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Abstract. We identified four polypeptides of 47, 44, 
40, and 35 kD that bind to profilin-Sepharose and 
elute with high salt. When purified by conventional 
chromatography using an antibody to the 47-kD poly- 
peptide, these four polypeptides copurified as a 
stoichiometric complex together with three additional 
polypeptides of 19, 18, and 13 kD that varied in their 
proportions to the other polypeptides. Partial protein 
sequences showed that the 47-kD polypeptide is a 
homologue of S. pombe act2 and the 44-kD polypep- 
tide is a homologue of S. cerevisiae ACT2, both un- 
conventional actins. The 40-kD polypeptide contains a 
sequence similar to the WIM0 motif of the Ga subunit 
of a trimeric G-protein from Dictyostelium dis- 

coideum. From partial sequences, the 35-, 19-, and 
18-kD polypeptides appear to be novel proteins. On 
gel filtration the complex of purified polypeptides 
cochromatograph with a Stokes' radius of  4.8 nm, a 
value consistent with a globular particle of 220 kD 
containing one copy of each polypeptide. Cell extracts 
also contain components of the complex that do not 
bind the profilin column. Affinity purified antibodies 
localize 47- and 18/19-kD polypeptides in the cortex 
and filopodia of Acanthamoeba. Antibodies to the 47- 
kD unconventional actin cross-react on immunoblots 
with polypeptides of similar size in Dictyostelium, 
rabbit muscle, and conventional preparations of rabbit 
muscle actin but do not react with actin. 

p ROFILIN was onginaUy characterized as an actin 
monomer sequestering protein that forms a 1:1 com- 
plex with actin monomers in vitro and inhibits sponta- 

neous nucleation of actin filaments (Carlsson et al., 1977; 
Pollard and Cooper, 1984; Lal and Korn, 1985). Profilin in- 
hibits elongation more effectively at the pointed end of actin 
filaments than at the barbed end, since the actin profilin com- 
plex can bind to the barbed end but not the pointed end (Pol- 
lard and Cooper, 1984). Profilin also catalyzes actin nucleo- 
tide exchange by binding to actin monomers and lowering the 
affinity of actin for bound nucleotide (Mockrin and Korn, 
1980; Goldschmidt-Clermont et al., 1991b ). This activity 
may contribute to recycling ADP-actin released from de- 
polymerizing filaments to ATP-actin ready for repolymer- 
ization during the turnover of filaments in the cell (Gold- 
schmidt-Clermont et al., 1991b). Recent evidence suggests 
that profilin may even aid in the transfer of actin from the se- 
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questering protein, thymosin f14 to the barbed end of actin 
filaments (Pantaloni and Carlier, 1993). 

Profilin also binds to membrane phospholipids phosphati- 
dylinositol 4 monophosphate (PIP) ~ and phosphatidylinosi- 
tol 4,5 bisphosphate (PIP2) and inhibits hydrolysis of these 
lipids by phospholipase C-~ (PLC-y) (Goldschmidt-Cler- 
mont et al., 1990; Machesky et al., 1990). Phosphorylation 
of PLC-y by the activated EGF receptor overcomes the pro- 
filin inhibition (Goldschmidt-Clermont et al., 1991a). This 
provides a plausible biochemical mechanism for regulation 
of PLC-~ by EGF and a possible way to release profilin from 
the membrane to interact with actin. Profilin does not bind 
to actin and phosphoinositides simultaneously (Lassing and 
Lindberg, 1985). 

Poly-L-proline is another ligand of profilin (Tanaka and 
Shibata, 1985). This interaction has no known physiologi- 
cal function, but poly-L-proline Sepharose affinity columns 
have been very useful for purifying profilin (Kaiser et al., 
1989; Janmey, 1991). It is conceivable that profilin binds to 
polyproline sequences that are present in many cytoplasmic 

1. Abbreviations used in this paper: NaPPi, sodium pyrophosphate; PIP, 
phosphatidylinositol 4 monophosphate; PIP2, phosphatidylinositol 4,5 bis- 
phosphate; PLC-% phospholipase C-7. 
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proteins, including calcineurin (Guerni and Klee, 1989), 
cyclase-associated protein (Field et al., 1990), vinculin 
(Coutu et al., 1987), and zyxin (Sadler et al., 1992). 

In a search for new profilin ligands, we discovered seven 
proteins that bind to profilin-aflinity columns. These seven 
polypeptides co-purify by conventional ion-exchange chro- 
matography. Two of these proteins are the Acanthamoeba 
homologs of S. cerevisiae ACT2 and S. Pombe act2, two un- 
conventional actins (or actin-related proteins). Several of 
these polypeptides are localized in the cortex of Acan- 
thamoeba by immunofluorescence. Unconventional actins 
have been identified previously in yeast and vertebrates 
(reviewed by Herman, 1993). From their sequences, they are 
clearly homologues of actin, but they are less than 50% iden- 
tical to conventional actins, all of which have highly con- 
served primary structures. The 47- and 44-kD unconven- 
tional actins were discovered during sequencing of cloned 
DNA from two species of yeast (Schwob and Martin, 1992; 
Lees-Miller et al., 1992b). The vertebrate unconventional 
actins of 46 kD are found as part of a complex associated 
with the microtubule motor dynein (Lees-Miller et al., 
1992a) and concentrated near the centrosome (Clark and 
Meyer, 1992). Relatively little is known about the biochemi- 
cal properties and functions of the unconventional actins. 

