration of A23187 
from 0.2 to 5.0 ttM demonstrated a dramatic increase in 
the tension of transvacuolar strands. This increase occurs 

within minutes following addition of the ionophore. Although 
the addition of exogenous Ca 2+ (100 mM) caused an in- 
crease in tension, incubation with A23187 was far more 
effective. This may be a result of the limited loading of the 
cytoplasm that occurs with exogenously added Ca 2+ (Bush 
and Jones, 1989) or may suggest a functional requirement 
that Ca :+ must be released from a specific intraceUutar com- 
partment, e.g., vacuole, endoplasmic reticulum to propagate 
a signal. Preincubation of cells with A23187 (0.2 #M for 10 
min) diminished and in some instances reversed the ability 
of fatty acids and diacylglycerol analogues to decrease the 
tension in transcytoplasmic strands (Table I). 

Exposure of plant cells to an external pH of 4.5 (1 mM 
citric acid) resulted in a decrease of the cytoplasmic pH to 
"-,6.8 within minutes (Brummer et al., 1984). Acidification 
of the soybean root ceils resulted in a decrease in the tension 
of transcytoplasmic strands (Table I). Interestingly, alkalin- 
ization of the external pH to 8.0 (pH of growth media is nor- 
mally 6.2), also resulted in a decrease in tension (Table I). 

Tension in the Cortical Cytoskeleton 

The cortical cytoskeleton appears to be comprised of at least 
two types of organization: membrane-associated and sub- 
membranous/cytoplasmic (Lloyd, 1989; Traas et al., 1987; 
Traas, 1990). These networks seem to be involved in the or- 
ganization of the endoplasmic reticulum (Hepler et al., 1990), 
provide the framework for cytoplasmic streaming (Jackson, 
1982; Kaniya, 1981), and apparently serve as structural 
cofactors in the synthesis, deposition, and incorporation of 
cellulose into the cell wall (Traas, 1990; Heath and Seagull, 
1982). In a manner analogous to animal cells, the cortical 
cytoskeletal network can also influence the movement and 
distribution of plasma membrane glycoproteins (Metcalf et 
al., 1983, 1986). In an effort to examine the tension in fibers 
associated with the cortical cytoskeleton, filaments with as- 
sociated vesicular bodies found near the cell membrane were 
trapped and then examined by the CODA. Since the exis- 
tence of such vesicles was a rare occurrence at the cell pe- 
riphery, the number of cells examined was less than that for 
experiments on transvacuolar strands. Examination of Fig. 
11, however, clearly shows that the trapping power necessary 
for displacement of the maximum number of vesicle-associ- 
ated strands was at least 8-10 times greater than for a simi- 
lar displacement of vesicle-associated transvacuolar strands 
(Fig. 7). These power differences suggest a significantly 
greater resistance or tension for cortical strands. At present, 
the CODA measurements do not have the resolution to dis- 
criminate between the subassemblies comprising the cortical 
compartment. The two reagents that appear to have the most 
significant impact on the tension of these strands are 
cytochalasin D and APM. 1,3 DiC(8), which caused a large 
decrease in the tension of the transvacuolar strands, had con- 
siderably less influence on the cortical cytoskeleton. 

Discussion 

Cell Optical Displacement Assay: A Tool for 
Probing the Viscoelastic Properties of Cytoskeletons 
in Living Cells 

Previously employed methods to directly measure rheologi- 
cal properties within plant cells have either lacked spatial 
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Figure I1. Tension in the cortical cytoskeleton. CODA was per- 
formed as described in Materials and Methods. The curves repre- 
sent control (--m-), incubation with cytochalasin D (--~-), APM 
(--a-), and 1,3 DiC8 (-O-). 

resolution (Marc et al., 1989; Galatis et al., 1984; Quader 
et al., 1987) or have been damaging to the cell (Goodbody 
et al., 1991; Hahne and Hoffmann, 1984). The difficulty in 
pursuing these investigations in plant cells using less invasive 
cell "pokers" (Elson, 1988) is a consequence of the interven- 
tion of the stiff cell wail between the physical probe and the 
plasma membrane. Recently, the technique of optical trap- 
ping has been developed to serve as a new tool for the manip- 
ulation of submicron structures (Block, 1992) and exam- 
ination of motor proteins (Kuo and Sheetz, 1993). Such 
measurements have been performed in reconstituted in vitro 
systems. The feasibility of this technique for in vivo mea- 
surements of viscoelastic properties was demonstrated by 
Ashkin and Dziedzic (1989). Transvacuolar strands within 
the cytoplasm of algae cells were displaced and then shown 
to rebound, demonstrating the viscoelastic properties of plas- 
tic flow, necking, stress relaxation, and set. Actin filaments 
have been shown to be components of transvacuolar strands 
and form a cytoskeletal cage around the nucleus (Fig. 5) 
(Traas et al., 1987). The viscoelasticity measured for trans- 
vacuolar strands therefore, should directly reflect the pres- 
ence of actin filaments, actin accessory proteins, and, per- 
haps to a lesser extent, microtubules. This is confirmed by 
the CODA as a loss of tension in these structures following 
incubation with cytochalasin and phalloidin (Fig. 8). The 
pronounced influence of APM, cold, and taxol on tension in 
the transvacuolar strands implies that although microtubules 
are less abundant in the cytoplasm than at the cell periphery, 
they still have an influence on the tension displayed by the 
actin filaments that populate the strands. This could be re- 
lated to a role for the cortical microtubule network in an- 
choring transcytoplasmic microfilaments (Lloyd, 1989) and 
forming other close associations with actin filaments ob- 
served throughout the cytoplasm (Traas et al., 1989). 

