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Abstract. Neurofilaments (NFs) are composed of trip- 
let proteins, NF-H, NF-M, and NF-L. To understand 
the dynamics of NFs in vivo, we studied the dynamics 
of NF-H and compared them to those of NF-L, using 
the combination of microinjection technique and 
fluorescence recovery after photobleaching. In the case 
of NF-L protein, the bleached zone gradually restored 
its fluorescence intensity with a recovery half time 
of ,'~ 35 min. On the other hand, recovery of the 
bleached zone of NF-H was considerably faster, 
taking place in ,,o19 min. However, in both cases the 
bleached zone was stationary. Thus, it was suggested 
that NF-H is the dynamic component of the NF array 
and is interchangeable, but that it assembles with the 

other neurofilament triplet proteins in a more ex- 
changeable way, implying that the location of NF-H is 
in the periphery of the core NF array mainly com- 
posed of NF-L subunits. Immunoelectron microscopy 
investigations of the incorporation sites of NF-H la- 
beled with biotin compounds also revealed the lateral 
insertion of NF-H subunits into the preexisting NF ar- 
ray, taking after the pattern seen in the case of NF-L. 
In summary, our results demonstrate that the dynamics 
of the L and H subunit proteins in situ are quite 
different from each other, suggesting different and 
separated mechanisms or structural specialization un- 
derlying the behavior of the two proteins. 

ONG intermediate filament proteins, the neurofilament 
(NF) t triplet proteins are quite unique in that they 
assume a characteristic alignment that is composed 

of the three subunit proteins usually referred to as NF-L, 
NF-M, and NF-H (Hoffman and Lasek, 1975; Liem et al., 
1978; Hirokawa, 1991). In other words, NFs take on a het- 
eropolymeric form in ceils (Delacourte et al., 1980; Geisler 
and Weber, 1981; Ching and Liem, 1993; Lee et al., 1993). 
These proteins belong to the class IV intermediate filaments 
together with ot-internexin (Fliegner et al., 1990). Although 
other intermediate filaments such as vimentin and peripherin 
are also expressed in neuronal cells during the postmitotic 
stage, the neurofilament triplet proteins are major intermedi- 
ate filament proteins specifically and abundantly expressed 
in mature neurons. Each subunit protein is different in its 
molecular structure and molecular weight (Hoffman and La- 
sek, 1975; Liem et al., 1978), which is mainly due to a long- 
extended COOH-terminal tall region of NF-M and NF-H. 
All neurofilament triplet proteins comprise three domain 
structures, that is to say, an NH2-terminal head domain, a 
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coiled-coil rod domain of ,,o 310 amino acid residues (Stein- 
ert and Roop, 1988), and a COOH-terminal tail domain. The 
amino acid composition of the coiled-coil rod domain is 
highly conserved between the class I to IV intermediate fila- 
ments. Several lines of evidence support the idea that this 
portion plays an important role in constructing the 10-nm 
filament structure (Van den Heuvel et al., 1987; Albers and 
Fuchs, 1989; Coulombe et al., 1990; Gill et al., 1990; Lu 
and Lane, 1990), and mutation in the coiled-coil region 
results in severe disorganization of the filament assembly 
(Cheng et al., 1992; Chipev et al., 1992; Rothnagel et al., 
1992). On the other hand, both flanking terminal domains 
vary with each component of the intermediate filaments in- 
cluding the neurofilament triplet proteins, and the variability 
in these regions may determine the specific functions of each 
member. The length of the amino acid chain of the carboxy- 
terminal tail domain differs greatly among the members of 
intermediate filaments. NF-H has an exceptionally long 
COOl-l-terminal composed of 607 amino acids. 

Morphologically, the COOH-terminal of the H subunit is 
suggested to participate in the formation of crossbridges be- 
tween NFs (Hirokawa, 1982; Hirokawa et al. 1984). The 
NF-H COOH-terminal includes consensus tripeptide se- 
quences (Lys-Ser-Pro: KSP) (Geisler et al., 1987), which 
are the preferential sites for phosphorylation by second 
messenger-independent protein kinase (Leterrier et al., 
1981; Tanaka et al., 1984; Hisanaga et al., 1991; Miyasaka 
et al., 1993), and in turn, the degree of phosphorylation is 
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believed to have a great effect on regulation of the interaction 
of NFs with other cytoskeletal proteins and conformation of 
NF-H (Hisanaga and Hirokawa, 1989; Shea et al., 1990). 
For example, phosphorylation of NF-H at the COOH- 
terminal has been implicated in the regulation of the interac- 
tion of NFs with MTs (Miyasaka et al., 1991). In addition, 
protein kinase only localized in neurons has been found, 
which catalyzes phosphorylation of the NF-H COOH- 
terminal (Wible et al., 1989). 

Interestingly, NF-H is known as a protein which is ex- 
pressed latest through the course of neuronal development 
(Shaw and Weber, 1982; Willard and Simon, 1983; Pachter 
and Liem, 1984; Szaro and Gainer, 1988; Szaro et al., 1989; 
Charnas et al., 1992). This developmentally regulated man- 
ner of expression also brings us to the idea that NF-H has 
special functions for establishing the more sophisticated ar- 
chitecture of the mature neuron, or that NF-H is under sepa- 
rate developmental control and itself behaves in a different 
manner from that seen in the case of NF-L dynamics. Al- 
though the existence of neurofilaments has been known 
reproducibly for over a century by Ram6n y Cajal (1899) and 
Bielshowsky (1908) by using silver impregnation method as 
neurofibrils, and much has since been clarified about the bio- 
chemical nature regarding the amino acid sequence and 
phosphorylation of particular epitopes, their dynamics in 
vivo and their exact cellular functions are still open ques- 
tions. 

In the previous study (Okabe et al., 1993), we demon- 
strated that a major component of the neuronal intermediate 
filament triplet protein, NF-L, which is strongly suggested 
to construct the backbone of the neurofilament arrays in 
axons (Wiltard and Simon, 1981; Hirokawa et al., 1984), 
turns over within a small region of the axoplasm by the mech- 
anism of lateral and segmental incorporation of new sub- 
units, and the form of NFs travelling down the axon is not 
polymer but oligomer or monomer. Coincidentally, we esti- 
mated the recovery half time of the photobleached area to 
elucidate the dynamic properties of NFs in the axon, and it 
was determined to be "~40 min. From the aforementioned 
many lines of evidence concerning the biochemical and de- 
velopmental aspects, it is strongly suggested that NF-H be- 
haves in a different manner from that of NF-L. However, di- 
rect evidence that NF-H behaves in a specific manner, or that 
it may be transported by a different mechanism from NF-L, 
has not been reported yet. Also unanswered is whether NF-H 
subunits turn over between the soluble form and preexisting 
filaments once the triplet is established. In the present study, 
the combination of microinjection and fluorescence recovery 
after photobleaching procedures was applied for evaluating 
the dynamic behavior of NF-H, and the obtained results were 
compared wit.h that of NF-L to unveil a part of the mecha- 
nism by which the specialized behavior of NF-H in the neu- 
ron is regulated and the architecture of the neuronal inter- 
mediate filament is maintained. 

