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Abstract. Although transiently associated with numer- 
ous newly synthesized proteins, BiP has not been 
shown to be an essential component directly linked to 
the folding and oligomerization of newly synthesized 
proteins in the endoplasmic reticulum. To determine 
whether it is needed as a molecular chaperone, we ana- 
lyzed the maturation of an endogenous yeast glycopro- 
tein, carboxypeptidase Y (CPY) in several yeast strains 
with temperature-sensitive mutations in BiP. These 
kar2 mutant strains have previously been found to be 
defective in translocation at the nonpermissive temper- 
ature (Vogel, J. P., L. M. Misra, and M. D. Rose. 1990. 
J. Cell Biol. 110:1885-1895). To circumvent the translo- 
cation block, we used DT1 ~ at permissive temperature 

to delay folding and intracellular transport. We then 
followed the maturation of the ER-retained CPY after 
shifting to the nonpermissive temperature and dilution 
of the DTT. Without the functional chaperone, CPY 
aggregated, failed to be oxidized, and remained in the 
ER. In contrast to wild-type cells, in which BiP binding 
was transient with no more than 10-15% of labeled 
CPY associated at any time, 30-100% of the CPY re- 
mained associated with BiP in the mutant strains. In a 
heterozygous diploid strain, CPY matured and exited 
the ER normally. Taken together, the results provide 
clear evidence that BiP plays a critical role as a molecu- 
lar chaperone in CPY folding. 

F 
OR most newly synthesized secretory proteins, 
plasma membrane proteins, and proteins of the 
vacuolar organelles, the site of folding and oligo- 

merization is the ER. To assist in the translocation and 
maturation of these proteins, the ER lumen contains a 
high concentration of chaperones and folding enzymes 
which include BiP (also called GRP78), GRP94, peptidyl- 
prolyl cis-trans isomerase, protein disulfide isomerase, 
ERp72, and calnexin (Vogel et al., 1990; Gething and 
Sambrook, 1992; Bergeron et al., 1994). The ER also pro- 
vides an oxidizing environment that facilitates the forma- 
tion of disulfide bonds, a prerequisite for the proper fold- 
ing of most membrane-bound and secretory proteins 
(Creighton, 1988; Jaenicke, 1991). Cotranslational addi- 
tion of N-linked oligosaccharides is also important since 
the presence of glycans helps to prevent aggregation of 
folding intermediates and mediates the interaction of 
newly synthesized glycoproteins with calnexin, a lectin- 
like chaperone (Kern et al., 1992; Bergeron et al., 1994; 
Hammond et al., 1994). 

Among the most abundant and best-characterized of the 
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ER chaperones is BiP, a heat shock protein (hsp) 170 ana- 
logue. It interacts transiently with numerous proteins dur- 
ing early stages of folding, and binds more persistently to 
misfolded proteins, incompletely assembled oligomers, 
and unassembled subunits (see Gething and Sambrook, 
1992). Exposed hydrophobic peptide segments on the sur- 
face of such proteins are thought to serve as recognition 
sites (Flynn et al., 1991; Blond-Elguindi et al., 1993). Like 
other members of the hsp70 family, BiP is thought to re- 
peatedly bind and release the substrate in a cycle involving 
ATP binding and hydrolysis (Kassenbrock and Kelly, 
1989; Flynn et al., 1991; Knittler and Haas, 1992; Gaut and 
Hendershot, 1993). In this process, the release step is ATP 
dependent, but it is not known whether both ATP binding 
and hydrolysis are required. 

In the yeast Saccharomyces cerevisiae, BiP is required 
for the translocation of proteins into the ER (Vogel et al., 
1990; Sanders et al., 1992). This involves an interaction be- 
tween BiP, encoded by the KAR2 gene in yeast, and a 
DnaJ-like domain of Sec63p, an ER membrane protein as- 
sociated with the translocation complex (Brodsky and 
Schekman, 1993; Scidmore et al., 1993). Hsp70 homo- 
logues in mitochondria, chloroplasts, and the cytosol are 

1. Abbreviations used m this paper: CPY, carboxypeptidase Y; hsp, heat 
shock protein; NEM, N-ethylmaleimide; TX-100, Triton X-100; wt, wild- 
type. 
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also known to assist protein translocation across mem- 
branes, suggesting a common function for this family of 
chaperones (Wild et al., 1992; Tsugeki and Nishimura, 
1993; Stuart et al., 1994). 

It has also been proposed that BiP plays a role in the re- 
tention of immature proteins in the ER (Bole et al., 1986; 
Gething et al., 1986; Pelham, 1986), in the regulation of 
ER degradation (Hurtley et al., 1989), and in the retrieval 
of incompletely folded proteins from the Golgi complex to 
the ER (Hammond and Helenius, 1994). Support for a 
role in the ER quality control system has been obtained in 
cultured mammalian cells that secrete von Willebrand fac- 
tor, a mutant form of factor VIII, and plasminogen activa- 
tor in a BiP-dependent fashion (Dorner et al., 1988, 1992). 
Moreover, yeast strains with defective BiP are unable to 
complete nuclear fusion during mating (Rose et al., 1989; 
Vogel et al., 1990) and show a defect in homotypic fusion 
of ER membranes (Latterich and Schekman, 1994). 

Finally, it is widely believed that BiP actively supports 
proper folding and oligomeric assembly of polypeptides in 
the ER (Gething et al., 1986; Pelham, 1986). This is based 
on BiP's association with numerous newly synthesized 
proteins only as long as they are incompletely folded or as- 
sembled. It is also supported by known activities of other 
hsp70 analogues, such as mitochondrial and bacterial 
hsp70 proteins, that promote in vitro refolding of several 
proteins in an ATP-dependent manner (Kang et al., 1990; 
Skowyra et al., 1990; SchrOder et al., 1993). 

To determine whether BiP indeed has a chaperone func- 
tion during folding in the ER, we have followed the matu- 
ration of newly synthesized carboxypeptidase Y (CPY) in 
temperature-sensitive kar2 mutant yeast strains. CPY is a 
well-characterized vacuolar glycoprotein, synthesized in 
the ER, and transported as a monomer via the Golgi 
complex to the vacuole, where it is proteolytically acti- 
vated (Hasilik and Tanner, 1978a; Hemmings et al., 1981; 
Stevens et al., 1982). It has four N-linked glycans (Hasilik 
and Tanner, 1978b), and recent x-ray crystallographic data 
have revealed five intrachain disulfide bonds (Endrizzi et 
al., 1994). 

The requirement for BiP in translocation of newly syn- 
thesized proteins into the ER has precluded direct analysis 
of CPY folding at the nonpermissive temperature. To cir- 
cumvent this problem, we used DTT, which has been 
shown to delay folding of disulfide-containing proteins in 
the ER of animal cells and yeast (Braakman et al., 1992a; 
Lodish and Kong, 1993; Tatu et al., 1993; J~ims~i et al., 
1994). This enabled us to accumulate radiolabeled un- 
folded CPY in the ER lumen at a permissive temperature, 
and to follow its posttranslational folding at the nonper- 
missive temperature after dilution of DTI'. These studies 
provided evidence that BiP plays a direct role in the fold- 
ing process. 