In contrast, the elastic properties of the cortical cytoskele- 
ton (Fig. 11) suggest a network with considerably enhanced 
rigidity. Both actin and tubulin networks populate this region 

in both membrane-associated and -nonassociated forms. En- 
doplasmic reticulum is also found to align with a subpopula- 
tion of submembranous actin networks and may influence 
their dynamic responses (Hepler et al., 1990). A similar dis- 
tinction in the physical properties of cortical and cytoplasmic 
filamentous actin networks was noted by Cao et al. (1992) 
in normal rat kidney (NRK) cells. The complexity of these 
structural interactions presently limit the interpretation of 
the data for cortical displacement measurements. 

Phospholipids and Phospholipid 
Metabolites as Mediators of  Cellular Signaling and 
Cytoskeletal Reorganization 

In attempts to assess the regulatory activity of phospholipids 
and their metabolic products in modulating the tension and 
function of the cytoskeleton in plant cells, it would be useful 
to frame the discussion in terms of the key physiological 
regulators of hormonal stimulation and growth in plants, 
changes in pH and intracellular calcium concentration (Gib- 
bon and Kropf, 1994; Hager and Moser, 1985; Hager et al., 
1991; Rayle and Cleland, 1992; Miller et al., 1990; Pantoja 
et al., 1992; Putnam-Evans et al., 1990; Williams et al., 
1990; DrCbak, 1992). The ensuing discussion presumes that 
the changes induced in the viscoelasticity of transvacuolar 
strands are down-stream responses that are initiated through 
the coupled activity of the polyphosphoinositide signaling 
pathway and an independent phospholipase A2 (PLA2) sig- 
naling system. 

Linoleic Acid: A Second Messenger in Plant Cells ? Ara- 
chidonic acid by itself (Gong et al., 1992; Tsai et al., 1989) 
and as a precursor for a variety of other bioactive metabolites 
(Pace et al., 1993; Irvine, 1982; Hanahan, 1986) serves as 
a trigger for a diverse series of cellular activities, including 
the nonsteroidal inflammatory response (Irvine, 1982; Han- 
ahan, 1986), bacterial invasiveness (Pace et al., 1993), and 
acrosomal exocytosis in sperm (Roldan and Fragio, 1994). 
Since exogenously supplied arachidonic acid mimics the 
tension-relieving activity observed for linoleic acid in the 
CODA, it appears likely that linoleic acid, the dominant sn-2 
substituent in plant phospholipids, may have cellular activi- 
ties in plant cells that parallel the role of arachidonic acid 
as a second messenger in animal ceils. A recent report by 
Gong et al. (1992) provides evidence that arachidonate could 
directly inhibit myosin light chain kinase phosphatase and 
sensitize smooth muscle to Ca 2+. This work and other ob- 
servations showing that lipids may have a direct influence on 
modulating cytoskeletal organization, in particular actin and 
myosin activity (Kolodney and Elson, 1993; Ridley and 
Hall, 1992; Ha and Exton, 1993) support an emerging view 
that lipids may not only be initiators of transmembrane sig- 
naling but may also act as inhibitory or stimulatory cofactors 
for enzymes involved in transducing cytoskeletal reorgani- 
zation. 