Materials and Methods 

Preparation of the Neurofilaments 
Neurofilaments were purified according to the methods described elsewhere 
(Geisler and Weber, 1981; Hisanaga and Hirokawa, 1988). Briefly, bovine 
spinal cords purchased from a local slaughterhouse were immediately im- 
mersed in crushed ice and within an hour meninges with blood vessels were 

removed with a pincette. They were then homogenized in an equal volume 
of PEM buffer (100 mM Pipes, 1 mM EGTA, and l mM MgCI2 pH 6.6) 
supplemented with 1 ~tg/ml leupeptine, I mM PMSF, and I mM DTT. Next 
they were cooled down for half an hour and centrifuged at 14,000 rpm in 
a Beckman JA-14 fixed angle rotor (Beckman Instrs., Inc., Fullerton, CA) 
for 30 min. Supernatants were collected and glycerol was added to 20% of 
the final volume followed by centrifugation at 25,000 rpm (Beckman 45Ti) 
for I h. One cycle of polymerization and depolymerization was carried out 
to remove tubulins or other contaminating proteins. The crude extract ob- 
tained was applied to an anion exchange chromatographic column (DE-52; 
Whatmann, Maidstone, England) preequilibrated with 6 M urea buffer 
(6 M urea, 1 mM EDTA, 1 mM EGTA, 100 mM phosphate buffer, pH 7.5, 
I mM DTT, 0.5 raM PMSF, and 1/tg/ml leupeptine). Fractions were eluted 
with the same buffer of preequilibration with a linear gradient of sodium 
chloride ranging from 0 to 250 mM and were collected with a fraction cot- 
lector. The obtained fractions were checked by SDS-gel electrophoresis to 
determine which fractions contained the protein of our objective. After 
confirming the fractions, eluents containing neurofilament protein were col- 
lected and concentrated by ultrafiltration to "~2 mg/mi, The concentrated 
NF solution was dialyzed against an assembly buffer P20EM (20 mM 
Pipes, 1 mM EGTA, 1 mM MgC12, 1 mM EDTA, 1 mM DTT, and 0,17 M 
NaC1, pH 6.6) overnight to remove urea and then was used for labeling with 
fluorescent dyes or biotinylated probes. The part of the solution not used 
immediately was frozen under liquid nitrogen in the form of small aliquots 
and stored at -80°C. 

Labeling of the Neurofilaments with Fluorescent or 
Biotinylated Probes 
For the purpose of labeling with fluorescent agents or biotin compounds, 
neurofilamant protein stored in the form of frozen small aliquots, which 
took on a polymerized form, was used after dissolving in 6 M urea buffer 
to alter the state of the protein into monomers. Because labeling of the NF 
protein with sulfhydryl-specific maleimide was successfully achieved previ- 
ously (Angelides et al., 1989; Okabe et al., 1993), we used 5'-iodo- 
acetoamide fluorescein (Molecular Probes Inc., Eugene, OR) and rnaleimi- 
dobutyryl biocytin (MBB) (Molecular Probes, Inc.) dissolved in DMSO to 
concentrations of 50 and 25 mg/ml, respectively. For NF-L, sequence anal- 
ysis has shown only one cysteine residue at position 321 (Lewis and Cowan, 
1985), meaning that the reaction between protein suifhydryl (SH) and the 
agents would be specific and stoichiometric (Okabe et al., 1993), and there- 
fore labeling of NF-L is achieved at the stoichiomelry of I:1. On the other 
hand, NF-H has four cysteine residues within its primary structure (Julien 
et al., 1988; Chin and Liem, 1990). In the case of NF-H, to the best of 
our knowledge, there have been no reports about labeling with sulthydryl- 
specific maleimide, and we were able to carry out labeling with these agents 
successfully. 

The reactions were carried out for 2 h at room temperature or 6 h at 4°C, 
and were stopped by adding DTT to a final concann'ation of 1 mM. The 
reactants were applied to a desalting column (gel filtration column) PD-I0 
(Pharmacia LKB, Uppsala, Sweden) and eluted with I ml of 6 M urea buffer 
three times. The obtained solution containing labeled protein was deter- 
mined by the assay of Bradford (1976), and fractions comaining more than 
2 mg of the protein were dialyzed against the assembly buffer to eliminate 
excess fluorophore and urea as mentioned before. The part of the solution 
not used immediately was frozen under liquid nitrogen in the form of small 
aliquots and stored at -80°C. 

For usage, the assembled protein was centrifuged, solubllized in 6 M 
urea buffer to attain a disassembled monomeric state, and dialyzed against 
10,000 vol of injection buffer (5 mM Hepes, 1 mM DTT, 1 mM EDTA, and 
1 mM EGTA, pH 8.5) for more than 6 h. This NF protein was then used 
for microinjection. 

Cell Culture 
Dorsal root ganglion (DRG) sensory neurons were used for cell culture. 
They were cultured according to the method previously described (Okabe 
and Hirokawa, 1990). Briefly, young adult mice (C57 BL) ran~ing from 8 
to 12 weeks old were killed to obtain neurons for culture. The dissected 
DRGs were dissociated by immersing them in 0.25 % collagenase (Wako, 
Co., Osaka, Japan) followed by 0.25% trypsin (Difco, Detroit, MI) solu- 
tion, then plated onto a coverslip which was attached to the bottom of a 35- 
mm dish in which a 12-ram hole had been drilled, and grown in MEM sup- 
plemented with horse serum (GIBCO BRL, Gaithersbuvg, MD) and fetal 
calf serum (Mitsubishi Kasei Co., Tokyo, Japan). Nerve growth factor 
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(Takara, Kyoto, Japan) was added to a concentration of ,o50 ng/mL. After 
that, they were incubated at 37°C for 12 h for the photobleaching experi- 
ment and 48 h for immunoelectron microscopic examination. 

Bovine fibroblast cell line BSC1 maintained in our laboratory was used 
for the study. The cells stored in liquid nitrogen were melted quickly in a 
warm bath and resuspended in DMEM containing 10% fetal calf serum 
(GIBCO BRL, Galthersburg, MD) after removal of the cryoprotectant, 
DMSO. The cells were allowed to grow and were used for the experiment 
after 8 h. 