Materials and Methods 

Profilin-Sepharose Chromatography 
A mixture of 30 mg profilin-I and profilin-II from Acanthamoeba castellanii 
(24 mg profilin-I, 6 rag profilin-O).was covalently linked to 10 g of CNBr- 
activated Sepharose 4B (Fharmacia, piscataway, NJ) according to the 
manufacturer's instructions. This affinity resin was used in a 1.5 x 30 cm 
column at 4°C. 

Acanthamoeba castellanii were grown in liquid culture, harvested by 
low-speed centrifugation and '°700 g cells were lysed in either pyrophos- 
phate or sucrose buffer using a Parr nitrogen bomb (Kern et al., 1982). 
These buffers have been used for more than 15 yr to solubilize actin, 
myosin-I, myosin-H, and many of the cell's actin-binding proteins. Pyre- 
phosphate buffer consisted of 150 mM KC1, 12 mM sodium pyrophosphate 
(NaPPi), 1 mM ATP, 0.1 mM benzamidine, 1 mM PMSF, 30 mM imida- 
zole, pH 7.0, 5 mM dithiothreitol, 0.5 mM diisopropylfluorophosphate. Su- 
crose buffer contained 0.34 M sucrose, 1 mM EGTA, 1 mM dithiothreitol, 
10 mM imidazole, pH 7.5, 1 mM ATP, 0.1 mM benzamidine, 1 mM PMSE 
Homogenates were centrifuged at 100,000 g for 90 rain at 4°C. 

50 /~1 of a high-speed supernatant from a sucrose extract of Acan- 
thamoeba were loaded onto either a 10 mi profilin-Sepharose 4B affinity 
column or a control column of 10 ml Sepharose 4B with either no protein 
or an irrelevant protein (a myosin II tail fragment) coupled. Columns were 
washed in 10 mM imidazole, pH 7.5, until no protein could be detected by 
the Bradford protein assay (Bio-Rad Laboratories, Richmond, CA). The 
columns were eluted with a variety of different buffers as specified in the 
figure legends. 

Protein Purification 
Conventional Chromatography. Sucrose extracts of amoeba were chro- 
matographed on a column of DEAE-cellulose equilibrated with I0 mM im- 
idazole, pH 7.5, 0.5 mM ATP, 0.5 mM dithiothreitol, 0.2 mM CaCI2, 0.1 
mM benzamidine, 0.5 ram PMSF (Tseng et ai., 1984). Pyrophosphate ex- 
tracts were dialyzed into 7.5 raM NaPPi, 10 mM Tris-C1, pH 8.0, 1 mM 
dithiothreitol, 0.6 mM PMSF before chromatography on the DEAE column 
equilibrated with 7.5 mM NaPPi, 10 mM Tris-Cl pH 8.0, 1 mM dithiothrei- 
tel, and 0.6 mM PMSF. 

The 47-kD polypeptide was purified as follows by ion-exchange chroma- 
tography from the fractions that flowed through the DEAE column. In a su- 
crose preparation, potassium phosphate, pH 7.0, was added to a concentra- 
tion of 20 mM. The DEAE flow-through was then applied to a 1.5 x 30 

cm column (88 g ) of hydroxylapatite (Bio-gel HTP, Bio-Rad Laboratories) 
equilibrated with 1 liter 50 mM potassium phosphate, pH 7.0, and washed 
with 200 ml 50 mM potassium phosphate, pH 7.0. This column was eluted 
with a 500 ml gradient of 50-400 mM potassium phosphate, pH 7.0. SDS- 
PAGE (Laemmli, 1970) and immunoblotting were used to detect the pres- 
ence of the 47-kD polypeptide in fractions eluting at "0100 mM potassium 
phosphate. In the case of the pyrophosphate preparation, the peak fractions 
from the first hydroxylapatite column were pooled, dialyzed into 20 mM 
potassium phosphate, pH 7.0, and re-loaded onto a hydroxylapatite column 
(1.5 × 30 cm) equilibrated with 20 mM potassium phosphate, pH 7.0, and 
eluted with a 500 mi gradient of 50-400 mM potassium phosphate, pH 7.0. 
Peak fractions were detected by immunoblotting, pooled, and dialyzed into 
20 mM KCI, 20 mM Tris-C1, pH 7.5, 0.5 mM dithiothreitol, and loaded 
onto a 1.5 × 30 cm column of phosphoceilulose (Whatman, Maidstone, 
England) pre-eqnilibrated with the dialysis buffer. This column was eluted 
with a 400 mi gradient of 20-500 mM KCI in 20 mM Tris-C1, pH 7.5. The 
47-kD polypeptide was identified by immunoblotting. As an additional step, 
we sometimes loaded peak fractions from the phosphocellulose column 
onto a 0.5 x 20 cm column of QAE-Sepharose (Bio-Rad Laboratories) 
equilibrated with 20 mM Tris-Cl, pH 7.5, 20 mM KC1, 0.5 mM dithiothrei- 
tel, washed with 100 mM NaC1, and eluted with 500 mM NaCl in 20 mM 
Tris-C1, pH 7.5. 