Materials and Methods 

Yeast Strains and Growth Conditions 
The following Saccharomyces cerevisiae strains were used: SFNY26-6A 
(his4-619, MATe 0, MS1705 (ade2-101, trplA1, ura3-52, kar2-113, MATct), 
MS177 (ade2-101, ura3-52, kar2-159, MATct), MS1351 (leu2,3-112, ade2- 
101, trplD1, ura3-52, kar2-203, MATer), NY432 (ura3-52, sec18-1, 
MATer), and ANY123 (hts4-619, ura3-52, [31-1, MATe 0. 

Cells were grown at 25°C, unless otherwise stated, in either YP medium 
(1% yeast extract [Difeo Laboratories, Inc., Detroit, MI], 2% Bacto-Pep- 
tone) containing 2% glucose, or before metabolic labeling experiments, 
overnight in yeast nitrogen base (Difeo Laboratories, Inc.) that was sup- 
plemented with 2% glucose and the appropriate amino acids. 

Antibodies 

Anti-BiP/Kar2p antibody was obtained from the laboratory of Dr. Mark 
D. Rose and from Dr. Jeffrey Brodsky (University of California, Berke- 
ley, CA). The CPY antibody was raised against a bacterially expressed fu- 
sion protein between 13-galactosidase and the full-length open reading 
frame of CPY, and was obtained from Dr. Patrick Brennwald (Yale Uni- 
versity School of Medicine, New Haven, CT). The anti-[H÷]ATPase anti- 
body used was affinity purified as described (Chang and Slayman, 1991) 
and was a gift from Dr. Carolyn W. Slayman (Yale University School of 
Medicine). 

Metabolic Labeling and Immunoprecipitations 
For metabolic labeling, 2-5 OD599 units of cells in an early logarithmic 
growth phase were pelleted and resuspended in a volume of 100-400 p,l of 
fresh yeast nitrogen base medium. For induction of the temperature-sensi- 
tive phenotype, the bet1-1 and secl8-1 strains were incubated for 30 min at 
the nonpermissive temperature (37°C) before metabolic labeling. Induc- 
tion of the mutant phenotype in the kar2-113, kar2-159, and kar2-203 mu- 
tants was done by shifting the cells for 20 min to 34°C. Samples that re- 
ceived DqT  were preincubated for 10 min in the presence of 5 mM DTT, 
and the metabolic labeling was typically done by adding 100-200 ~Ci of a 
mix of [35S]methionine and [35S]cysteine (L-[35S] In Vitro Cell Labeling 
Mix; Amersham Corp., Arlington Heights, IL). To terminate translation 
and incorporation of radiolabeled amino acids, 1 mM cyeloheximide, and 
10 mM each of cold methionine and cysteine were added. 

All incubations were terminated by adding an equal volume of ice-cold 
PBS containing 40 mM N-ethylmaleimide (NEM), to prevent further rear- 
rangement of disulfide bonds, and 20 mM sodium azide. Subsequently, 
cells were pelleted and resuspended in either 1% SDS in PBS, or 2% 
CHAPS (Pierce Chemical Co., Rockford, IL) in HBS buffer (200 mM 
NaC1, 50 mM Hepes, pH 7.6) for the coprecipitations. 1 mM PMSF (Boeh- 
ringer Mannheim Biochemicals, Indianapolis, IN) and 10 ~g/ml each of 
chymostatin, leupeptin, antipain, and pepstatin (Sigma Chemical Co., St. 
Louis, MO) were added to prevent postlysis protein degradation. Cells 
were disrupted by vortexing with glass beads, and samples in SDS were 
subsequently either boiled for 5 min, or in the case of [H÷]ATPase, incu- 
bated for 5 min at 37°C. 

The extracellular or-factor was precipitated from the growth medium in 
5% TCA for 30 rain on ice, and the pellet was washed twice in ice-cold ac- 
etone. The dry pellet was resuspended in a buffer containing 50 mM Tns- 
HC1, pH 7.5, 6 M urea, 1% SDS, and l mM EDTA, and before the addi- 
tion of anti-or-factor antibody the volume was increased 10-fold in a buffer 
containing 50 mM Tris-HCl, pH 7.5, 0.5% Tween-20, 150 mM NaCI, and 
0.1 mM EDTA. 

Samples were immunoprecipitated overnight at 4°C in the presence of 
the appropriate antibodies and protein A-Sepharose (Sigma Chemical 
Co.). The immunoprecipitates from SDS-lysed cells were washed with a 
buffer containing 10 mM Tris-HC1, pH 8.0, 0.3 M NaC1, 0.05% Triton 
X-100 (TX-100), and 0.1% SDS at room temperature. When coimmuno- 
precipitations using the anti-BiP antibody were performed, the immuno- 
precipitates were washed in HBS buffer containing 0.5% CHAPS at 4°C. 
The immunoeomplexes were then disrupted by boiling in 1% SDS and the 
volume was increased 10-fold with 1% TX-100 in PBS before the addition 
of the anti-CPY antibody. The immunoprecipitates of the extracellular 
n-factor were washed in the Tween-containing immunoprecipitation 
buffer used during its precipitation, but which had been supplemented 
with 2 M urea. 

Sucrose Gradient Centrifugation 
Samples were prepared essentially as described above for CHAPS solubi- 
lization, except that 1% TX-100 in PBS was used to solubilize the cells. 
The cell lysates were loaded on top of 10-40% (wt/vol) linear sucrose gra- 
dients containing 0.1% TX-100 in PBS. Tubes were centrifuged for 7 h in 
an SW50.1 rotor (Beckman Instruments, Inc., Fullerton, CA) at 45,000 
rpm, at 4°C and fractions were collected manually from the top of the gra- 
dients using a micropipette. CPY was immunoprecipitated directly from 
each fraction and analyzed by SDS-PAGE. 
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Gel Electrophoresis 

Samples for gel electrophoresis were dissolved in Laemmli sample buffer 
(Laemmli, 1970) and either boiled for 5 rain in the presence or absence of 
25 mM DTT, or in the case of [H+]ATPase, incubated for 5 min at 37°C to 
avoid aggregation of the protein (Chang and Slayman, 1991). 

CPY, [H+]ATPase, and the intracellular form of a-factor were analyzed 
by 7.5% SDS-PAGE (Laemmli, 1970). When analyzing [H+]ATPase, the 
gel was run until [3-galactosidase of the prestained molecular weight 
marker (Bio-Rad Laboratories, Richmond, CA) had migrated through 
two-thirds of the gel (Chang and Slayman, 1991). The extracellular a-fac- 
tor was analyzed on a tricine SDS-PAGE gel (Schr~igger and yon Jagow, 
1987). Quantitation of radioactive signals was done by using a Phosphorlm- 
ager TM (Molecular Dynamics, Sunnyvale, CA). 

To normalize the amount of radioactive material loaded in each lane of 
the SDS-PAGE, total incorporation of [35S]methionine and [35S]cysteine 
in labeling experiments was measured by TCA precipitation. The precipi- 
tated radiolabeled material was quantified by liquid scintillation counting 
in the presence of Optifluor (Packard Instrument Co., Inc., Meriden, CT). 