Microinjection Technique and Fluorescence Recovery 
After Photobleaching 
These procedures were carried out as reported previously (Okabe and 
Hirokawa, 1990; Vikstrom et al., 1992; Okabe et al., 1993). A detailed 
description of the optical alignment for the fluorescence recovery after pho- 
tobleaching (FRAP) method can be obtained from several reports (Okabe 
and Hirokawa, 1990; Tanaka and Kirschner, 1991; Ok, abe et al., 1993). 
Microinjection of the labeled NF subunit for the photobleaching experimen- 
tal run was performed with DRG neurons 12 h after plating onto D-poly- 
lysine-coated coverslips when the neurons had no neurites. It was recom- 
mended that the injection of the tagged proteins is most appropriate when 
the cells are without neurites or with only minor sprouting, as incorporation 
of the injected proteins into the cytoskeletal arrays of neurites will be 
achieved most efficiently (Okabe et al., 1993). After allowing the cells to 
grow freely in an incubator for a further 12-24 h, photobleaching as de- 
scribed previously was carried out. By doing so, the influence of the pres- 
sure-directed incorporation of neurofilaments on the measurement of the 
cytoskeletal dynamics can be mitigated. The results after the photobleach- 
ing procedure were recorded with Argus-100 (Hamamatsu Photonics, Co., 
Hamamatsu, Japan) under low-light level microscopy at various times to as- 
sess the recovery of fluorescence at the bleached zone. The obtained data 
were analyzed by Argus-100 to quantify the rate of fluorescence recovery 
and to estimate the value of the recovery half time. 

Detergent Extraction of DRG Cell 
Detergent extraction was carried out by a procedure similar to that de- 
scribed by Okabe et al. (1993). However, we adopted more stringent condi- 
tions, where 0.5% Triton X-100 in PHEM (60 mM Pipes, 25 mM Hepes, 
10 mM EGTA, 2 mM MgCI2, pH 6.6) buffer was used for 5 rain. 

Immunoelectron Microscopy and Immunofluorescence 
Microinjection of NF-H labeled with maleimidobntyryl biocytin was per- 
formed to visualize the incorporation of the injected proteins into the intrin- 
sic neurofilament network of a neuron. In this case, in contrast to the pho- 
tobleaching fluorescence recovery experiment, plated DRG cells were 
allowed to grow for ,,48 h, because it is hardly possible to evaluate the dy- 
namic turnover of the NF-H within the preexisting axonal neurofilament ar- 
rays unless mature neurites have developed. 1-24 h after microinjection the 
cells were processed for immunoelectron microscopical investigation. Prior 
to fixation, the dishes were washed with warm PBS or PHEM buffer, and 
permeabilized with 0.3% Triton X-100 supplemented with 1 mM GTP, 10 
#M Taxol, and 10% glycerol dissolved in PHEM buffer. They were fixed 
with 0.1% ghitaraldehyde and 2% paraformaldehyde buffered by PBS for 
half an hour. Then the cells were treated with 5% skimmed milk solution 
to block nonspecific reaction with antibodies. The first antibody, rabbit 
anti-biotin antibody (Enzo Biochem. Inc., New York), was incubated with 
cells at room temperature for 3 h, followed by overnight incubation with 
the second antibody, anti-rabbit antibody IgG fraction conjugated with 10- 
nm colloidal gold particles (Amersham International Pie., Buckingham- 
shire, UK). After washing the culture dishes, rhodamine-conjugated third 
antibody was used to visualize the ceils which had been injected with MBB- 
labeled NF proteins. After identifying the cells incorporating the NF-H 
protein labeled with MBB, they were postfixed with 1% ghtaraldehyde con- 
taining 0.1% tannic acid in 100 mM phosphate buffer. Then they were im- 
mersed in 1% osmium tetraoxide in PBS for 10 min, followed by extensive 
washing with distilled water. After that they were stained with 1% uranyl 
acetate, dehydrated with a series of graded concentrations of ethanol, and 
embedded in Epon (Polyscience Inc., Warrington, PA). The Epon blocks 
were processed for ultrathin sections, and these sections were observed un- 
der an electron microscope (1200 Ex; JEOL) after staining with 1% uranyl 
acetate and 1% lead citrate. 

Immunofluoreseence studies of the plated cells for the detection of intrin- 

sic NF-H expression at the time corresponding to both microinjection 
(,~12 h after plating) and the photobleaching run (,°24 h after plating) were 
also done. A detailed description of the immunostaining procedure can be 
found in the previous report (Okabe et al., 1993). Anti-neurofilament H 
(Biomakor, Rehovot, Israel) was used at a dilution of 1:100 and was in- 
cubated with the cells for I h. After washing the dishes with PBS, the second 
antibody was reacted for 30 rain and the cells were then observed under a 
Zeiss Axiophot microscope. 

For immunostainlng of vimentin filament in BSC1 injected with 
fluorescein-labeled NF-L and NF-H, we followed the procedures of Okabe 
et al. (1993). 

Negative Staining and Immunogold Labeling 
of Reconstructed NFs 
Neurofilament proteins labeled with the aforementioned two tagging agents 
were assembled in assembly buffer as described above the examine their 
ability to polymerize after chemical modification. NF-L, NF-H, and their 
mixture at molar ratios of 2:1 and 4:1 were examined by negative staining 
according to Tokutake et al. (1984). Immunogold labeling of the NFs was 
carried out essentially according to Balin et al. (1991), but with several mi- 
nor modifications. NFs reassembled from native NF-L and chemically 
modified NF-H at the molar ratio of 4:l were fixed with 2% paraformalde- 
hyde supplemented with 0.1% glutaraldehyde for 30 min, and after being 
dispersed on carbon, formvar-coated grids, they were washed with droplets 
of PBS for several times. To prevent nonspecific reaction of the antibody, 
the whole grid was blocked with 5% skimmed milk before incubation with 
the first antibody. In the case of single labeling of NF-H, the first antibody 
was mouse anti-NF-H (Biomakor) at a dilution of 1:100, and for double- 
labeling rabbit anti-NF-L (Chemicon International Inc., Temecula, CA) at 
a dilution of 1:40 was also added. After incubating with the first antibody 
for 2 h, the grids were washed with TBS. Following thorough washing, the 
grids were incubated with secondary antibodies diluted to 1:20 in TBS for 
1 h. The secondary antibodies were either anti-rabbit or anti-mouse anti- 
body conjugated with 10 and 5 nm gold, respectively. After incubation, the 
grids were washed and postfixed with fixative (2 % paraformaldehyde and 
0.1% glutaraldehyde), washed again, and then stained with 4% methanolic 
uranyl acetate. For control for each immunogold labeling, the following 
procedures were also performed: (a) incubation of NFs without a primary 
antibody, (b) incubation of NFs with antibodies specific for vimentin inter- 
mediate filament (Amersham International Plc.). 