At present, the plant cell literature provides indirect evi- 
dence for the role of linoleic acid in signal transduction. 
Scherer and Andr6 (1989, 1993) demonstrated that auxins 
rapidly stimulate PLA2 in soybean cells in culture. Wheeler 
and Boss (1989) demonstrated that the presence of sn-l-pal- 
mitoyl lysophosphatidylinositol monophosphate (an indirect 
measurement of PLA2 activity) correlates positively with 
the fusion capacity of protoplasts. 
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Diacylglycerol: An Activator of Phospholipase A2 in 
Plant Cells. Although it now seems certain that plant cells 
do not contain protein kinase C homologues (Harper et al., 
1991; Dr~bak, 1992), plant cell transmembrane signaling 
appears to use all the components of the polyphosphoinosi- 
tide signaling pathway (Dr~bak, 1992). Recently, however, 
a number of PKC-independent pathways have been identified 
for animal cells that also use both DAG and IP3 for signal- 
ing (Kramer et ai., 1987; Qualliotine-Mann et al., 1993; 
Roldan et ai., 1994; Rosenthal et al., 1993). In all instances, 
DAG was found to stimulate the activity of PLA2 leading to 
the production of the pharmacologically active arachidonic 
acid. The introduction of the calcium ionophore A23187 
(0.2-2 #M) was found to significantly enhance the resultant 
biological activity for DAG stimulation described above. In 
a similar fashion, it may be proposed that in plant cells, DAG 
serves to activate a calcium-dependent PLA2 leading to the 
production of linoleic acid and the initiation of a signaling 
cascade. Our observation that phorbol esters (activators of 
PKC) have no effect on the tension in transvacuolar strands, 
while significant tension-relieving activity is observed for 
both 1,2 DiC8 and 1,3 DiC8 (diacylglycerol analogues) pro- 
vides further evidence that the cytoskeletal changes must oc- 
cur through a PKC-independent pathway that is mediated by 
DAG. The ability for both 1,2 and 1,3 DiC8 to mediate a bio- 
logical phenomena has been demonstrated to be a character- 
istic element of pathways that use DAG to activate PLA2 
(Resenthal et al., 1993; Roldan and Fragio, 1994; Quallio- 
tine-Mann et al., 1993). 

Ionic Modulation of  the Cytoskeleton 

Ca z+ as a Cytaskeletal Effector and PLAz Activator. Mod- 
ification of the intracellular concentration of calcium serves 
as an essential trigger in the polyphosphoinositide signaling 
pathway. IPrmediated changes in intracellular Ca :+ serve to 
activate phospholipases and protein kinases (Drebak, 1992; 
Berridge and Irvine, 1989). Our results clearly show that 
Ca 2+ is a significant biological effector that can enhance the 
tension in transvacuolar strands. It appears that in the plant 
cell, Ca ~+ has both membrane and cytoskeletal targets 
whose activation can lead to changes in cytoskeletal tension. 
DAG and Ca 2+ (~<I#M) have been demonstrated to activate 
PLA2 in a variety of in vivo and in vitro animal systems 
(Roldan and Fragio, 1994; Kramer et al., 1987; Leslie and 
Channon, 1990). The Ca 2+ has been suggested to recruit 
cytosolic PLA2 to the plasma membrane as a consequence 
of a Ca2+-dependent phospholipid binding motif within the 
PLA2 sequence (Clark et al., 1991). 

Another target for calcium may be actomyosin that is 
found within the actin network of the transcytoplasmic 
strands. Measurement of Ca2+-induced cell stiffening has 
previously been reported for lymphoid cells (Pasternak and 
Elson, 1985). This was interpreted to be consistent with a 
contractile-response of the cell cytoskeleton that was pre- 
sumably mediated by actomyosin. Recently, a novel calcium- 
dependent protein kinase (CDPK) has been isolated from 
soybean and demonstrated to be localized to F-actin ilia- 
merits in soybean cells (Putnam-Evans et al., 1989). Because 
it does not apparently bind to F-actin in vitro, and antibodies 
to CDPK show that a CDPK-related antigen is colocalized 
with stress fibers in HeLa ceils (Harmon et al., 1989), it 

would appear reasonable to suggest that the CDPK may as- 
sociate with myosin. Of particular relevance to this sug- 
gested localization is that gizzard myosin light chain was 
found to be a good substrate for the CDPK. Indeed, 
McCurdy and Harmon (1992) demonstrated that in Chara, 
a CDPK phosphorylates a putative myosin light chain. An- 
other potential site for Ca2+-mediated signaling could in- 
volve a calcium-activated interaction of CDPK with the 
Ca2+-ATPase in the plasma membrane. Ca2÷-ATPases have 
been demonstrated to contain calmodulin-binding domains 
(Carafoli, 1992) and, interestingly, are also stimulated by 
lipid-signaling molecules (Enyedi et al., 1987). Since the 
soybean CDPK has been demonstrated to contain a domain 
similar to calmodulin (Harper et al., 1991), an additional 
regulatory role for this CDPK could be through modifying 
the activity of the plant membrane Ca2+-ATPase. A mem- 
brane-bound form of CDPK has also been characterized in 
oat that is immunologically related to the soluble form found 
in oat and soybean. The membrane-bound form is activated 
by both Ca 2÷ and lipids (Schaller et al., 1992). The lipid 
enhanced the activity of CDPK in the presence of Ca 2+ by 
20-fold (Schaller et al., 1992). This CDPK has been sug- 
gested to phosphorylate the plasma membrane H+-ATPase 
(Schaller and Sussman, 1988). 