Results 

DTT Prevents Folding and Intracellular Transport 
o f  CPY 

Three distinct intracellular forms of CPY can be identified 
on SDS-PAGE due to glycan modification and proteolytic 
cleavage: (a) a core glycosylated 67-kD ER form called 
plCPY; (b) a Golgi form, p2CPY of 69 kD; and (c) the 
mature vacuolar mCPY of 61 kD, which is formed by pro- 
teolytic cleavage of p2CPY (Hasilik and Tanner, 1978a; 
Hemmings et al., 1981; Stevens et al., 1982). When wild- 
type cells were metabolically labeled for 30 rain, labeled 
CPY of all three forms was recovered by immunoprecipi- 
tation (Fig. 1 A, lane 1). 

To determine whether DTF had an effect on CPY fold- 
ing and transport, we first exposed yeast to various con- 
centrations of DTT, and determined its effect on cell 
growth. With 0, 2.5, 5, 10, and 20 mM DTT added during 
the early logarithmic growth phase (0 .10DU/ml) ,  the 
doubling times were 2, 3, 4, 6, and >8 h, respectively (data 
not shown). Having confirmed that the cells were viable 
for several hours, we analyzed the folding of newly synthe- 
sized CPY in the presence of 5 or 10 mM DTT. We found 
that DTT caused a dramatic enrichment of plCPY, but 
prevented the formation of the Golgi and the vacuolar 
forms. It was found that 5 mM DTT efficiently blocked the 
appearance of the post-ER forms if the pulse was pre- 
ceded by a 10-min preincubation (Fig. 1 A, lane 2). 

To confirm that CPY was accumulating in the ER, we 
used a temperature-sensitive mutant strain, betl-1, defec- 
tive in ER to Golgi transport (Newman and Ferro-Novick, 
1987). When these cells were metabolically labeled at a 
nonpermissive temperature, p lCPY was generated both in 
the presence and absence of DTT (Fig. 1 A, lanes 3 and 4). 
This indicated that DTT, like the betl mutation, interfered 
with the transport of CPY from the ER to the Golgi. 

A small mobility difference was observed between 
plCPY that accumulated in the presence or absence of 
D T r  in the betl-1 strain, as well as in the wild-type strain 
(Fig. 1, compare lane 1 with lane 2, and lane 3 with lane 4). 
The reason for the shift is not known, but it was reversible 
upon dilution of the D T r  (not shown). 

When analyzed by nonreducing SDS-PAGE, the CPY 
from DTT-treated wild-type and betl-1 cells had the same 
mobility (Fig. 1 A, lanes 6 and 8), and comigrated with in 

Figure 1. CPY but not pro-a-factor is retained in the ER in the 
presence of DTT. (A) Wild-type (lanes 1, 2, 5, and 6) and bet1-1 
(lanes 3, 4, 7, and 8) strains were incubated at 37°C for 30 min, 
preincubated another 10 min in the presence or absence of 5 mM 
DTI', and metabolically labeled with 35S-labeled cysteine and me- 
thionine for 30 min. Subsequently, the cells were disrupted (as 
described in Materials and Methods) in the presence of 20 mM 
NEM, and CPY was recovered by immunoprecipitation. The im- 
munoprecipitated samples were analyzed either by reducing 
(lanes I-4) or nonreducing (lanes 5-8) SDS-PAGE. (B) Pro-a- 
factor was immunoprecipitated from the same lysates as in A and 
analyzed by SDS-PAGE. The immunoprecipitates from wt cells 
were analyzed in lanes I and 2, and the betl-l-derived immuno- 
precipitates in lanes 3 and 4. Lanes 5 and 6 represent the mature 
secreted form of a-factor, that was TCA precipitated from the 
culture medium, followed by anti--a-factor antibody precipita- 
tion, and analyzed on a tricine SDS-PAGE gel. 

vitro reduced plCPY (not shown). In contrast, the form 
that accumulated in the absence of DTT in the bet1-1 
strain comigrated with the middle band from the wild-type 
strain labeled under nonreducing conditions (Fig. 1 A, 
lanes 5 and 7). The uppermost band in the wild-type sam- 
ple probably represented the oxidized Golgi form and pos- 
sibly partially oxidized plCPY (Fig.1 A, lane 5). We con- 
cluded that the CPY accumulating in the presence of DTT 
corresponded to reduced plCPY, and that the faster mov- 
ing form seen in the betl-1 mutant in the absence of DTI" 
corresponded to oxidized plCPY. Thus, DTT interfered 
directly with the oxidation of CPY. 

We also assessed whether DTT, under the conditions 
described above, would have an effect on the transport of 
a disulfide-free protein, the mating pheromone a-factor. 
In the early secretory pathway, a-factor exists as a 26-kD 
protein which is proteolytically cleaved in the late Golgi 
compartment to generate the secreted 13-amino acid ma- 
ture pheromone. We found that mature a-factor was effi- 
ciently secreted in the presence of 5 mM DT-F (Fig. 1 B, 
lanes 5 and 6), with only minor amounts of the intracellu- 
lar form detected (lanes I and 2). In contrast, in the bet1-1 
mutant labeled at the nonpermissive temperature, the 26- 
kD ER form accumulated (Fig. 1 B, lanes 3 and 4). 

These results confirmed previous observations that DTF 
blocks oxidation and ER to Golgi transport of proteins 
that require disulfide bonds, without interfering with the 
transport pathway per se (Braakman et al., 1992a; Lodish 
and Kong, 1993; Tatu et al., 1993; J~ims~i et al., 1994). 
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DTI" Effect Is Reversible and Reveals 
Folding Intermediates 

Next, we determined whether the DTT block was revers- 
ible. Rather than washing the cells to remove the DTT 
(Braakman et al., 1992a; Jfims/i et al., 1994), we used a pro- 
tocol by which the Dq-T was diluted 10- or 20-fold. The 
cells were metabolically labeled for 10 min in the presence 
of 5 mM DTT as described, and the incorporation of label 
was terminated by the addition of cycloheximide and an 
excess of unlabeled methionine and cysteine. At the same 
time, the volume was increased 10-fold with fresh medium 
lacking DTT. Samples were taken at the end of the pulse 
and at timed intervals following the dilution, and immedi- 
ately treated with NEM to prevent further formation of 
disulfide bonds. 

As expected, when analyzed by reducing SDS-PAGE, 
only p lCPY was detected in a sample taken at the end of 
the pulse (Fig. 2 A, lane 8). However, 5 min after dilution 
of the DT1 ~, p2CPY as well as mCPY appeared, and by 30 
rain all the CPY had reached the vacuole (Fig. 2 A, lanes 
9-14). The transport block imposed by DTT was thus fully 
reversible. 

When the CPY was analyzed on a nonreducing gel, a 
different pattern of bands was seen (Fig. 2 A, lanes 1-7). In 
addition to the distinct vacuolar form, two additional 
bands were resolved. These could be identified as the re- 
duced (red plCPY) and the fully oxidized (ox pl  CPY) ER 
forms of CPY based on their mobilities. Between them an 
additional difuse band was seen (Fig 2 A, lane 2), corre- 
sponding either to p2CPY or partly oxidized plCPY. 