Results 

Characterization of the Neurofilament Used 
for Microinjection 
To assess the state of the labeling by 5'-iodoacetoamide 
fluorescein, we carried out electrophoresis of the labeled 
protein both before and after passing through the gel filtra- 
tion colunm. Before the procedure, the lane of SDS-gel elec- 
trophoresis under ultraviolet illumination revealed unbound- 
dye at almost the same level as the CBB dye-front (data not 
shown). The labeled protein could also be recognized at a 
level of mobility corresponding to those of NF-L and NF-H. 
Then, after passing through the gel filtration column, the un- 
conjugated dye was first completely eliminated from the 
preparative sample to be used for microinjection (Fig. 1, 
lanes 1 and 4). This had to be done for two reasons, both 
of which would likely affect the monitoring accuracy of the 
dynamics of the cytoskeletal proteins. First, unbound dye 
generates more free radicals than the state where no un- 
bound dye exists. Free radicals are noxious to cells under in- 
vestigation (Vigers et al., 1988). Second, injected unbound 
dye probably hastens the apparent recovery time of fluores- 
cence, as it is assumed to behave like a molecule that can eas- 
ily move into the photobleached region by simple diffusion. 
On observation of the dye-stained gel, there was no upward 
or downward shift of the bands in relative mobility, implying 
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Figure 1. Characterization of 
fluorescein- or biotin-labeled neu- 
rofilament polypeptides L and H. 
SDS-polyacrylamide gel analysis of 
the preparation of fluorescein- and 
biotin-labeled NFs. Fluoreseein- 
labeled NF-L and H are visualized by 

UV illuminator (lanes 1 and 4) or by dye (CBB) staining (lanes 2 
and 5). Biotin-labeled NFs are stained with CBB (lanes 3 and 6). 
In both cases, only a single band is detectable. Mixture of native 
NF-L and fluorescently labeled NF-H at the molar ratio NF-L/ 
NF-H = 4 is visualized by UV illuminator (lane 7) and by CBB 
staining (lane 8). Note that only NF-H is visible in lane 7, and the 
NF-L band in lane 8 is much thicker than that of NF-H. Arrowhead 
indicates dyefront, where no single band can be observed, indicat- 
ing complete elimination of the unbound dye. Mr: molecular 
weight standards, from top to bottom, 200, 116, 92, and 31 kD. 

that the overall profile of NFs after chemical modification is 
very similar to unlabeled proteins. Furthermore, no other 
contaminating or degrading proteins could be seen as exclu- 
sive bands on the gel. 

It is essential to evaluate the ability of the neurofilarnent 
protein to polymerize while it is labeled with various kinds 
of agents which react with proteins at SH-group sites, before 
utilizing them as a tool for investigating the dynamics of the 
proteins. Although cysteine residues in the rod domain of the 
neurofilament triplet protein have been suggested to be in- 
volved in the formation of cross-linking between filaments, 
cleavage of these bonds by treatment with mercaptoethanol 
did not destroy or bring them into a fragile state (Carden and 
Eagles, 1983). However, cysteine residues where fluorescein 
or biotin compounds chemically bind are considered to be 
important for modulating assembly properties of NF-H, es- 
pecially those located at the conserved region of the head 
(Chin et al., 1990; Gill et al., 1990; Wong and Cleveland, 
1990) and rod domains. Taking both these factors into con- 
sideration, evaluation of the assembly competence of the 
chemically modified NF subunits at their cysteine residues 
is indispensable, because our experiment is based mainly on 
the assumption that these chemically modified NF subunits 
behave the same as those in native form. We therefore per- 
formed the following two experimental runs to address this 
issue: in vivo and in vitro reassembly studies together with 
immunogold labeling. 

In vitro reassembly of NFs was performed by dialyzing the 
monomer NF solution dissolved in urea buffer against as- 
sembly buffer at 37°C for 12 h. After that, the solution con- 
taining NFs was dispersed onto grids and incubated in 4% 
uranyl acetate solution for 2 min to negatively stain the fila- 
ments. In this portion of the study, three pats of the NF solu- 
tion with different proportions of subunit content were pre- 
pared. The first sample contained only the NF-L subunit at 
a concentration of ~100 #g/ml, which was labeled with 
maleimidobutyryl biocytin or 5'-iodoacetoamide fluores- 
cein. They formed bona fide smooth-surfaced long filaments 
(Fig. 2, A and B) with a diameter of ~10 nm (typical 10-urn 
filament; Balin et al., 1991), and were indistinguishable 
from unlabeled NF-L proteins, suggesting that the ability of 
the NF-L subunit to assemble after labeling with tagging 
agents was not disturbed. 

Examining the ability of the NF-H protein to assemble it- 

Figure 2. Electron microscopical observation of the negatively 
stained neurofilaments. (A) Fluorescein- or (B) biotin-labeled 
NF-L formed smooth-walled filaments with a diameter of 10 nm. 
However, NF-H per se did not form a smooth 10-nm filament but 
a stubby thread-like structure (C, fluorescein-labeled NF-H; D, 
biotin-labeled NF-H). Bar, 100 nm. 

self into the filamentous structure is not as easy as in the case 
of NF-L, in the point that it can not form smooth-surfaced 
10-rim filaments without existence of NF-L. Although NF-H 
proper can form so-called component-specific filaments as 
reported by Tokutake et al. (1984), it is necessary to incubate 
it with native NF-L and to evaluate the appearance of fila- 
ments reconstituted from both proteins. So, in the second 
part of the experiment, we used the solution containing both 
NF-L and NF-H at a molar ratio of 4:l. In this case, the NF-L 
protein was not labeled with modifying agents such as 
5'-iodoacetoamide fluorescein or maleimidobutyryl biocy- 
tin, but was used in its native form. Therefore, by observing 
the degree of the apparently fine filamentous structures that 
these proteins could form, it could be determined whether 
the injected NF-H that was labeled with either fluorophore 
or biotin compound maintained its capability to coassemble 
with endogenous NFs. As shown in Fig. 3, A and B, both 
fluorophore- and biotin-labeled NF-H protein can form 10- 
nm filament structures without the short thread-like struc- 
tures composed solely of NF-H which are not able to associ- 
ate with NFs. 

Although the above observations seem to be enough to 
prove the assembly competence of conjugated NF-H, we also 
carried out immunogold labeling of the reconstituted fila- 
ments to provide additional evidence that chemically mod- 
ified NF-H can behave in a similar manner to the native mol- 
ecule. In the case of fluorescently labeled NF-H coincubated 
with native NF-L, the filaments were decorated with both 
10- and 5-rim gold on their smooth surface (Fig. 3 C). Simi- 
lar image was also obtained in the case of biotin labeled 
NF-H coincubated with native NF-L (Fig. 3 D). Distribution 
of the 5-rim gold particles, which depicts localization of 
chemically modified NF-H, did not show regular intervals 
on the filamentous structure, being compatible with the re- 
sults of the experiment by using the quick freeze deep etch 
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Figure 3. Electron micro- 
scopical observation of the 
negatively stained and im- 
munogold labeled NFs. NFs 
reconstructed from native 
NF-L and (A) fluorescein- or 
(B) biotin-labeled NF-H at a 
molar ration of 4:1 was nega- 
tively stained with 4% metha- 
nolic uranyl acetate. In both 
pictures there are few short 
thread-like filaments. Im- 
munogold labeling of the 
reconstituted neurofilaments 
from the same content as de- 
scribed in A and B shows 
double-labeling of the same 
filaments with 5- and 10-nm 
gold, where 5-nm gold parti- 
cles depict localization of 
tagged H subunits and 10-nm 
gold particles decorate the na- 
tive L subunit (C, fluorescein- 
labeled NF-H; D, biotin- 
labeled N-F-H). Control study 
with incubation of anti- 
vimentin antibody as a first 
antibody shows few gold par- 
ticles on the NFs (E). Bar, 
100 nm. 

