Abstract
Monocyte-derived macrophages accumulate and process cholesterol in atherosclerotic lesions. Because of the importance of this process, we examined the interaction of cholesterol crystals and acetylated low density lipoprotein (AcLDL) with human monocyte-macrophages in a combined chemical and morphological study. These two forms of cholesterol induced extensive compartmentalization of the macrophage cytoplasm. Unexpectedly, the compartments maintained a physical connection to the extracellular space as demonstrated with ruthenium red staining. The compartments formed through invagination of the top surface of the macrophage plasma membrane. Some cholesterol crystals and AcLDL were sequestered within these surface-connected compartments for up to five days in the case of the crystals and for one day in the case of AcLDL. Pulse-chase studies of fractionated macrophages indicated that [3H]cholesterol redistributed from the surface-connected compartments into lysosomes (where the cholesterol remained unesterified) and into lipid droplets (where the cholesterol was stored as cholesteryl ester). Intracellular uptake and esterification of cholesterol was blocked by cytochalasin D. However, once cholesterol was sequestered in the surface-connected compartments, subsequent esterification of the cholesterol could not be inhibited by cytochalasin D. Apolipoprotein E was localized within the surface- connected compartments by immunogold labeling suggesting a possible function for this protein in the processing of lipid taken up through the sequestration pathway. Removal of microcrystalline cholesterol from the medium resulted in release of most of the accumulated cholesterol microcrystals from the macrophages, as well as disappearance of the surface-connected compartments. Thus, sequestration is a novel endocytic mechanism in which endocytic compartments remain connected to the extracellular space. This differs from phagocytosis where endocytic vacuoles rapidly pinch off from the plasma membrane. Sequestration provides a means for macrophages to remove substances from the extracellular space and later release them.
Full Text
The Full Text of this article is available as a PDF (4.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Basu S. K., Brown M. S., Ho Y. K., Havel R. J., Goldstein J. L. Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7545–7549. doi: 10.1073/pnas.78.12.7545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berryman M. A., Rodewald R. D. An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem. 1990 Feb;38(2):159–170. doi: 10.1177/38.2.1688894. [DOI] [PubMed] [Google Scholar]
- Bocan T. M., Schifani T. A., Guyton J. R. Ultrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core. Am J Pathol. 1986 Jun;123(3):413–424. [PMC free article] [PubMed] [Google Scholar]
- Bøyum A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol. 1976 Jun;Suppl 5:9–15. [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig I. F., Via D. P., Mantulin W. W., Pownall H. J., Gotto A. M., Jr, Smith L. C. Low density lipoproteins reconstituted with steroids containing the nitrobenzoxadiazole fluorophore. J Lipid Res. 1981 May;22(4):687–696. [PubMed] [Google Scholar]
- Diment S., Leech M. S., Stahl P. D. Cathepsin D is membrane-associated in macrophage endosomes. J Biol Chem. 1988 May 15;263(14):6901–6907. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Freeman C. P., West D. Complete separation of lipid classes on a single thin-layer plate. J Lipid Res. 1966 Mar;7(2):324–327. [PubMed] [Google Scholar]
- Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
- Gerrity R. G., Richardson M., Somer J. B., Bell F. P., Schwartz C. J. Endothelial cell morphology in areas of in vivo Evans blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in areas of differing permeability to proteins. Am J Pathol. 1977 Nov;89(2):313–334. [PMC free article] [PubMed] [Google Scholar]
- Gerrity R. G. The role of the monocyte in atherogenesis: II. Migration of foam cells from atherosclerotic lesions. Am J Pathol. 1981 May;103(2):191–200. [PMC free article] [PubMed] [Google Scholar]
- Hoff H. F., Cole T. B. Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study. Lab Invest. 1991 Feb;64(2):254–264. [PubMed] [Google Scholar]
- Hoff H. F., Whitaker T. E., O'Neil J. Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition. J Biol Chem. 1992 Jan 5;267(1):602–609. [PubMed] [Google Scholar]
- Katz S. S., Small D. M., Smith F. R., Dell R. B., Goodman D. S. Cholesterol turnover in lipid phases of human atherosclerotic plaque. J Lipid Res. 1982 Jul;23(5):733–737. [PubMed] [Google Scholar]
- Khoo J. C., Miller E., McLoughlin P., Steinberg D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis. 1988 Jul-Aug;8(4):348–358. doi: 10.1161/01.atv.8.4.348. [DOI] [PubMed] [Google Scholar]