Poly~L-Proline AjOinity Chromatography. The DEAE flow-through was 
fractionated by poly-L-proline Sepharose affinity chromatography (Kaiser 
et al., 1989). Proteins eluted with 4 M urea were dialyzed into 10 mM im- 
idazole, pH 7.5, 20 raM NaC1. The proteins were chromatographed on the 
profilin-Sepharose affinity column and eluted with 0.4 M MgCI2 column 
buffer. Profilin was eluted from the poly-L-proline column with 8 M urea 
(Kaiser et ai., 1989). 

Antibody Preparation and Purification 
A New Zealand white rabbit (Bunnyville Farms, Littletown, PA) JH30 was 
immunized subcutaneously in four locations with 47-kD polypeptide 
purified by profilin-Sepharose chromatography and PAGE (Fig. 1, lane 
12 ). The gel was stained for I h with 0.2% Coomassie blue, 0.1% SDS, 
25 mM "Iris base, 192 mM glycine, and destained for 10-min each in two 
changes of deionized H20. The gel slice was excised, frozen in liquid N2, 
and pulverized to a fine powder with a mortar and pestle. The powder con- 
taining "050/~g protein was added to 0.5 ml Freund's complete adjuvant and 
sonicated for 30 s with a probe sonicator (Branson, VWR, Bridgeport, NJ). 
This mixture was injected under the skin at 0 and 6 wk after a preimmune 
bleed. Antibodies from rabbit JH30 bound to one band on immunoblots of 
cell extracts (Fig. 2, lane A). 

A polyspecific serum to the polypeptides that copurilied with the 47-kD 
polypeptide, was prepared by immunizing rabbit JH43 with 500/zg of pro- 
tein purified by ion-exchange chromatography (Fig. 3) in Freund's complete 
adjuvant boosting with antigen in Freund's incomplete adjuvant after 6 wk. 
Rabbit JH43 produced antibodies to most of the injected polypeptides (Fig. 
2, lane B). From this complex serum we affinity-purified antibodies to the 
individual polypeptides (not attempting to separate the 19- and 18-kD anti- 
gens) using immunoblot strips (Pollard, 1984). Mock-purification of im- 
mune serum was carded out in an identical fashion with nitrocellulose strips 
from an immunoblot in a region containing no protein. Purified 47-kD anti- 
body recognized one band at 47 kD on immunoblots of Acanthamoeba ex- 
tracts (Fig. 2, lane C) and affinity purified 19/18-kD protein recognized one 
band (or a close-running doublet) (Fig. 2, lane D). Purified antibodies to 
44-, 40-, 35-, and 13-kD polypeptides bound weakly to their antigens and 
had high backgrounds on immunoblots, so they had limited usefulness. 

Antibodies to Acanthamoeba profflin were purified from previously 
characterized antisera of rabbits JH15 and JHI6 (Tseng et ai., 1984) using 
immunoblots containing recombinant Acanthamoeba profflin-I and prafilin- 
II (Aline et al., 1994). Mouse monoclonai antibodies (4D6) that react with 
amoeba actin were obtained from Sigma Immunocbemicals (St. Louis, 
MO) and Dr. James Lessard of the University of Cincinnati (Cincinnati, 
OH) (Lessard, 1988). 

Crude extracts for immunoblotting were prepared from a variety of cells. 
Live Dictyosteliwn discoideum and Acanthamoeba were lysed in boiling 
SDS-PAGE sample buffer (10% wt/vol SDS, 1 M Tris-Cl, pH 6.8, 50% 
vol/vol glycerol, trace bromophenol blue, 5 % vol/vol 2-mercaptoethanol). 
Conventionally purified actin (Spudicb and Watt, 1971) was obtained from 
rabbit muscle acetone powder. Approximately equal protein loads as deter- 
mined by the BCA assay (Pierce Biocbemicals, Rockford, IL) were applied 
to SDS-PAGE, and blotted onto nitrocellulose. After reaction with antibod- 
ies, the blots were washed and bound antibodies detected with the ECL che- 
miluminescence system (Amersham Corp., Arlington Heights., IL). 
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Immunoblot Assay for Binding to Profilin Sepharose 

10 g of packed cells were homogenized in 60 ml sucrose extraction buffer 
and centrifuged at 100,000 g for 90 rain. 2 ml of the supernatant was applied 
to a 2 nd column of profilin-II-Sepharose. The column was washed with 100 
ml of 10 mM imidazole, pH 7.5, 20 mM KCI, and eluted with 10 ml of 400 
mM MgC12 in the same buffer. No other polypeptides were detected after 
elution with 8 M urea. Fractions were monitored for protein using a Brad- 
ford (1976) assay. Volumes of flow through and elution peaks were equiva- 
lent. Immunoblots using antiserum JH 43 were quantitated and used to cal- 
culate the fraction of each polypeptide present in the two fractions. 
Comparable results were obtained in two separate experiments using differ- 
ent extracts, and with both profilin-I- and profilin-II-Sepharose. 

Gel Filtration 
Stokes' radius was determined by the method of Siegel and Monty (1966) 
using a 1 × 120 cm column of Sephacryl S-300 equilibrated at 40C with 
75 mM KCI, 20 mM Tris-Cl, pH 7.5, and calibrated with Sigma gel-filtra- 
tion standards (carbonic anhydraso, bovine serum albumin, ~-amylase, and 
apoferritin). ATP marked the salt volume and blue dextran mol wt 2 million 
the void volume. Analytical gel-filtration was carried out at 22°C on a 0.5 
× 50 cm column of Sephadex G-100 in 10 mM Tris-C1, pH 7.5, 75 mM 
KC1, 0.5 mM dithiothreitol, with or without 5 M KSCN. 