method (Hirokawa et al., 1984). The width of the filaments 
varied along their length because of antibody decoration on 
their surface. These decorations with immunogold could be 
specific with respect to the control study, where first anti- 
body was absent (data not shown) or anti-vimentin antibody 
was incubated (Fig. 3 E). In the control study, we could not 
find gold particles decorating the surface of the reassembled 
NFs. Although the negative staining pattern seen in the case 
of NFs processed for immunogold labeling did not resemble 
that before processing (Fig. 3, A and B), this was probably 
due to the immunogold processing itself, and a similar view 
was presented in a previous study (Balin et al., 1991). 

Finally, the solution containing only NF-H (,x,100 #g/nil) 
was also dialyzed against the assembly buffer to confirm the 
capability of the chemically modified H subunlt to form 
component- or subunit-specific filaments. Although the H 
subunit has been reported as not forming homopolymers 
(Zackroff et al., 1982), it has been suggested that NF-M and 
NF-H proteins assemble themselves,/espectively, to make 
component-specific filaments (Tokutake et al., 1984). As ex- 
pected from its known in vitro assembly properties, NF-H 
made very short thread-like filaments of a slightly smaller di- 
ameter (less than 10 nm; Fig. 2, C and D), as also reported 
by Gardner et al. (1984). 

The in vivo experiment of microinjecting labeled NFs into 
bovine fibroblast BSC1 (Fig. 4, A and C) revealed that the 
injected NF proteins followed almost the same intracellular 
distribution pattern as the intrinsic intermediate filament 
protein of BSC1 cells visualized by anti-vimentin antibody 
(Fig. 4, B and D), suggesting that they coassemble with the 
endogenous vimentin filament network. This is consistent 

with the reports that describe the coassembly of Class IN and 
IV intermediate filaments (Chin and Liem, 1989; Monterio 
and Cleveland, 1989; Soifer et al., 1991). From these two 
sets of experiments concerning the biochemical and biologi- 
cal properties of tagged neurofilament proteins, it is indi- 
cated that the labeled subunit protein retains its ability to 
form the 10-nm filamentous structure. 

Immunofluorescent Detection of NF-H Protein in 
DRG before Microinjection 
We used DRG cells of large diameter of investigate the dy- 
namic behavior of NF protein, because it has been reported 
that cells with a small diameter do not express or express 
only Scanty amounts of NF protein (Duee and Keen, 1977). 
In addition, we have also confirmed before carrying out 
microinjection and FRAP that the dissociated neurons 
definitely express endogenous NF-H. At 10 and 30 h after 
plating the cells, they expressed NF-H as revealed by im- 
munofluorescence (Fig. 5). A DRG cell with a long extend- 
ing axon visualized by immunofluorescence (Fig. 5, arrow) 
was used for analysis by FRAP. As a criterion for the 
identification of DRG axon used for the FRAP experiment 
on the plating dish, we chose a long extended neurite not 
branched at the proximal portion, corresponding to the pe- 
ripheral ramus in living animals. 

Detergent Extraction of DRG Cells 
We performed detergent extraction of DRG cells that were 
injected with either rhodamine-labeled BSA or fluorescein- 
labeled NF-H. DRG cells without neurites or with minor 
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Figure 4. A fibroblast BSC1 in- 
jected with fluorescently labeled 
NF-H (A and B) or NF-L (C and 
D), fixed 16 h after microinjec- 
tion. In both cases, cells were 
processed for indirect immu- 
nofluorescence for anti-vimentin 
antibodies and rhodamine labeled 
second antibodies. Note that the 
filament organizations of both 
sets of panels are almost identical 
to each other (arrowheads). Bar, 
10/~m. 

processes were injected with a mixture of these two proteins. 
They were permitted to grow freely in an incubator for ,~24 
h until the neurites had grown to a length of 200-300/zm. 
At that time, if the injected proteins tagged with fluorogenic 
probes had actually been incorporated into the preexisting 
intermediate filament network, they could no longer be to- 
tally lost from the neurites after detergent extraction. That 
is to say, incorporated NF subunits would be resistant to de- 
tergent extraction, and this would be reflected by the fact that 
the intensity of the fluorescence of the neurites after extrac- 
tion would not be so different from that before extraction. 

In the experiment presented here, two differently labeled 
proteins, NF-H protein and a non-cytoskeletal protein, BSA, 

were injected into a DRG cell. Before detergent extraction, 
as viewed by rhodamine and fluorescein band-pass filters, 
the neurites showed relatively strong intensity of fluores- 
cence with a homogeneous pattern (Fig. 6, A and C). The 
fluorescence intensity of the axon (indicating the presence of 
NF-H), although slightly decreased, was not so greatly 
changed after detergent extraction (Fig. 6 B), while the sig- 
nal intensity of rhodamine was almost lost (Fig. 6 D). How- 
ever, small spotty intensity in the cell body was still observed 
after detergent extraction in the case of rhodamine BSA (data 
not shown). It is suggested that the remaining intensity does 

Figure 5. Immunofluorescence micrographs of DRG cell stained 
with anti-NF-H antibody. About 30 h after plating the cell (B), a 
long, extended neurite was clearly visualized. Arrow indicates the 
site where photobleaching was carded out. 12 h after plating the 
cell, there were no identifiable processes (A). Microinjection of 
fluorescently labeled NF-H into cells was performed as shown in 
A. Bar, 10 ttm. 

Figure 6. Detergent extraction of the axon of DRG cell injected with 
fluorescenfly labeled NF-H (A and B) and with rhodamine-labeled 
BSA (C and/9). Before extraction, the processes could be visual- 
ized by low-light level microscopy (A and C). After detergent ex- 
traction, the signal from the rhodamine-BSA-injected cell was lost 
(D), and the signal intensity from the fluorescein-NF-H-injected 
cell was also slightly decreased compared to that of preextraction. 
Bar, 10 #m. 