To confirm that oxidation of p lCPY was taking place af- 
ter the DTT dilution, the experiment was repeated in a 
sec18-1 mutant strain, which like the betl-1 strain is 
blocked in ER to Golgi transport at the nonpermissive 
temperature. The nonreducing gel (Fig. 2 B, lanes 1-4), 
showed the disappearance of reduced p lCPY and the ap- 
pearance of oxidized p lCPY after DT-I" dilution. Reduc- 
tion of the samples before SDS-PAGE analysis confirmed 
that all CPY still resided in the ER (Fig. 2 B, lanes 5-8). 

In summary, our results demonstrated that DTT blocks 
efficiently the folding and subsequent transport of CPY, 
but has no effect on the transport pathway as such. Fur- 

thermore, the effect of DTT was reversible; the posttrans- 
lational folding process after DTT dilution resulted in 
quantitative formation of transport-competent CPY. Fi- 
nally, as for influenza virus hemagglutinin and vesicular 
stomatitis virus G protein (Braakman et al., 1992a; Mar- 
quardt et al., 1993; Tatu et al., 1993), nonreducing SDS- 
PAGE proved to be a powerful means to follow the oxida- 
tion of CPY. Completely reduced and fully oxidized forms 
could be distinguished. These findings formed the basis for 
our experiments with the kar2 mutant strains. 

CPY Folding Is Defective in kar2-113, kar2-159, and 
kar2-203 Mutants 

To examine BiP involvement in the posttranslational fold- 
ing and intracellular transport of CPY, we followed its 
maturation in three kar2 mutant strains, kar2-113, kar2- 
159, and kar2-203. All have mutations in the ATPase do- 
main of BiP, and all show a severe translocation defect at 
the nonpermissive temperature (Vogel et al., 1990; Sand- 
ers et al., 1992; Rose, M. D., unpublished data). The mu- 
tant and wild-type cells were metabolically labeled for 10 
rain at permissive temperature (25°C) in the presence of 5 
mM DTT. Translation was terminated by the addition of 
cycloheximide and unlabeled methionine and cysteine, af- 
ter which BiP was inactivated by shifting the cells to the 
nonpermissive temperature (34°C) for 20 rain. Cells were 
then diluted 20-fold in DTT-free prewarmed (34°C) growth 
medium and samples were taken at timed intervals, the 
first immediately before the dilution of the DTT. 

In wild-type cells, the majority of CPY was found in the 
vacuole by 60 min of chase (Fig. 3 A, lane 4). In the mutant 
cells, however, no CPY reached the vacuole. Instead, it re- 
mained in the ER, as evidenced by the accumulation of 
p lCPY (Fig. 3 A, lane 5-16). Nonreducing SDS-PAGE 
demonstrated that no fully oxidized p lCPY was formed, 
and that a substantial part of the protein remained com- 
pletely reduced throughout the chase (Fig. 3 B, lanes 5-16). 
Some entered heterogeneous disulfide-linked complexes 
with slow SDS-PAGE mobility. As evident from A, these 
cross-linked species were recovered as monomers when 
the samples were reduced before SDS-PAGE. Since inter- 
chain disulfides are not part of CPY's structure, they rep- 

Figure 2. CPY folds posttranslationally and is trans- 
ported out of the ER upon dilution of Dq-T. (A) The 
wt strain was preincubated for 10 min at 37°C in the 
presence of 10 mM DT'I', followed by a 10-min ra- 
dioactive pulse. The volume was then increased 10- 
fold with DTT-free medium and aliquots were 
transferred to PBS containing 20 mM NEM at the 
indicated time-points after the dilution. Cells were 
disrupted as described in Materials and Methods, 
and CPY was recovered by immunoprecipitation. 
The samples were analyzed by nonreducing (lanes 
1-7) or reducing (lanes 8-14) SDS-PAGE. (B) The 
sec18-1 strain was preincubated for 20 min at 37°C, 
DTI" was added at 5 mM for 10 rain, and the cells 
were metabolically labeled for 10 rain. The cell sus- 
pension was diluted 20-fold with DTl'-free medium 
and samples were collected at timed intervals and 
processed as in A. The samples were run on nonre- 
ducing (lanes 1-4) or reducing (lanes 5-8) SDS- 
polyacrylamide gels. red, reduced: ox, oxidized. 
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resented misfolded products (see upper part of gels in Fig. 
3 B, lanes 5-16). When a similar experiment was per- 
formed without shifting the mutant cells to the nonpermis- 
sive temperature, folding and transport of CPY was nor- 
mal (not shown). 

These experiments showed that CPY folding, as mea- 
sured by the formation of disulfide bonds and transport 
out of the ER, was defective in the kar2-113, kar2-159, and 
kar2-203 mutants. Intriguingly, a large part of CPY re- 
mained in a form devoid of intra- as well as intermolecular 
disulfide bonds. Apparently, it was trapped in a form that 
could not get oxidized. Although incompletely folded, the 
CPY was also protected against degradation during the 
chase period for at least 2 h (Fig. 3 A, lanes 5-16, 2 h time- 
point not shown). 

Transport o f  a BiP-independent Protein is Unperturbed 

Incubation of the kar2-113, kar2-159, and kar2-203 mu- 
tants at the nonpermissive temperature results in an irre- 

versible translocation block and eventual cell death (Vo- 
gel et al., 1990). The CPY folding phenotype was also 
irreversible; when cells were shifted from the nonpermis- 
sive back to the permissive temperature, the CPY re- 
mained unfolded and trapped in the ER (not shown). 

To exclude the possibility that the observed ER reten- 
tion of CPY was due to a general inability of the mutant 
cells to support any type of folding and transport, we stud- 
ied the intracellular transport of cell surface [H+]ATPase. 
While this protein is transported along the secretory path- 
way (Brada and Schekman, 1988), it differs from CPY in 
that its translocation into the ER membrane is indepen- 
dent of BiP function (Chang et al., 1993). [H+]ATPase 
gets phosphorylated during transport and at the cell sur- 
face, resulting in a small mobility difference on SDS- 
PAGE between the newly synthesized protein and the 
plasma membrane form (Chang and Slayman, 1991). 

We found, in agreement with Chang et al. (1993), that 
synthesis and transport of [H+]ATPase was normal in the 
kar2 mutant ceils under conditions mimicking those used 
for examining the maturation of CPY (Fig. 4). Thus, the 
failure of CPY to fold and get transported was not due to 
a general block in the cells' metabolism and membrane 
traffic. 