Immunofluorescence 
Acanthamoeba castellanii were cultured in plastic dishes (Becton Dickinson 
& Co., Franklin Lakes, NJ) and processed for immunofluorescence 
(Yonemura and Pollard, 1992). Briefly, ceils removed from plastic dishes 
by shaking were allowed to grow overnight on glass coverslips and fixed for 
5 min in a 2 % formaldehyde-methanol solution at -20"C. All subsequent 
steps were carried out at room temperature. Cells were washed in PBS 
(0.15 M NaCI, 0.01% NAN3, 10 mM sodium phosphate, pH 7.4) and in- 
cubated with a 1:1 dilution of purified first antibody and a 1:50 dilution of 
rhodamine-labeled goat anti-rabbit (Organon Teknika, West Chester, PA). 

Crude preimmtme serum was used at a 1:500 dilution. Confoeal fluores- 
cence micrographs were taken with a Bio-Rad MRC 600. 

Peptide Sequencing 

The proteins in the profilin-binding complex were separated by SDS-PAGE 
on a large gel (Laemmli, 1970). Corresponding bands from several lanes 
were excised and applied to an elution and concentration gel (Vandekerek- 
hove et al., 1993). The concentrated protein was blotted on Immobilon P 
membranes (Millipore) (Bauw et al., 1988), treated with trypsin, and the 
resulting peptides were separated by HPLC and run on an Applied Bi- 
osystems gas phase sequencer (model 470A) equipped with an on-line FrH 
amino acid analysis system (model 120A). 

Quantitation 
Gels and immunoblots were digitized and analyzed using Collage software 
(Fotodyne, New Berlin, WI) running on a Macintosh Quadra 650 com- 
puter. 

Results 

Several Polypeptides Bind to Profilin-Sepharose 
The vast majority of polypeptides in soluble extracts of Acan- 
thamoeba (Fig. 1, lane 1 ) flow through the affinity column 
with Acanthamoeba profilins coupled to agarose beads (Fig. 
1, lanes 2-5). A 43-kD polypeptide, identified by microse- 
quencing as conventional actin, bound weakly and eluted 
with low-salt buffer and buffer containing 5 mM ATP (Fig. 
1, lanes 6-11 ). Polypeptides with molecular weights of 47, 
44, 40, and 35 kD bound and were eluted with a high-sait 

sorbed to the profilJn-agarose column. After washing with low-salt buffer, bound proteins were eluted 
0.4 M MgCI2. Arrows indicate the positions of the 47-, 44-, 40-, 35-kD polypeptides. 

Figure 1. Affinity chromatog- 
raphy of Acanthamoeba ex- 
tracts on a profilin-Sepharose 
column. Fractions were run 
on SDS-PAGE and stained 
with Coomassie blue. (Lane 
1)  A crude extract of Acan- 
thamoeba. (Lanes 2-5) Flow 
through fractions. (Lanes 
6-8) Proteins eluted with 10 
raM, pH 7.5, imidazole, 20 
mM KCI. (Lanes 9-11) Pro- 
teins eluted with 10 mM, pH 
7.5, imidazole, 20 mM KCI, 5 
mM ATP. (Lanes 12-14) Pro- 
teins eluted with 10 raM, pH 
7.5, imidazole, 0.2 M KCI, 5 
mM ATP. (Lane 15) Proteins 
eluted with 10 raM, pH 7.5, 
imidazole, 0.5 M KI. (Lane 16) 
Proteins purified by DEAE- 
cellulose, poly-L-proline, and 
profilin affinity chromatogra- 
phy. A crude Acanthamoeba 
extract was partially purified 
on DEAE cellulose. The flow 
through was adsorbed to poly- 
L-proline Sepharose, e h t e d  
with 4 M urea, renatured in 
low salt buffer, and then ad- 

with 10 mM Tris-Cl, pH 7.5, 
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buffer (Fig. 1, lanes 12-14). Anti-actin antibodies did not 
cross-react on immunoblots with the 44-kD species that 
eluted in high salt. KI eluted residual 47- and 44-kD poly- 
peptide from the column (Fig. 1, lane 15). Several other 
polypeptides, including the low molecular weight polypep- 
tides shown in Fig. 1 (lane 12) and a high molecular weight 
polypeptide shown in Fig. 1 (lanes 12 and 15) were present 
variably in fractions eluted by high salt. The Bradford assay 
detected no protein eluting from a control Sepharose 4B 
column without coupled protein. Polypeptides that eluted 
from a control column of a myosin-II tall fragment coupled 
to Sepharose did not correspond in molecular weight to 
those that eluted from profilin-Sepharose, nor did they react 
with antiserum JI-I43 (see below) on immunoblots. The ex- 
periment in Fig. 1 used a mixture of amoeba profilins im- 
mobilized on the agarose. Columns with either pure pro- 
filin-I or profilin-II gave similar results. 