The Journal of Cell Biology, Volume 127. 1994 178 



G 
I O0 

>~ 
o1 
t -  

4.J 
c- 

0 length (micrometer) 30 

O.,in 

H 
1 O0 

O) ( -  
(D 

¢- 

0 
0 length (micrometer 

1 O0 

¢- 
(D 

r -  

30 

30rain 

0 
0 length (micrometer) 30 

6 0 m i n  

Figure 7. Photobleaching fluores- 
cence recovery of DRG axon in- 
jected with fluorescently labeled 
NF-H. Fluorescent images ofpho- 
tobleached NFs were recorded 
intermittently. Rapid recovery of 
the bleached zone was observed. 
Almost complete recovery was 
achieved 30 min after photo- 
bleaching as shown in H. Quanti- 
tative measurement of signal in- 
tensity and location showed no 
antero- or retrograde movement 
of the bleached zone (G-I). Ar- 
rowheads (A-F) indicate the 
bleached zone. Elapsed time in 
min is indicated in the right bot- 
tom comer of each panel. Bar, 
10 t~m. 

not represent the physiological incorporation of the injected 
BSA into the preexisting NF network, but rather that it is be- 
ing processed in vesicles such as lysosomes. 

Fluorescence Recovery after Photobleaching (FRAP) 
of DRG Cells 
Although several arguments have been raised concerning the 
reliability of the photobleach fluorescence recovery method, 
it has proved to be useful for assessing the local turnover of 
the NF protein (Okabe and Hirokawa, 1993). A major disad- 
vantage of the method used here was the possible photoabla- 
tion or photodamage of the cytoskeletal components labeled 
with fluorogenic probes or of the adjacent protein structures 
mainly due to generation of free radicals by the application 
of the argon laser beam (Vigers et al., 1988). However, we 
have also demonstrated that the level of energy used for pho- 
tobleaching determines whether photodamage to the intra- 
cellular components occurs or not (Okabe et al., 1993). The 
present experiment was performed under the same energy 
level conditions as those that did not disturb the proteins in 
the previous study (Okabe et al., 1993). 

Firstly, we performed photobleaching of a DRG cell in- 
jected with fluorescein labeled NF-H (Fig. 7). The argon la- 
ser beam was applied to the small area of neurites for 1/15 
s. Then the bleached area was monitored under low-light 
level microscopy to follow the recovery of fluorescence in- 

tensity. The bleached area did not move either antero- or 
retrogradely (Fig. 7, arrowheads). Almost complete recov- 
ery was observed 46 min after photobleaching the axon (Fig. 
7 E), and after 60 min the fluorescence reached the same 
state as that of prebleaching. There was no outstanding 
deformity of the axon throughout the course of fluorescence 
recovery. The bleached zone restored its fluorescence inten- 
sity relatively rapidly, but the site of bleaching also did not 
move in terms of quantitative measurements of the intensity 
profile (Fig. 7, G-l). 

Secondly, to compare the local turnover rate of NF-H with 
that of NF-L, the same experiment was also carried out with 
NF-L (Fig. 8, left column). In the previous study, the recov- 
ery half time of NF-L was nearly 40 min (Okabe et al., 
1993). The slope of the recovery curve in the first hour after 
photobleaching also clearly demonstrates the difference in 
the rate of turnover between NF-L and NF-H (Fig. 9, A and 
B). We calculated the recovery half time in the same manner 
as in the previous study as follows; we quantified the inten- 
sity recovery of the bleached zone by using the data analysis 
mode of Argus-100, and drew a graph with the elapsed time 
on the abscissa and the relative intensity of fluorescence on 
the ordinate. Then a line was drawn from the point of 50% 
on the ordinate, which was parallel to the abscissa, to cross 
the line of the intensity recovery line. From the crossing 
point, a vertical line was drawn to the abscissa, and we read 
the value on the abscissa as the recovery half time. In the 
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Figure 8. Comparison of photobleaching in DRG axons injected 
with fluorescently labeled NF-L (leji column) and NF-H (right 
column). Recovery of fluorescence is considerably slower in the 
case of NF-L. On the contrary, fast recovery was observed in the 
case of NF-H. Arrowheads indicate the zones where photobleach- 
ing run was done. Elapsed time in minutes is indicated in the right 
bottom comer of each picture. Bar, 10 #m. 

same way, other intensity measurement points of NF-L and 
H, respectively, were determined. The estimated recovery 
time for each subunit protein was averaged and the overall 
recovery half time was calculated. For NF-L, the recovery 
half time was 34.0 + 1.7 min (n = 25), and for NF-H the 
value was 18.9 + 1.6 min (n = 30). Comparison of the data 
of the respective subunit proteins clearly demonstrated that 
each behaves in a different manner or is controlled under 
separate mechanisms. 

Thirdly, we have carded out an experiment by injecting a 
mixture of native NF-L and fluorescenfly labeled NF-H at a 
molar ratio of 4:1. In the experiments stated above, we in- 
jected only NF-H or NF-L protein into DRG cells. However, 

NF-H: 18.9 + 1.6 (n = 30) 

30 60 90 120 

elapsed time in minutes 

Figure 9. Graphical presenta- 
tion of the photobleaching flu- 
orescence recovery of both 
NF-L and NF-H. Fluorescence 
intensity of the bleached area 
was plotted against time for 
the axons shown in Fig. 8. Re- 
covery half times calculated 
from these graphs are shown 
on the top of the graphs. For 
NF-L the value was 34 min, 
and for NF-H it was '~19 min. 

the possibility exists that greatly increased amounts of a sin- 
gle subunit in a DRG cell may interfere with the milieu in- 
t6rieur or physiological behavior of NF subunits, especially 
NF-H, because the amount of NF-H incorporated into the 
NF architecture is at least less than that of NF-L. A large ex- 
cess of NF-H, which is not incorporated into the preexisting 
array of neurofilaments, may exist in a form of free monomer 
and may easily replace the NF-H already taken into the fila- 
ments. This phenomenon may hasten the turnover rate of 
NF-H in the cell to be faster than that observed in the cell 
of normal conditions. Therefore, to eliminate this possibility, 
we carried out this experiment as a third part. 

In determining the stoichiometry of NF-H and NF-L being 
injected into DRG, we referred to several reports concerning 
estimated stoichiometry of NF subunits (Chiu et al., 1980; 
Mori and Kurokawa, 1980; Schecket et al., 1980; Brown et 
al., 1981; Moon et al., 1981; Scott et al., 1985). At the same 
time, we performed a reconstruction experiment as de- 
scribed above in another section. At the molar ratio of NF- 
L/NF-H = 2, there were short stubby filaments along with 
long smooth-surfaced filaments typical of 10-nm filaments 
(data not shown). However, by increasing the ratio to NF- 
L/NF-H = 4, almost all the fields examined showed only 
typical 10-nm filaments. Combining both the information 
from the literature and our experimental data, we deter- 
mined the NF-L/NF-H ratio for microinjection as described 
above. As shown in Fig. 10 A, the bleached area in the axon 
apparently recovered its fluorescent intensity faster than in 
the case of NF-L, but was quite similar to that from the injec- 
tion of NF-H only. We performed the same experimental run 
with a mixture of NF-L/NF-H = 4 to confirm that the ob- 
tained data were reproducible (n = 12). In these cases, over- 
all intensity along the neurite was relatively weaker than that 
in the case of NF-H only, since the relative amount of fluores- 
cently labeled NF-H being injected became smaller. How- 
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Figure I1. The recovery half 
time for each set of FRAP ex- 
periment. The recovery half 
time on abscissa and each set 
of the experiment on ordinate. 
(A) Only NF-H. Tv2 = 18.9 
+ 1.6 min (mean + SEM). 
(B) Only NF-L. Tit2 = 34.0 
:l: 1.7 rain. (C) Coinjection of 
NF-L and NF-H at molar ra- 
tion of 4:1. Tl/2 = 18.0 5:1.7 
min. The number presented at 
the top of each column indi- 
cates the number of the cells 
on which FRAP measure- 
ments were carded out. Bars 
indicate the standard error of 
the mean. 