Aggregation o f  Misfolded C P Y  

In mammalian cells, ATP depletion leads to aggregation 
of newly synthesized proteins in the ER. These aggregates 
are frequently cross-linked by intermolecular disulfide 
bonds (Dorner et al., 1990; Braakman et al., 1992b; de 
Silva et al., 1993). To determine whether the mutant BiP in 
the kar2 strains caused quantitative aggregation of CPY, 
wild-type and kar2-159 cells were labeled at 25°C in the 
presence of DT-F and shifted to 34°C for 20 min. The DTT 
was then diluted 20-fold, and samples were taken either 
immediately before the dilution or I h later, alkylated with 
NEM and solubilized with TX-100. Post-nuclear lysates 
were then subjected to velocity sedimentation centrifuga- 

Figure 3. Folding and transport out of the ER is impaired in 
kar2-113, kar2-159, and kar2-203 mutant strains. Wild-type or 
mutant strains were incubated for 10 min at 25°C in the presence 
of 5 mM DTF, pulse-labeled for 10 min, and subsequently shifted 
to 34°C for 20 min. The sample volume was then increased 20- 
fold with prewarmed (34°C) DTT-free medium and aliquots were 
removed at the indicated time-points and lysed as described in 
Fig. 1. The samples were analyzed by either reducing (A) or non- 
reducing (B) SDS-PAGE. The faster migrating band in lanes 13 
and 14 represent nontranslocated CPY, demonstrating that under 
the labeling conditions used, the kar2-203 mutant was partially 
defective in translocation. 

Figure 4. Synthesis, translocation and transport of cell surface 
[H+]ATPase is unaffected in kar2-113, kar2-159 and kar2-203 
mutant strains. To mimic conditions used in Fig. 3, wild-type or 
kar2 mutant strains were incubated for 20 min in 5 mM DT'F at 
25°C, then shifted to 34°C for 30 rain, whereafter 10-fold excess of 
prewarmed (34°C) DTT-ffee medium was added. After another 
30 min of incubation at 34°C, the cells were metabolically labeled 
for 5 rain, and half of the cells were immediately disrupted, 
whereas the other half was chased for another 60 min at 34°C. 
The samples were prepared as described (Chang and Slayman, 
1991), by omitting boiling, and analyzed by SDS-PAGE. The 
controls represent the ER form of [H+]ATPase synthesized at 
37°C in the betl-1 strain (lane 9), and the plasma membrane form 
obtained after a 1-h chase at 25°C in the same strain (lane 10). 
PAl, plasma membrane. 
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tion on sucrose gradients, and CPY was recovered from 
each fraction by immunoprecipitation. 

In wild-type cells, the reduced CPY was found in the up- 
per part of the gradient, with the bulk in fractions 1-5 (Fig. 
5 A, DTTpresent), corresponding to S values between 2 
and 20S. After DTT dilution, the CPY was converted to 
oxidized p lCPY (nonreducing gel not shown), p2CPY, 
and mCPY, most of which sedimented as monomeric CPY 
of 4 S in fraction 4 (Fig. 5 A, -DTT, 60 min). The loss of 
signal after 60 min of chase was mainly due to poor solubi- 
lization or antibody recognition of mCPY in TX-100- 
derived lysates. 

In the kar2-159 strain, the major part of CPY sedi- 
mented as in the wild-type strain at the nonpermissive 
temperature and in the presence of D T r .  However, an ap- 
preciable amount was also found in the pellet (Fig. 5 B, 
DTT present). This suggested that functional BiP was 
needed to keep some of the reduced CPY from aggregat- 
ing. After DTT dilution, a more dramatic departure from 
the distribution seen in the wild-type was observed; virtu- 
ally all of the CPY pelleted in an aggregated form (Fig. 5 
B, 60-min chase). 

We concluded that the temperature-induced inactiva- 
tion of BiP caused association of CPY, and possibly other 
newly synthesized proteins, into complexes which co- 
alesced into large aggregates after DTT washout. This re- 
sult suggested that one of BiP's functions is to prevent the 
aggregation of incompletely folded proteins in the ER, a 
function consistent with observations made with hsp70 
proteins in cell-free refolding experiments (Langer et al., 
1992). 

Association of  CPY and BiP 

To determine whether BiP interacted with CPY before 
and after DTT dilution, coimmunoprecipitation experi- 
ments were performed using anti-BiP antibodies under 
mild detergent conditions. After BiP precipitation, sam- 
ples were treated with SDS and reprecipitated with anti- 
CPY antibodies. 

In wild-type cells, a variety of labeled proteins including 
p lCPY (10-15% of total), were precipitated with the anti- 
BiP antibody before dilution of DTT. After 60 min of 
chase, all CPY had exited the ER and no coprecipitation 
was observed (Fig. 6, A and B, anti-BiP precipitation only 

Figure 5. The ER bound CPY in the kar2-159 strain is 
sequestered into aggregates after removal of DTT. 
Wild-type (A) and kar2-159 (B) cells were metaboli- 
cally labeled as described in Fig. 3. Samples were 
taken immediately before the dilution of the DTF and 
60 min later. Cells were disrupted in 1% TX-100 in 
PBS as described in Materials and Methods and sub- 
jected to 10--40% sucrose gradient velocity sedimen- 
tation for 7 h at 45,000 rpm. Fractions were collected 
from the top of the gradient, and pelleted material 
was dissolved in 1% SDS and diluted 10-fold in 1% 
TX-100 in PBS. CPY was recovered by immunopre- 
cipitation and analyzed by reducing SDS-PAGE. Par- 
allel gradients were loaded with thyroglobulin (19.3 S, 
660,000 kD) or BSA (4.6 S, 66,000 kD), and the posi- 
tions of these proteins were determined by analyzing 
an aliquot of each fraction on SDS-PAGE, followed 
by Coomassie staining of the gels. P, pellet. 

not shown). Only about one-eighth of the p lCPY mole- 
cules coprecipitated with BiP, suggesting either that BiP 
only bound to a fraction of the CPY residing in the ER at 
any given time, or that the interactions were partly dis- 
rupted during the precipitation procedure. The former ex- 
planation is consistent with a model in which substrates 
continuously bind to BiP and are released during the pro- 
cess of folding (see Gething and Sambrook, 1992; Hartl et 
al., 1994). 

In the kar2 mutants, the fraction of total CPY that co- 
precipitated with BiP at the nonpermissive temperature 
was much higher than in the wild-type cells (Fig. 6, A and 
B), depending on the strain 30--100% of CPY, as com- 
pared to the amount precipitated with the anti-CPY anti- 
body, coprecipitated with BiP both before and after Dq"F 
dilution. In some experiments, more CPY was coprecipi- 
tated with BiP than with the anti-CPY antibody, probably 
due to missing or hidden epitopes in the aggregated CPY 
(e.g., Fig. 6, A and B, lanes 5 and 6). Analysis of the sam- 
ples by nonreducing SDS-PAGE revealed that both the 
covalently cross-linked as well as the non--cross-linked 
CPY was associated with BiP (Fig. 6 C, lanes 3 and 4, only 
kar2-159 shown). 

These data demonstrate clearly that at the nonpermis- 
sive temperature the mutant BiP displayed enhanced asso- 
ciation with CPY compared to the wild-type strain. These 
differences were also observed in the presence of Dq-T, 
suggesting that they were due to inherent properties of the 
mutant BiP molecules and not the folding state of CPY. 
Furthermore, Western blot analysis to determine the dis- 
tribution of total BiP in the sucrose gradients in Fig. 5, 
showed that the bulk of it was in fractions 2 and 3, where 
monomeric and lower order oligomers would sediment. In 
fact, by this assay no BiP could be detected in the denser 
part of the gradient or in the pellet in either wild-type or 
kar-159 cells under any conditions. This demonstrates that 
only a minor fraction of BiP was bound to the aggregated 
CPY, implying that the interaction was specific and not 
due to massive aggregation of mutant BiP. 