Polypeptides of 47, 44, 40, and 35 kD copurified with 
profilin during chromatography on DEAE-cellulose and 
affinity chromatography on poly-L-proline. These as- 
sociated proteins were separated from profilin by elution of 
the poly-L-proline column with 4 M urea or 400 mM 
MgCI2. (The profilin eluted from the poly-L-proline col- 
umn with 8 M urea (Kaiser et al., 1989).) After removing 
the MgCI2 or the urea by dialysis, the 47-, 44-, 40-, and 35- 
kD polypeptides rebound to the profilin affinity column (Fig. 
1, lane 16). Binding of the complex to the profilin column 
was blocked by 30 #M profilin-I but not by 30 #M lysozyme. 
Fractions purified by poly-L-proline affinity chromatogra- 
phy contained variable amounts of polypeptides of '~19 and 
13 kD. 

Purification of the Profilin-binding Protein Complex 
by Ion Exchange Chromatography 
A rabbit antiserum to the 47-kD polypeptide reacted 
specifically with the 47-kD polypeptide on immunoblots of 
amoeba extracts (Fig. 2, lane A) and with polypeptides of the 
same size from Dictyostelium discoideum, conventionally 
purified rabbit muscle actin and rabbit muscle extracts (not 
shown). However, neither the anti-47-kD antiserum nor 
purified anti-47-kD antibodies (Fig. 2, lane C) reacted with 
actin on immunoblots of pure amoeba or rabbit actin or actin 
in crude extracts (Fig. 2). Thus we could use these antibodies 
to assay for the 47-kD polypeptide during its purification by 
conventional chromatography. 

We were surprised that polypeptides of 44, 40, and 35 kD 
(like those identified by profilin affinity chromatography) 
copurified with the 47-kD polypeptide through four ion ex- 
change columns (Fig. 3). In addition, these fractions con- 
tained polypeptides of 19, 18, and 13 kD. Two different 
purification procedures produced the same complex of poly- 
peptides. 

We started the purification with a soluble extract, because 
an immunoblotting assay showed that the 47-kD polypeptide 
was found primarily in the soluble fraction of cells lysed in 
either sucrose or pyrophosphate. First extracts were chro- 
matographed on DEAE-cellulose. About half of the 47-kD 
polypeptide flowed through with profilin. The other half was 
eluted with KC1 along with actin (Tseng et al., 1984). The 
flow-through fractions contained profilin and the 47-kD pro- 
tein as shown in Fig. 1 (lane 16). These fractions were chro- 
matographed on hydroxylapatite and eluted with a linear gra- 

Figure 2. Immunoblots of a 
crude high-speed Acantha- 
moeba supernatant reacted 
with antisera and purified an- 
tibodies. (Lane A) Anti-47-kD 
immune serum from rabbit 
JH30. (Lane B) Antiserum to 
the profilin binding complex 
from rabbit JH43. (Lane C) 
JH43 affinity purified against 
47 kD. (Lane I) JH43 affinity 
purified against 19/18 kD. 
Note that in lane B, the high 
concentration of conventional 
actin in the crude extract com- 
petes with 44K for binding to 
the nitrocellulose, reducing 
the signal from 44K on this 
immunoblot compared with the 
more purified fraction shown 
in Fig. 5. 

dient of 20-400 mM potassium phosphate. The 47-kD 
polypeptide eluted in 150 mM potassium phosphate. (Peak 
fractions from the pyrophosphate preparation were dialyzed 
into 20 mM potassium phosphate, pH 7.0, and rerun on a 
second hydroxylapatite column.) Peak fractions from hy- 
droxylapatite were run on phosphocellulose and eluted with 
a 20-500 mM linear KCI gradient. The 47-kD protein co- 
purified with polypeptides of 44, 40, 35, 19, 18, and 13 kD 
(Fig. 3 A). Further chromatography of a pyrophosphate ex- 
tract on QAE-Sepharose did not separate these seven poly- 
peptides (Fig. 3 B). Copurification of these seven polypep- 
tides through several ion-exchange columns suggested that 
they might form a complex that interacts with profilin. Poly- 
peptides purified in this way bound to profilin Sepharose and 
were eluted with buffer containing 0.4 M MgC12. 

The yield of the seven polypeptides was about 1 mg from 
~,700 g packed Acanthamoeba, from either sucrose or 

Figure 3. SDS-PAGE and 
Coomassie blue stain of two 
separate preparations of the 
profilin binding complex puri- 
fied by ion-exchange chroma- 
tography using anti-47-kD 
antiserum to assay fractions. 
(Lane A) Polypeptides purified 
using sucrose lysis buffer and 
chromatography on DEAE- 
cellulose, hydroxylapatite, and 
phosphocellulose. The molar 
ratios of the 44-, 40-, 35-, 19-, 
18-, and 13-kD polypeptides 
relative to 47 kD were 1.0, 0.8, 
0.8, 0.4, 0.4, and 0.3, respec- 
tively. (Lane B) Polypeptides 
purified using pyrophosphate 
lysis buffer and chromatogra- 
phy on DEAE-cellulose, hy- 

droxylapatite, phosphocellulose, and QAE-Sepharose. The molar 
ratios of the 44-, 40-, 35-, 19-, 18-, and 13-kD polypeptides relative 
to 47 kD were 1.1, 1.0, 1.1, 0.8, 2.1, and 0.6, respectively. 
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pyrophosphate preparations. This is considerably less than 
routine yields of profilin (100 nag) or actin (>200 nag) from 
these extracts. 

Physical Properties of the Profilin-binding Complex 
The seven purified polypeptides eluted together as a single 
peak with a Stokes' radius of 4.8 nm during analytical gel 
filtration. A spherical particle with a partial specific volume 
of 0.73 and this Stokes' radius would have a molecular weight 
of 220 kD. Gel filtration in 5 M KSCN partially dissociated 
the 47-, 44-, 40-, and 35-kD polypeptides from each other 
and completely separated the 19/18- and 13-kD polypeptides 
from the higher molecular weight polypeptides. 