- Kruth H. S., Skarlatos S. I., Gaynor P. M., Gamble W. Production of cholesterol-enriched nascent high density lipoproteins by human monocyte-derived macrophages is a mechanism that contributes to macrophage cholesterol efflux. J Biol Chem. 1994 Sep 30;269(39):24511–24518. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewis J. C., Taylor R. G., Jones N. D., St Clair R. W., Cornhill J. F. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab Invest. 1982 Feb;46(2):123–138. [PubMed] [Google Scholar]
- Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
- Maranto A. R. Neuronal mapping: a photooxidation reaction makes Lucifer yellow useful for electron microscopy. Science. 1982 Sep 3;217(4563):953–955. doi: 10.1126/science.7112109. [DOI] [PubMed] [Google Scholar]
- Morand J. N., Kent C. A one-step technique for the subcellular fractionation of total cell homogenates. Anal Biochem. 1986 Nov 15;159(1):157–162. doi: 10.1016/0003-2697(86)90321-0. [DOI] [PubMed] [Google Scholar]
- Myers J. N., Tabas I., Jones N. L., Maxfield F. R. Beta-very low density lipoprotein is sequestered in surface-connected tubules in mouse peritoneal macrophages. J Cell Biol. 1993 Dec;123(6 Pt 1):1389–1402. doi: 10.1083/jcb.123.6.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pitas R. E., Innerarity T. L., Weinstein J. N., Mahley R. W. Acetoacetylated lipoproteins used to distinguish fibroblasts from macrophages in vitro by fluorescence microscopy. Arteriosclerosis. 1981 May-Jun;1(3):177–185. doi: 10.1161/01.atv.1.3.177. [DOI] [PubMed] [Google Scholar]
- Richards K. L., Douglas S. D. Alterations of the glycocalyx of Fc receptor-bearing cell lines during Fc receptor-ligand interactions. J Reticuloendothel Soc. 1983 Apr;33(4):305–314. [PubMed] [Google Scholar]
- Sandell J. H., Masland R. H. Photoconversion of some fluorescent markers to a diaminobenzidine product. J Histochem Cytochem. 1988 May;36(5):555–559. doi: 10.1177/36.5.3356898. [DOI] [PubMed] [Google Scholar]
- Skarlatos S. I., Dichek H. L., Fojo S. S., Brewer H. B., Kruth H. S. Absence of triglyceride accumulation in lipoprotein lipase-deficient human monocyte-macrophages incubated with human very low density lipoprotein. J Clin Endocrinol Metab. 1993 Mar;76(3):793–796. doi: 10.1210/jcem.76.3.8383147. [DOI] [PubMed] [Google Scholar]
- Skarlatos S. I., Rouis M., Chapman M. J., Kruth H. S. Heterogeneity of cellular cholesteryl ester accumulation by human monocyte-derived macrophages. Atherosclerosis. 1993 Mar;99(2):229–240. doi: 10.1016/0021-9150(93)90025-p. [DOI] [PubMed] [Google Scholar]
- Stary H. C. The sequence of cell and matrix changes in atherosclerotic lesions of coronary arteries in the first forty years of life. Eur Heart J. 1990 Aug;11 (Suppl E):3–19. doi: 10.1093/eurheartj/11.suppl_e.3. [DOI] [PubMed] [Google Scholar]
- Suits A. G., Chait A., Aviram M., Heinecke J. W. Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2713–2717. doi: 10.1073/pnas.86.8.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabas I., Lim S., Xu X. X., Maxfield F. R. Endocytosed beta-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages. J Cell Biol. 1990 Sep;111(3):929–940. doi: 10.1083/jcb.111.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabas I., Myers J. N., Innerarity T. L., Xu X. X., Arnold K., Boyles J., Maxfield F. R. The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of beta-VLDL in mouse peritoneal macrophages. J Cell Biol. 1991 Dec;115(6):1547–1560. doi: 10.1083/jcb.115.6.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tertov V. V., Orekhov A. N., Sobenin I. A., Gabbasov Z. A., Popov E. G., Yaroslavov A. A., Smirnov V. N. Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation. Circ Res. 1992 Jul;71(1):218–228. doi: 10.1161/01.res.71.1.218. [DOI] [PubMed] [Google Scholar]
- Tertov V. V., Sobenin I. A., Gabbasov Z. A., Popov E. G., Orekhov A. N. Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoproteins. Biochem Biophys Res Commun. 1989 Aug 30;163(1):489–494. doi: 10.1016/0006-291x(89)92163-3. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanderyse L., Devreese A. M., Baert J., Vanloo B., Lins L., Ruysschaert J. M., Rosseneu M. Structural and functional properties of apolipoprotein B in chemically modified low density lipoproteins. Atherosclerosis. 1992 Dec;97(2-3):187–199. doi: 10.1016/0021-9150(92)90131-y. [DOI] [PubMed] [Google Scholar]
- Werb Z., Takemura R., Stenberg P. E., Bainton D. F. Directed exocytosis of secretory granules containing apolipoprotein E to the adherent surface and basal vacuoles of macrophages spreading on immobile immune complexes. Am J Pathol. 1989 Mar;134(3):661–670. [PMC free article] [PubMed] [Google Scholar]
- White J. G. Uptake of latex particles by blood platelets: phagocytosis or sequestration? Am J Pathol. 1972 Dec;69(3):439–458. [PMC free article] [PubMed] [Google Scholar]
- Xu X. X., Tabas I. Sphingomyelinase enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages. J Biol Chem. 1991 Dec 25;266(36):24849–24858. [PubMed] [Google Scholar]