Folding Defect of Kar2-159 Is Recessive 

To shed more light on the mechanism of the folding defect 
caused by the BiP mutations, we analyzed CPY folding in 
a heterozygous diploid strain possessing a wild-type and a 
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Figure 6. Binding of CPY to BiP is enhanced in the kar2-113, 
kar2-159, and kar2-203 strains. Cells were radiolabeled as de- 
scribed in the legend of Fig. 3 and subsequently lysed in 2% 
CHAPS in the presence of 30 U/ml apyrase to preserve binding 
to BiP. Lysates were immunoprecipitated either with anti-CPY 
antibody (B), or first with anti-BiP antibody (Anti-Kar2p) fol- 
lowed by an anti-CPY antibody precipitation (A). The samples 
were analyzed by reducing SDS-PAGE. In C the samples were 
prepared as in A and B, but analyzed both by reducing (lanes 1 
and 2) and nonreducing (lanes 3 and 4) SDS-PAGE. 

kar2-159 allele of BiP. Previously, such strains have been 
shown to be viable and devoid of translocation defects at 
the nonpermissive temperature (Vogel et al., 1990), sug- 
gesting that the wild-type protein can neutralize any dam- 
age caused by the mutant BiP. We found that the CPY 
folding phenotype was recessive under a variety of condi- 
tions after DTT washout, or in the absence of any DTT 
treatment. Thus, the folding of CPY in the heterozygous 
diploid was indistinguishable from wild-type cells (Fig. 7). 

This result suggests that the mutant BiP molecules do 
not bind irreversibly to CPY at the nonpermissive temper- 
ature; otherwise a fraction of CPY would have been re- 
tained in the ER as aggregated complexes. The same re- 
sult would, however, also arise if the wild-type BiP, via its 
chaperone activity, would help to suppress the tempera- 
ture-induced inactivation of the mutant BiP. 

Discussion 

We have investigated the involvement of BiP during the 
folding of CPY in the ER of yeast. In three mutant strains, 
kar2-113, kar2-159, and kar2-203, with mutations in the 
ATPase domain of BiP, folding and transport of CPY out 
of the ER was completely and irreversibly inhibited at the 

Figure 7. Folding of CPY occurs 
normally in a heterozygous diploid. 
Cells were incubated for 1 h at 
37°C, then metabolically labeled for 
5 min and chased in the presence of 
cycloheximide and excess unlabeled 
methionine and cysteine. Aliquots 

were removed at the indicated time-points after the radioactive 
pulse, lysed as described in the legend of Fig. 1, and analyzed by 
reducing SDS-PAGE. 

nonpermissive temperature. Neither partially oxidized 
folding intermediates nor native, fully oxidized ER forms 
were generated. Instead, the CPY was sequestered in 
large, partially disulfide cross-linked, BiP-associated ag- 
gregates. The results showed that interference with the 
function of BiP affected the folding of CPY, and estab- 
lished that BiP is a molecular chaperone with an active 
role in the conformational maturation and transport of 
newly synthesized proteins. 

All mutants displayed increased binding between BiP 
and CPY compared with the wild-type strain. This sug- 
gests that the ATP-induced release from substrates was af- 
fected consistent with observations that binding or hydrol- 
ysis of ATP is needed for the release of BiP and other 
hsp70 chaperones from a variety of substrates (Munro and 
Pelham, 1986; Hurtley et al., 1989; Kassenbrock and Kelly, 
1989; Dorner et al., 1990; Gaut and Hendershot, 1993; Pal- 
leros et al., 1993; Schmid et al., 1994). The explanation for 
the failed folding could, therefore, be that BiP bound per- 
sistently to newly synthesized CPY, limiting the conforma- 
tional freedom needed for its proper folding. BiP is 
thought to recognize transiently exposed hydrophobic 
peptides that get buried in the interior of the folded pro- 
tein (Flynn et al., 1991; Blond-Elguindi et al., 1993). Per- 
sistent BiP binding to such peptides could prevent them 
from reaching their intended position in the interior of the 
protein. The restrictions in the peptide chain mobility, 
thus imposed, could also explain why native disulfide 
bonds failed to form or formed inefficiently in CPY. 

While such a mechanism is consistent with known fea- 
tures of the hsp70 binding cycle and the role of the ATPase 
domain, it does not fully explain our observations. For ex- 
ample, it is not clear why the fraction of CPY that did not 
coprecipitate with BiP also failed to fold. Nor is it obvious 
why the kar2-159 mutation was recessive; if binding to the 
mutant BiP molecules is irreversible, one would expect im- 
paired folding of at least a fraction of the CPY molecules 
in the heterozygous diploid. We found, however, that CPY 
folding was entirely normal. 

Studies (Vogel, J., and M. D. Rose, manuscript in prepa- 
ration) indicate that the kar2-159, kar2-113, and kar2-203 
mutations do not map to the ATP binding site, but rather 
to other parts of the ATPase domain. Therefore, these 
mutations may affect the rate of ATP hydrolysis or the 
coupling between ATP hydrolysis and peptide release. In- 
deed, other genetic studies (Scidmore, M. A. and M. D. 
Rose, manuscript in preparation) suggest that these mu- 
tants do have some residual BiP function at the nonper- 
missive temperature. In contrast, mutations that map to 
the ATP-binding site, which would be expected to be de- 
fective in binding or hydrolyzing ATP and thereby unable 
to release from substrate, are dominant lethals (Vogel, J. P., 
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K. Reynolds, J. Brodsky, and M. D. Rose, manuscript in 
preparation). In the kar2-159, kar2-113, and kar2-203 mu- 
tants, it is thus conceivable that substrate release does oc- 
cur, though perhaps more slowly than normal, and in such 
a way that incorrectly folded intermediates are formed. In 
the KAR2/kar2-159 diploid, the wild-type BiP may rescue 
such misfolded molecules, explaining the recessive pheno- 
type of the kar2-159 mutation. If so, this would imply that 
the increased association between CPY and the mutant 
BiP molecules in the haploid strains is due to the accumu- 
lation of misfolded CPY in the ER as much as from the 
slower (or abolished) release from BiP. 

That BiP is required for translocation in yeast is well 
known, but how essential is it for protein folding? That no 
CPY folded or was transported out of the ER in the kar2- 
113, kar2-159, and kar2-203 mutants argues that it is cru- 
cial. Maturation of a modified glycan-free CPY has also 
recently been shown to depend on the presence of wild- 
type BiP (Te Heesen and Aebi, 1994). In addition, when 
we analyzed the maturation of CPY in another ATPase 
domain mutant, kar2-127, and in the two peptide domain 
mutants kar2-1 and kar2-133, a partial folding and trans- 
port defect was observed. In these strains the ER-retained 
CPY did not remain in a reduced form, but was found in 
disulphide cross-linked aggregates (Simons, J. F., M. D. 
Rose, S. Ferro-Novick, and A. Helenius, unpublished ob- 
servations). Together these observations support the im- 
portance of BiP during protein maturation, and indicate 
that a variety of mutations in BiP affect its ability to sup- 
port efficient folding, and that the fidelity of its function 
becomes increasingly important as the tendency of the 
substrate to misfold increases. 