The 47- and 4#-kD Polypeptides Are 
Unconventional Actins 
By peptide sequencing of bands from Coomassie blue 
stained gels, we identified two of the copurifying polypep- 
tides as actin-related proteins (Fig. 4). The sequence of the 

47k unconventional actin 
Acanthamoeba actin 
Acanthamoeba 47k pITo 
C elegans act d 
S. pombe act 2 
Bovine act 2 

Acanthamoeba actin 
Acanthamoeba 47k p22 
C. elegans act d 
S. pombe act 2 
Bovine act 2 

Acantharnoeba actin 
Acanthamoeba 47k p21 
C. elegans act d 
S. pombe act 2 
Bovine act 2 

Acanthamoeba actin 
Acanthamoeba 47k p17a 
C. elegans act d 
S. pombe act 2 
Bovine act 2 

44k unconventional actin 
Acanthamoeba actin 
Acanthamoeba 44k p20 
C. elegans act c 
S. cerevisiae ACT 2 

Acanthamoeba actin 
Acanthamoeba 44k p21 
C. elegans act c 
S. cerevisiae ACT 2 

40k polypeptlde 
Acanthamoeba 40k pl 
Dictyostelium G-beta 240-249 
Dictyostelium G-beta 531-540 
Mus I G-beta WD 336-345 

Acanthamoeba 40k p2 
Acanthamoeba 40k P3 

18,19 & 35k polypeptides 
Acanthamoeba 35k pl 
Acanthamoeba19k pl 
Acanthamoebal 9k p2 
Acanthamoebal 8k pl 

19 
A G F A 
M G/I Y A 
L G Y A 
L G Y A 
L G Y A 

46 
G M G Q 
N I A D 
G I O D 
A T E D 
G V D O 
147 
R T T G 
X L T G 
S L T G 
S L T G 
T L T G 

339 
N V V L 
N I / G V  L 
N V L 
N V L 
N V L 

63 
G L T 
X M L Q 
Q M L D 
S Y L Q 
78 
N W D D 
N W E D 
N W D D 
N W T D 

32 
G D D A P R A V F P  
G N T ~ P Q W F I I P  
G N T E P Q F I I P  
G N D A P S Y V F P  
G N T E P Q F I I P  

53 
K D S Y V G D E A Q S K R G  
L D F F I G D E A Y E N S K  
L D F F I G D E A L S P A A  
L D F F I G N D A L K K A S  
L D F F I G D E A I E K P Y 

161 
I V L D S G O G V T H 
T V I D S G D G V T X 
L V I D S G D G V T H 
T V V D S G D G  V T H 
T V I D S G D G V T H 

35o 
S G G T T M F P 
S G G L J E T  M F / Y K  
S G G S T M Y K 
S G G S T L F K 
S G G S T M F R 

76 
L K Y P I E H G I V 
I T Y P L D N G I V 
I N Y P M D N G I V 
I S Y P M E N G I I 

94 
M E K I W H H T F Y N E L 
A E H  V W N  Y T  F F E K 
M A H V W D H T F G P E K 
M E L L W D Y A F F E Q M 

L V W D V A S L V K  
L V W D G L T T N K  
I L W D  V E N G T K 
I I W D S Y T T N K  

X K P T L V I L R  
V F S A X V K  

V F L Q E L E A A R  
I V A G S Y L K  
X X N F V V L R  
Y T G P A D Q P D I  I D E A I X F  

Figure 4. Partial amino acid sequences of the 47-, 44-, 40-, 35-, 19-, 
and 18-kD polypeptides. These sequences are aligned with homol- 
ogous sequences of conventional Acanthamoeba actin and other un- 
conventional actins and the Ga subunit of a trimeric G protein. 
References: Acanthamoeba conventional actin (Nellen and Gall- 
witz, 1982); C. elegans act c and act d (Waterston et al., 1992); 
S. cerevisiae ACT2 (Schwob and Martin, 1992); S. pombe act2 
(Lees-Miller et al., 1992b); Dictyostelium; and mouse Ga subunits 
(Lilly et al., 1993). 

47-kD protein is similar to the predicted amino acid se- 
quence of C. elegans act d (Waterston et al., 1992), bovine 
act2 (Tanaka et al., 1992), and S. pombe act2 (Lees-Miller 
et al., 1992b). Peptides from the 44-kD protein are similar 
to the predicted amino acid sequence of C. elegans act c 
(Waterston et al., 1992) and S. cerevisiae ACT2 (Schwo b and 
Martin, 1992). The 44-kD polypeptide did not react with ac- 
tin antibodies on immunoblots and no actin peptides were 
detected in the 44-kD band by microsequencing. The iden- 
tity of both amoeba proteins has been confirmed by sequenc- 
ing full length cDNAs (Kelleher, J., S. Atkinson, and T. D. 
Pollard, unpublished results). 