Figure 10. Photobleaching experiment of DRG cells coinjected with 
native NF-L and fluorescently labeled NF-H at a molar ratio of 4:l. 
The overall course of the fluorescence recovery mimics that of DRG 
neurons injected with only NF-H. Elapsed time in minutes is indi- 
cated in the right bottom comer of each picture. Bar, 10/zm. 

ever, the fluorescent intensity was above the limit of sensitiv- 
ity of the SIT-camera, and the estimated recovery halftime 
was 18.0 + 1.7 min (mean + SEM), a value near that of in- 
jecting NF-H only. The recovery half time for each set of ex- 
periment (NF-H, NF-L, and NF-L+NF-H) is summarized 
graphically in Fig. 11. 

lmmunoelectron Microscopical Analysis of NF-H 
Incorporation Sites in the Axoplasm 

To address the question of how NF-H subunits in soluble 
form assemble with preexisting arrays of NFs, we carried out 
immunoelectron microscopical analysis by microinjecting 
biotin-labeled NF-H, which could be clearly detected by 
using anti-biotin antibody and colloidal gold conjugated sec- 

ond antibody. DRG cells 48 h after plating were used for this 
procedure, because at this point the cells had almost fully ex- 
tended axons, a suitable condition for our purpose. After in- 
jecting the tagged NF-H, the cells were fixed at 1, 3, 13, and 
21 h. The conditions and timing of fixation were described 
previously (Okabe et al., 1993). We were able to process the 
cells without causing any kind of damage or abnormal ap- 
pearance possibly resulting from the injection. 1 h after 
microinjection, colloidal gold particles were scattered ran- 
domly along the NF arrays ,,o100 txm from the cell body in 
the axoplasm (Fig. 12 A). In addition, they appeared to have 
a tendency to be abundant in the region where NFs and MTs 
form crossbridges, suggesting the participation of the long 
COOH-terminal of the NF-H protein in forming these struc- 
tures. There were no signs of aggregation formed by the in- 
jected NF-H. At the same time, localization of the injected 
NF-H in the cell body was also observed. The NFs in the cell 
body were densely labeled with colloidal gold. They did not 
show any kind of dense nucleate or have other abnormal ap- 
pearances (data not shown). 

3 h after the microinjection, the gold particles were ob- 
served on the neurofilament in the axon more frequently than 
1 h after (Fig. 12 B). However, the tendency of lateral incor- 
poration of the molecule into the preexisting filaments was 
still observed, suggesting random insertion of the injected 
NF-H subunit protein. No direct evidence for bulk replace- 
ment of the NF-H subunit protein at the proximal portion of 
the axoplasm was seen. After 13 h, the density of the inser- 
tion visualized by the gold particles had become greater (Fig. 
12 C). 21 h after microinjection, more than 90% of the 
neurofilaments were labeled with colloidal gold (Fig. 12 D), 
and there was no distinct difference in the patterns of the in- 
corporation of the biotin-labeled subunits between NF-H and 
NF-L. In the case of NF-L as reported by Okabe et al. 
(1993), the incorporation of the molecule was almost homo- 
geneous, showing no specific pattern of tendency. In the case 
of NF-H, as periodical arrangement within NFs according 
to antibody decoration has been reported (Willard, 1981), 
periodical labeling of incorporated NF-H can be expected, 
but such obvious tendency could not be observed in our ex- 
periment. 
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Figure 12. Immunoelectron microscopy of DRG axons injected 
with biotin-labeled NF-H. (A) Axons of DRG cells permeabilized 
and fixed about 1 h after microinjection. The processed area is 
'°200 t~m from the cell body. A few gold particles are associated 
with NFs. (B) Region of the axon ,v200 ~m from the cell body, 
fixed 3 h after microinjection. Gold particles increased in number 
but do not form distinct segments. (C) 13 h after microinjection. 
(D) 21 h after microinjection. 

Discussion 

Turnover of  the NF-H Subunit in the Sensory 
Nerve Axon 

FRAP has been suggested to provide us with two sets of in- 
formation, one about the ability of subunits to assemble or 
disassemble locally, and the other about the manner in which 
cytoskeletal proteins are transported (Hirokawa and Okabe, 
1992; Hirokawa, 1993). In the present study, we have ob- 
tained data which indicate that the local turnover of NF-H 
is significantly faster than that of NF-L. The recovery half- 
time of fluorescence intensity was only '~19 rain in the case 
of NF-H, whereas that for NF-L was ~35 rain. The restora- 
tion of the bleached zone was rapidly achieved in DRG 
microinjected with NF-H without moving in either antero- 
or retrograde direction. With reference to previous studies 
dealing with cytoskeletal dynamics (Okabe and Hirokawa, 
1990, 1993; Okabe et al., 1993), it is reasonable to conclude 
from our experiment that NF-H is a dynamic component of 
NF arrays turning over rapidly, and it is strongly suggested 
that it does not move by polymer sliding mechanism as 
reported previously (Lasek, 1986), but possibly in a form of 
small oligomers. Also answered by our study is the question 
of whether or not the NF-H subunit exchanges between solu- 
ble and filamentous pools once the triplet is assembled. The 
conclusion is compatible with earlier studies formulating 
that the basic unit of NFs transported by SCa slow axonal 
transport is in the oligomeric state (Nixon, 1992; Okabe et 
al., 1993). 

By immunoelectron microscopy, incorporation of biotin- 
labeled NF-H was quite sparse in the preexisting NF arrays 
in the axoplasm, but one day later the density of the incorpo- 
ration sites had increased. We actually expected some perio- 
dicity in the case of NF-H, but in our experimental system 
a prominent difference between NF-L and NF-H in their pat- 
tern of NF subunit incorporation was not observed. This may 
have resulted partially from the resolution of techniques em- 
ployed in the present study. The time course of NF-H incor- 
poration into the preexisting NFs, taking after that of NF-L, 
supports the idea that both NF subunits are transported by 
the same slow axonal transport called SCa. In addition, the 
fact that colloidal gold decoration was more concentrated in 
the neighborhood of MTs also suggests the function of the 
H subunit in the formation of crossbridges between MTs and 
NFs (Hirokawa, 1982; Miyasaka et al., 1993). 