An additional, although less likely explanation to the 
failure of CPY to fold in our experimental system includes 
a defect in the redox regulation of the ER lumen. Nor- 
mally, the lumen is more oxidizing than the cytosol and al- 
lows the formation of disulfide bonds. The redox environ- 
ment is probably modulated by the influx of oxidized 
glutathione from the cytosol (Hwang et al., 1992). It is con- 
ceivable that the system responsible for maintaining an ox- 
idizing environment somehow depends on the presence of 
functional BiP. We also cannot exclude that the ATP con- 
tent of the ER is dependent on functional BiP. 

Aggregation is often seen when misfolding occurs in the 
ER (Leavitt et al., 1977; Doms et al., 1988; Hurtley et al., 
1989; Valetti et al., 1991). It is thought to be caused by the 
hydrophobic properties of incompletely folded polypep- 
tide chains, and prevented by molecular chaperones. De- 
pletion of ATP from living cells causes aggregate forma- 
tion in the ER (Doms et al., 1987; Dorner et al., 1990; 
Braakman et al., 1992b), and has been attributed to failed 
function of BiP or other ATP-dependent chaperones in 
the ER (Kassenbrock and Kelly, 1989; Clairmont et al., 
1992). Consistent with this, we found the misfolded CPY 
in the kar2 mutant cells in large aggregates. While a large 
part of it coprecipitated with BiP, there was no clear evi- 
dence that they associated directly with each other. The in- 
activation of BiP could, in fact, have resulted in massive 
precipitation of luminal ER proteins, with CPY and BiP 
being trapped nonspecifically in the same complexes. 
However, our observation that the majority of the BiP 
molecules did not aggregate suggested that the association 

of BiP with the aggregates was mediated by specific inter- 
actions supporting a model in which the aggregation was 
caused by inherent properties of the misfolded CPY. 

We also observed that except for a minor loss during the 
first 10 min after DTT dilution, no degradation of CPY 
took place in any of the mutants up to 2 h. ER degradation 
has been reported to occur with highly variable half-times 
depending on the protein. For example, degradation of T 
cell receptor a chain proceeds with a 50-min tl/2, whereas 
mutant al-antitrypsin in fibroblasts from certain PiZZ 
patients and misfolded influenza virus hemagglutinin dis- 
appear with tl/2 of 2-2.5 and 6 h, respectively. It is thus pos- 
sible that a longer chase would have revealed some degra- 
dation of CPY. However, since the temperature shift 
causes irreversible damage to the kar2 mutants and even- 
tually leads to cell death (Vogel et al., 1990), any degrada- 
tion observed at such late time-points could be unrelated 
to normal degradation in the ER. 

We want to thank Dr. Carolyn Slayman, Dr. Jeffrey Brodsky, and Patrick 
Brennwald for kindly providing anti-[H÷]ATPase, anti-BiP, and anti-CPY 
antibodies, respectively. We also want to thank Dr. Utpal Tatu, Dr. Beate 
Sodeik, Dr. Daniel Hebert, and Aylin Rodan for critical review of the 
manuscript, members of the Helenius-Mellman laboratory for helpful ad- 
vice and discussions, and Henry Tan for excellent photographic assistance. 

This work was supported by a grant from the National Cancer Institute 
to S. Ferro-Novick (CA 46128), grants from National Institutes of Health 
to M. D. Rose (GM37739) and to A. Helenius (GM38346), and postdoc- 
toral fellowships to J. F. Simons from the European Molecular Biology 
Organization (ALTF 460-1992) and the Human Frontier Science Program 
Organization (LT-140/93). 

Received for publication 27 January 1995 and in revised form 6 April 
1995. 

References 

Bergeron, J. J. M., M. B. Brenner, D. Y. Thomas, and D. B. Williams. 1994. Cal- 
nexin: a membrane bound chaperone of the endoplasmic reticulum. Trends 
Biochem. Sci. 19:124-128. 

Blond-Elgulndi, S., S. E. Cwirla, W. J. Dower, R. J. Lipshutz, S. R. Sprang, J. F. 
Sambrook, and M.-J. H. Gethlng. 1993. Affinity panning of a library of pep- 
tides displayed on bacteriophages reveals the binding specificity of BiP. Cell. 
75:717-728. 

Bole, D. G., L. M. Hendershot, and J. F. Kearney. 1986. Posttranslational asso- 
ciation of immunoglobulin heavy chain binding protein with nascent heavy 
chains in nonsecreting and secreting hybridomas. J. Cell Biol. 102:1558-1566. 

Braakman, I., J. Helenius, and A. Helenius. 1992a. Manipulating disulfide bond 
formation and protein folding in the endoplasmic rctieulum. EMBO (Fur. 
Mol. Biol. Organ.) J. 11:1717-1722. 

Braakman, I., J. Helenius, and A. Helenius. 1992b. Role of ATP and disulphide 
bonds during protein folding in the endoplasmic reticulum. Nature (Lond.). 
356:260-262. 

Brada, D., and R. Schekman. 1988. Coincident localization of secretory and 
plasma membrane proteins in organelles of the yeast secretory pathway. J. 
Bactertol. 170:2775-2783. 

Brodsky, J. L., and R. Schekman. 1993. A Sec63p-BiP complex from yeast is re- 
qmred for protein translocation in a reconstituted proteoliposome. J. Cell 
Biol. 123:1355-1363. 

Chang, A., and C. W. Slayman. 1991. Maturation of the yeast plasma mem- 
brane (H+)ATPase involves phosphorylation during intracellular transport. 
J. Cell Biol. 115:289-295. 

Chang, A., M. D. Rose, and C. W. Slayman. 1993. Folding and intracellular 
transport of the yeast plasma-membrane (H+)-ATPase: effects of mutations 
in KAR2 and SEC65. Proc. Natl. Acad. Sci. USA. 90:5808-5812. 

Clairmont, C. A., A. De Maio, and C. B. Hirschberg. 1992. Translocation of 
ATP into the lumen of rough endoplasmic reticulum-derived vesicles and its 
binding to luminal proteins including BiP (GRP78) and GRP94. J. Biol. 
Chem. 267:3983-3990. 

Creighton, T. E. 1988. Disulfide bonds and protein stability. BioEssays 8:57--62. 
de Silva, A., I. Braakman, and A. Helenius. 1993. Posttranslational folding of 

vesicular stomatit~s virus G protein m the ER: involvement of noneovalent 
and covalent complexes. J. Cell Biol. 120:647-655. 

Doms, R. W., D. S. Keller, A. Helenius, and W. E. Balch. 1987. Role for ade- 
nosine triphosphate in regulating the assembly and transport of vesicular 

The Journal of Cell Biology, Volume 130, 1995 48 



stomatitls virus G protein trimers. Z Cell Biol. 105:1957-1969. 
Doms, R. W., A. Ruusala, C. Machamer, J. Helenius, A. Helenius, and J. K. 

Rose. 1988. Differential effects of mutations in three domains on folding, 
quatemary structure, and intracellular transport of vesicular stomatitis virus 
G protein. J. Cell Biol. 107:89-99. 