The 40-kD Polypeptide Is Similar to the Ga Subunit of 
a Trimeric G Protein 
A 10-amino acid polypeptide fragment of the 40-kD protein 
(Fig. 4, peptide pl) contains 5 amino acids which are identi- 
cal to a WIM0 motif (Iniguez-Lluhi et al., 1993) found in 
the 40-kD GB subunit of a Dictyostelium G protein (Pupillo 
et al., 1988). This G protein ~-subunit is essential for aggre- 
gation of cells during the early stages of Dictyostelium devel- 
opment (Lilly et al., 1993). Further sequence data will be 
required to confirm the identity of this amoeba protein. 

The partial peptide sequences of the 35-, 19-, and 18-kD 
polypeptides are not similar to any proteins in the PIR data- 
base (Fig. 4). We were unable to obtain sequences of pep- 
tides from the 13-kD protein. Antibodies to amoeba profilin 
did not react with the 13-kD polypeptide or any of the other 
polypeptides in the complex. 

Stoichiometry of the Polypeptides in the 
Profilin-binding Complex 
Assuming equal dye binding, the 47-, 44-, 40-, and 35-kD 
polypeptides were present in equal amounts in the purified 
complex (Fig. 3, legend). The 19-, 18-, and 13-kD compo- 
nents were substoichiometric and differed in the two prepa- 
rations that we quantitated (Fig. 3). 

We do not know the stoichiometry of the seven polypep- 
tides in the cell, but fractionation on the profilin-aflinity 
column suggests that some of these polypeptides are present 
in excess in the cell extract. First, when limiting amounts of 
extract are adsorbed to the profilin column, much of each of 
the polypeptides in the purified complex binds to the 
column, but different proportions of each flow through the 
column (Fig. 5). Nearly all of the 40-, 35-, 19-, and 18-kD 
components bound to the column, but 35% of 47 kD and 
20% of 44 kD are unbound. Second, during the high-salt 
elution of the polypeptides bound to the profilin column, part 
of both unconventional actins trail behind the main peak of 
complex and are eluted by KI (Fig. 1, lanes 12-15). 

The 47- and 19/18-kD Polypeptides Are Localized in the 
Cortex of Acanthamoeba 
Three members of the purified complex localize to filopodia 
and cortex of Acanthamoeba along with actin filaments and 
some of the profilin. Affinity-purified antibodies to 47-kD 
unconventional actin stained filopodia and the cortex of 
Acanthamoeba (Figs. 6 and 7 B) strongly compared with the 
rest of the cytoplasm. By confocal microscopy 47-kD uncon- 
ventional actin was concentrated in spots corresponding to 
filopodia on the free surface of cells (Fig. 6 A) and through- 
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Figure 5. Immunoblot assay 
for binding of Acanthamoeba 
polypeptides to a profilin- 
Sepharose affinity column. 
Immunoblot using antiserum 
JH43 of the flow-through frac- 
tion (lane 1) and the frac- 
tion that eluted with 0.4 M 
MgCI2 (lane 2). The fraction 
of each polypeptide bound to 
the column is indicated. Note 
that the polyspecific antise- 
rum used for this experiment 
is useful for comparing the 
amount of each component in 
the bound and free fractions, 
but was not useful for quan- 
titating the stoichiometry 
within the complex, since the 
reaction with 35 kD is weak 
compared to the other bands. 

out the cortex at all levels of the cell (Fig. 6, B and D). 
Purified antibodies to 44-kD unconventional actin also stain 
the cortex and filopodia (J. Kelleher, unpublished results). 

Antibodies to the 19- and 18-kD polypeptides stained 
filopodia and the cortex of Acamhamoeba (Fig. 7 D) strongly 
compared with the rest of the cytoplasm. Purified 19/18-kD 
antibodies reacted only with polypeptides of this size on im- 
munoblots of amoeba extracts (Fig. 2, lane D). Mock- 
purified serum stained the cytoplasm and contents of vacu- 
oles weakly (Fig. 7 F). Affinity-purified antibodies to the 
44-, 40-, and 35-kD polypeptides also stained the cortex, but 
these antibodies cross-reacted with the 47-kD polypeptide on 
immunoblots, so they are not illustrated. 

Profilin and actin are concentrated in the cortex (Fig. 8, 
A-l) along with the 47-kD unconventional actin and 19/18- 
kD polypeptides. Affinity-purified polyclonal antibodies to 
Acanthamoeba profilin-I and profilin-II stain the cytoplasm 
as observed previously (Tseng et al., 1984) but they also 
stain striking cortical patches. Fibroblasts also have cortical 
patches of profilin (Buss et al., 1992). Purified antibodies 
from the sera of rabbits JH34 and JH35 gave the same result. 
Preimmune serum did not stain the cells at a dilution of 
1:500. A monoclonal antibody to actin (Fig. 7, F-I) and 
rhodamine-phalloidin also stained the cortex and filopodia. 
By confocal microscopy this staining was more uniform than 
that with the anti-47-kD unconventional actin. 

Discussion 

Two unconventional actins with several other polypeptides 
from crude extracts of Acanthamoeba bind to profilin-aga- 
rose and copurify by ion-exchange chromatography. At least 
three of the seven are localized together in the cortex of 
Acanthamoeba. The unconventional actins are homologues 
of S. pombe act2 and S. cerevisiae ACT2. We present the 
the first biochemical purification and initial characterization 
of members of these families of proteins. The evidence sug- 
gests that these unconventional actins interact with proteins 
of the actin cytoskeleton, specifically with profilin and con- 
ventional actin (given the presence of 47 kD in actin purified 
from rabbit muscle). Given these associations and their es- 

Figure 6. Localization of the 47-kD unconventional actin in Acan- 
thamoeba by indirect immunofluorescence with affinity-purified 
antibodies. Confocal sections at 2-~,m intervals from (A) the top of 
the cell showing many filopodia to (D) the bottom surface next to 
coverslip. The cortex is stained throughout. (E) Confocal fluores- 
cence micrograph of another Acanthamoeba. The inset is a phase 
contrast micrograph. Bars: (A-D) 10 #m; (E) 5 t~m. 

sential nature in yeast, we anticipate an exciting role for these 
proteins in the cell. 