From another point of view, our result from the recon- 
struction experiment using native NF-L and ftuorescently la- 
beled NF-H at a molar ratio of 4:l might be supportive data 
for determining how and by what ratio the neurofilament is 
constructed in the axoplasm. Several reports on the esti- 
mated molar ratio of neurofilament polypeptides vary widely 
from ~2:2:1 for L/M/H (Moon et al., 1981) to 9:2:1 (Mori 
and Kurokawa, 1980) with various intermediate values (Chiu 
et al., 1980; Schecket et al., 1980; Brown et al., 1981; Scott 
et al., 1985; Mulligan et al., 1991), but the exact ratio has 
not yet been determined. There are obviously several dif- 
ficulties in determining the exact ratio, but delineating them 
is beyond the scope of the present study. Although by our 
study using immunoelectron microscopy, the value of the 
molar ratio cannot be predicted because of inherent technical 
limitations, the reconstitution experiment by varying the 
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NF-L/NF-H ratio suggests that the amount of NF-H assem- 
bled into neurofilaments is less than that of NF-L as reported 
by several studies (Mori and Kurokawa, 1980) despite the 
absence of NF-M in the reconstitution experiment. 

Although the recovery half time of NF-H was revealed to 
be considerably faster than that of NF-L, one important 
question still remains unsolved. It is whether or not the local 
turnover of the protein is directly related to the velocity of 
slow axonal transport. In the case of tubulin and actin, they 
are believed to be transported at different rates (Tashiro and 
Komiya, 1989), and the turnover rates of the two proteins are 
also different (Okabe and Hirokawa, 1990). Fast transported 
tubulin turned over slower than slowly transported actin and 
the explanation given was that the distinct velocities of slow 
axonal transport are generated by differences in the exchange 
rates of these two cytoskeletal proteins. However, each 
neurofilament polypeptide is considered to be transported by 
the same transport rate denoted as SCa. For this reason, at 
least in the case of neurofilament polypeptides, we should be 
prudent in accepting the generalization that there is a rela- 
tionship between the rate of transport and the rate of assem- 
bly/disassembly, which are reflected in the recovery half 
time after photobleaching. 

Then how can we explain the differential turnover rates of 
NF-H and NF-L? First of all, we should eliminate the possi- 
bility that a large excess of NF-H in the cell after the injection 
may interfere with the physiological turnover of NF-H in the 
neuron. Concerning this problem we carded out an experi- 
ment of coinjection of NF-L and labeled NF-H into the same 
cell. In this case, the estimated recovery half time was quite 
similar to that of injecting NF-H only, implying that the 
difference in turnover rate between NF-L and NF-H does not 
result from the experimental design adopted here. Regarding 
other factors possibly responsible for such a difference, it is 
impossible to make a precise determination from our results, 
but speculation on the basis of the literature can be made. 
Two factors considered to affect the turn over rate of the 
NF-H are: (a) the enzymatic modification of NFs, and (b) 
heterogeneity in the grade of phosphorylation. Factor (a) 
refers to the possibility that enzymatic modification specific 
to the NF-H protein occurs after its synthesis. Such mod- 
ifications achieved by specific proteases or posttranslational 
modifications including glycosylation might affect the degra- 
dation rates or assembly/disassembly rates of NFs. However, 
concrete information is still limited. On the other hand, 
phosphorylation of the COOH-terminal of the H subunit is 
relatively well documented (see review, Nixon and Sihag, 
1991). The COOH-terminal of the H subunit is highly phos- 
phorylated in the axon, but soon after its synthesis in the cell 
body it is not phosphorylated to the extent observed in the 
axon. However, in the present experimental system, the in- 
jected sample may contain variously phosphorylated NFoH, 
so that its biochemical nature of heterogeneity was not 
sufficient to explain the result that the behavior of NF-H be- 
ing faster than NF-L truly resulted from differences in the 
protein nature per se, not from differences in the state of 
phosphorylation. In other words, the injected NF-H could 
not represent the in vivo environment of the cell body. 

To eliminate factor (b), the possibility that the grade of 
phosphorylation of NFs in the cell body has an effect on the 
travelling of NF polypeptides down the axon, and in turn 
results in alteration of the local turnover, we took two mea- 

sures to verify our experimental results in vivo. One was the 
analysis concerning the local turnover of NF-H about one 
day after introducing fluorescently labeled protein into the 
cell body, taking into consideration the fact that one day is 
sufficient for the injected NF-H to be modified in the cell and 
transported down the axon to the growing tip (in this case 
the photobleaching process was carried out at 200-300 ~m 
of the axon), as the velocity of slow axonal transport by 
which NFs are transported is reported to be ~1-2 mm per 
day (for review, Nixon, 1992). 

The other measure was the performing of a preliminary 
study using dephosphorylated NF-H. We though the treat- 
ment with alkaline phosphatase might be necessary to 
achieve homogeneity of NF-H in phosphate content, and 
also, if the in vivo phosphorylation state of NF-H in 
perikarya has a pronounced effect on the turnover rate by 
possibly altering its affinity to some, as yet unidentified car- 
rier protein, a dephosphorylation procedure would be perti- 
nent to reproduce the condition in vivo. Our experiment re- 
vealed that the recovery half time estimated in the case of 
injecting dephosphorylated NF-H was almost equal to that 
of the native one (data not shown), suggesting that the inher- 
ent nature of the protein and/or phosphorylation taking place 
after it is transported into the axon in situ contributes to the 
differential behavior of the two NF subunit proteins. The 
results obtained have led us to believe that inherent proper- 
ties of the NF polypeptides themselves possibly determine 
their dynamic properties. 

Turnover Rate and Its Implications on the Structure 
of  lFs 

We have speculated that the differences in turnover rate be- 
tween the H and L subunits result mainly from the location 
where each component associates with the NFs per se. It is 
quite natural to suppose from the data presented here and the 
results of Mulligan et al. (1991) that NF-H is associated with 
the core NF array at the periphery and in a looser manner. 
Several lines of evidence on the structure of the NF array in 
the axon and hypotheses concerning the functional and mor- 
phological roles of NF-H have been proposed, and some of 
them are able to account for, or point to clues as to why the 
turnover of the H subunit is faster than that of the L subunit. 
Antibody decoration studies have also revealed the location 
of the H subunit in neurofilaments (Willard and Simon, 1981; 
Sharp et al., 1982; Hirokawa et al., 1984). Whereas the L 
subunit makes up the central domain of the neurofilaments, 
the H subunit associates with them peripherally because of 
their long, extended COOH-terminal, and seems to be major 
component of crossbridges between neurofilaments in situ 
(Hirokawa et al., 1984; Hisanaga and Hirokawa, 1988). This 
structural property makes NF-H more dissociative than the 
L subunit. Furthermore, dissociation of H subunits from NF 
arrays may be regulated by phosphorylation (Hisanaga and 
Hirokawa, 1989). Further detailed structural analyses are 
expected to determine how each subunit forms 10-nm 
neurofilaments. 
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