The potential synergy between these calcium targets may 
perhaps be hinted at by results from an experiment in which 
cells were coincubated with A23187 and 1,2 DiC8 or 1,3 
DiC8. Coincubation resulted in enhanced tension in the 
strands (Table I). This is distinctly different from the activity 
of these molecules when separately incubated with the plant 
cells (Table I) and may reflect the cumulative signaling re- 
sponse resulting from simultaneous stimulation of CDPK by 
IPrmediated calcium release and DAG mediated activation 
of PLA2. 

The Mg 2+ Effect: Stimulation of CDPK? No measure- 
ments, to our knowledge, have examined the consequences 
of Mg 2+ in modifying the viscoelastic properties of the cy- 
toskeleton in cells. In vitro studies have demonstrated a role 
for Mg ~+ in the assembly of actin and tubulin (Jackson, 
1982), and Mg 2÷ is necessary for the activity of the actin- 
activated Mg~+-ATPase associated with myosin (Jackson, 
1982). Although the changes in intracellular Mg 2÷ concen- 
trations produced by incubation with 50-100 mM Mg 2+ 
have not been determined, it would appear that the Mg 2+- 
induced rigidity in the transvacuolar strands is a specific 
effect since no similar change was observed with Mn 2+, 
Na +, or K +. Reversibility of the Mg 2+ effect by reagents that 
disrupt microfilaments and microtubules suggest that the 
rigidity is not predominantly promoted by Mg~+-induced, 
noncovalent cross-links, but may result through an enhanced 
contractile response, presumably mediated by myosin (Chen 
and Kariya, 1981). 

An alternate explanation for the Mg 2+ effect may relate to 
the observation that the activity of actin associated CDPK 
has a Mg 2+ requirement that is independent of forming a 
stable Mg2+-ATP complex (Putnam-Evans et al., 1990). 
Since intracellular concentrations of Mg :+ are sufficient for 
enzyme function, the addition of exogenous Mg 2+ may lead 
to an increase in the intracellular concentration of Mg z+ to 
a level that is stimulatory for the CDPK. The CDPK, 
demonstrating myosin light chain kinase activity (McCurdy 
and Harmon, 1992; Putnam-Evans et al., 1990), would then 
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phosphorylate myosin light chains leading to myosin con- 
traction and enhanced rigidity in the actin network within the 
transvacuolar strands. 

Cross-talk between Intraceilular pH and Ca ~+ 

Auxin-induced cell elongation appears to be mediated by the 
acidification of the cytoplasm and the cell wall environment 
(Rayle and Cleland, 1992). Recently, Gibbon and Kropf 
(1994) have provided evidence that in the rhizoid cells of 
Pelvetia embryos, it is the formation of a longitudinal pH 
gradient in these cells (A pH ,~0.3-0.5 between apical 
and basal cytoplasm) that promotes growth. In their experi- 
ments, exposure of cells to pH 8.2 resulted in the maximal 
growth rate and the establishment of the largest cytoplasmic 
pH gradient (A pH ,~0.3). As observed in Table I, exposure 
of soybean cells to pH 8.0 resulted in a decrease in the ten- 
sion within the transvacuolar strands. This decrease in ten- 
sion was equivalent to that observed by direct acidification 
(Table I). These results suggest that acidification and/or the 
formation of spatial pH gradients within cells can result in 
modified cytoskeletal interactions that may be necessary for 
cell expansion. In attempting to define the role ofpH in these 
processes, it is relevant to consider the biochemical coupling 
between pH and pCa 2+ within the cell. It has been shown 
that growing rhizoids generate cytosolic and membrane- 
associated Ca 2+ gradients that superimpose on the pH gra- 
dient (Brownlee and Wood, 1986). Changes in intracellular 
pH or the formation of pH gradients would impact on the 
activity of the plasma membrane Ca2+-ATPase which ex- 
changes extracellular H + for Ca 2÷ and the vacuolar Ca2+/H + 
antiporter (Miller et al., 1990). 

Conclusion 

CODA has provided evidence for a plant cell signaling path- 
way that uses linoleic acid, diacylglycerol, Ca 2+, and pH to 
modify the viscoelasticity of the plant cell cytoskeleton. It 
is likely that topologically defined changes in intracellular 
pH can lead to reduced tension in specific transvacuolar actin 
strands to facilitate cell expansion, while localized changes 
in intracellular Ca 2+ can activate kinases, e.g., CDPK initi- 
ates myosin light chain phosphorylation to simultaneously 
enhance contraction in other strands. It would appear likely 
that such antagonistic, but yet simultaneous, signaling events 
are necessary to produce the coordinated changes in tension 
and relaxation of actin networks that are represented by the 
repositioning of the nucleus and cell plate formation during 
mitosis in plant cells. 
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