Since amoeba is closer to the root of the eukaryotic 
phylogenetic tree than yeast or vertebrates (Olsen and 
Woese, 1993), the presence of the 47 and 44 kD unconven- 
tional actins in amoeba confirms that these proteins are an- 
cient and likely to be present in many eukaryotes. The se- 
quences of these two unconventional actins from yeast, 
amoeba and vertebrates are remarkably similar. They clearly 
stand apart from each other and conventional actins, which 
have at least 70% amino acid identity from protozoa to 
plants, fungi, and animals. The 44-kD unconventional ACT2 
from S. cerevisiae is only 47% identical to yeast actin 
(Schwob and Martin, 1992), but much more similar to its 
homologues from Dictyostelium (S. Atkinson, manuscript in 
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Figure 7. Comparison of the localization of the 47- and 18/19-kD polypeptides by indirect immunofluorescence with affinity purified antibod- 
ies. (A, C, and E) Phase contrast micrographs. (B) Flourescence micrograph with anti-47kD. (D) Anti-19/18kD. (F) Control fluorescence 
micrograph with mock-purified immune serum. Bar, 10 #m. 

preparation) and Acanthamoeba. The 47-kD unconventional 
act2 from S. pombe is only 35-40% identical to conventional 
actins, including its own actl, but has similar 47-kD homo- 
logues in cows (Tanaka et al., 1992), Dictyostelium and 
Acanthamoeba. 

Properties of the Profilin-binding Complex 

The copurification of seven polypeptides through five con- 
ventional chromatography columns indicates that they form 

a relatively stable complex. The Stokes' radius of the 
purified material is consistent with a globular complex con- 
taining one copy of each of the seven polypeptides, but more 
rigorous studies are required to establish the stoichiometry 
definitively. Some of the components of the complex, partic- 
ularly the 47- and 44-kD unconventional actins, appear to be 
in excess in cell extracts, so in the cell some of the seven 
polypeptides must be free or have associations outside of the 
complex. 

Unconventional actins are the best candidates in the com- 
plex for binding profilin. Since the complex bound to the 
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Figure 8. Localization of profilin and actin in Acanthamoeba by indirect immunofluorescence with affinity purified antibodies. (A, D, G, 
and H) Phase contrast micrographs. (B, C, and E) Fluorescence micrograph with anti-profilin. (F and H) Fluorescence micrograph with 
anti-actin. Bar, 10 #m. 

profilin-attinity column more tightly than actin (Fig. 1), one 
or both of the unconventional actins may have a higher 
affinity for profilin than conventional actin. This will be 
tested once the individual components are purified in quanti- 
ties adequate for binding studies. 

Compared with conventional actin, the components of the 
complex are minor cellular proteins judging from affinity 
chromatography of cellular extracts on profilin-Sepharose 
(Fig. 1). Bovine act2 is also predicted to be a minor protein 
(Tanaka et al., 1992). Clearly these proteins have a different 
role than conventional actins. 

Functions of Unconventional Actins 

To date only the actin-RPV/centractin class of unconven- 
tional actins has been studied biochemically. They represent 
a third class of unconventional actins, different from the two 
that we have isolated. These 46-kD unconventional actins are 
reported to be concentrated in centrosomes and perinuclear 
regions of MDCK cells (Clark and Meyer, 1992). They are 
also part of the dynactin complex (Lees-Miller et al., 
1992a), which co-purifies with cytoplasmic dynein (Paschal 
et al., 1993) and promotes dynein based motility of vesicles 
along microtubules (Gill et al., 1991; Schroer and Sheetz, 
1991). 

Our work establishes that two other unconventional actins, 

the 47-kD homologue of S. cerevisiae ACT2 and the 44-kD 
homologue of S. pombe act2, are present in low concentra- 
tions in the cortex of amoebas, apparently in association with 
each other and a small number of other polypeptides. The 
low abundance of the complex and its association with 
profilin and actin in the cortex of the cell, suggest to us that 
the complex has a regulatory rather than a structural role in 
the cell. This suggestion is consistent with genetic studies in 
yeast. Overexpression of the budding yeast ACT2 gene for 
the 44-kD unconventional actin results in large rounded cells 
that do not bud (Schwob and Martin, 1992). Deletion of this 
gene is lethal late in cytokinesis of budded cells. Deletion of 
the 47-kD unconventional act2 gene from fission yeast is 
also lethal (Lees-Miller, et al., 1992b). 

Further work is required to learn whether the unconven- 
tional actin complex from the amoeba is regulated by profilin 
or regulates one of the known functions of profilin such as 
its interactions with actin or the phosphoinositide signaling 
pathway. Another possibility is that the unconventional ac- 
tins in the complex dimerize to form a cryptic nucleus for 
actin filament formation or an actin filament cap. The 40-kD 
polypeptide or other components in the complex could regu- 
late these activities. 
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