Dorner, A. J., M. G. Krane, and R. J. Kaufman. 1988. Reduction of endogenous 
GRP78 levels improves secretion of a heterologous protein m CHO cells. 
Mol. Cell. Biol. 8:4063-4070. 

Dorner, A. J., L. C. Wasley, and R. J. Kaufman. 1990. Protein dissociation from 
GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc. 
Natl. Acad. Sci. USA. 87:7429-7432. 

Dorner, A. J., L. C. Wasley, and R. J. Kaufman. 1992. Overexpression of 
GRP78 mitigates stress induction of glucose regulated proteins and blocks 
secretion of selective proteins in Chinese hamster cells. EMBO (Eur. Mol 
Biol. Organ.)J. 11:1563-1571. 

Endrizzi, J. A., K. Breddam, and S. J. Remington. 1994. 2.8-angstrom structure 
of yeast serine carboxypeptidase. Bzochemistry. 33:11106-11120. 

Flynn, G. C., J. Pohl, M. T. Flocco, and J. E. Rothman. 1991. Peptide-binding 
specificity of the molecular chaperone BiP. Nature (Lond.). 353:726-730. 

Gaut, J. R., and L. M. Hendershot. 1993. Mutations within the nucleotlde bind- 
ing site of immunoglobulin-binding protein inhibit ATPase activity and in- 
terfere with release of immunoglobulm heavy chain. J. Btol. Chem. 268: 
7248-7255. 

Gething, M.-J., and J. Sambrook. 1992. Protein folding in the cell. Nature 
(Lond.). 355:33-45. 

Gething, M.-J., K. McCammon, and J. Sambrook. 1986. Expression of wild-type 
and mutant forms of influenza hemagglutinin: the role of folding in intracel- 
lular transport. Cell 46:939-950. 

Hammond, C., and A. Helenius. 1994. Folding of VSV G protein involves se- 
quential interaction with Bip/GRP78 and calnexin. Science (Wash. DC). 266: 
456-458. 

Hammond, C., I. Braakman, and A. Helenius. 1994. Role of N-linked oligosac- 
charides, glucose trimming and calnexin during glycoprotein folding in the 
endoplasmic reticulum. Proc. Natl. Acad. Sci. USA. 91:913-917. 

HartL F.-U., R. Hlodan, and T. Langer. 1994. Molecular chaperones in protein 
folding: the art of avoiding sticky situations. Trends Biochem. Sci. 19:20-25. 

Hasilik, A., and W. Tanner. 1978a. Biosynthesis of the vacuolar yeast glycopro- 
teln carboxypeptidase Y: conversion of the precursor into the enzyme. Eur 
J. Biochem. 85:599-608. 

Hasilik, A., and W. Tanner. 1978b. Carbohydrate moiety of carboxypeptidase 
Y and perturbation of its biosynthesis. Eur. J. Biochem. 91:567-575. 

Hemmings, B. A., G. S. Zubenko, A. Hasilik, and E. W. Jones. 1981. Mutant 
defective in processing of an enzyme located in the lysosome-hke vacuole of 
Saccharomyces cerevisiae. Proc Natl. Acad. Sci. USA. 78:435-439. 

Hurtley, S. M., D. G. Bole, H. Hoover-Litty, A. Helenius, and C. S. Copeland. 
1989. Interactions of misfolded influenza hemagglutinin with binding protein 
(BiP). J. Cell Bzol. 108:2117-2126. 

Hwang, C., A. J. Sinskey, and H. F. Lodish. 1992. Oxidized redox state of glu- 
tathione in the endoplasmic reticulum. Scwnce (Wash. DC). 257:1496-1502. 

Jaenicke, R. 1991. Protein folding: local structures, domains, subunits, and as- 
semblies. Btochemtstry. 30:3147-3161. 

J~ims~i, E., M. Simonen, and M. Makarow. 1994. Selective retention of secretory 
proteins in the yeast endoplasmic reticulum by treatment of cells with a re- 
ducing agent. Yeast. 10:355-370. 

Kang, P.-J., J. Ostermann, J. Shilling, W. Neupert, E. A. Craig, and N. Planner. 
1990. Requirement for hsp70 in the mitochorial matrix for translocation and 
folding of precursor proteins. Nature (Lond.). 348:137-143. 

Kassenbrock, C. K., and R. B. Kelly. 1989. Interaction of heavy chain binding 
protein (BiP/GRP78) with adenine nucleotides. EMBO (Eur. Mol. Biol. Or- 
gan.) J. 8:1461-1467. 

Kern, G ,  N. Schtilke, F. Z. Schmid, and R. Jaenicke. 1992. Stability, quaternary 
structure and folding of internal, external and core-glucosylated invertase 
form yeast. Protein Sci. 1:120-131. 

Knittler, M. R., and I. G. Haas. 1992. Interaction of BiP with newly synthesized 
immunoglobulin light chain molecules: cycles of sequential binding and re- 
lease. EMBO (Eur. Mol. Biol. Organ.) Z 11:1573-1581. 

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the 
head of the bacteriophage T4. Nature (Lond.). 227:6804585. 

Langer, T., C. Lu, H. Echols, J. Flanagan. M. K. Hayer, and F. U. Hartl. 1992. 

Successive action of DnaK, DnaJ and GroEL along the pathway of chaper- 
one-mediated protein folding. Nature (Lond.). 356:683-689. 

Latterich, M., and R. Schekman. 1994. The karyogamy gene KAR2 and novel 
proteins are required for ER  membrane fusion. Cell.78:87-98. 

Leavitt, R., S. Schlesinger, and S. Kornfeld. 1977. Impaired intraceUular migra- 
tion and altered solubility of nonglycosylated glycoproteins of vesicular sto- 
matitltS virus and Sindbls virus. J. Btol. Chem. 252'9018-9023. 

Lodish, H. F., and N. Kong. 1993. The secretory pathway is normal in &thio- 
threitol-treated cells, but disulfide-bonded proteins are reduced and revers- 
ibly retained in the endoplasmic retlculum. J. Biol. Chem. 268:20598-20605. 

Marquardt, M., D. Hebert, and A. Helenius. 1993. Post-translational folding of 
influenza hemagglutinin in isolated endoplasmic reticulum-derived mi- 
crosomes. J. Biol. Chem. 268:19618-19625. 

Munro, S., and H. R. B. Pelham. 1986. An hsp70-1ike protein in the ER: identity 
with the 78 kd glucose-regulated protein and immunoglobulin heavy chain 
binding protein. Cell. 46:291-300. 

Newman, A. P., and S. Ferro-Novick. 1987. Characterization of new mutants in 
the early part of the yeast secretory pathway isolated by a [3H]mannose sui- 
cide selection. J. Cell Biol. 105:1587-1594. 

Palleros, D. R., K. L. Reid, L. Shi, W. J. Welch, and A. L. Fink. 1993. ATP- 
induced protein-hsp70 complex dissociation requires K but not ATP hydrol- 
ysis. Nature (Lond.). 365:664-666. 

Pelham, H. R. B. 1986. Speculations on the functions of the major heat shock 
and glucose-regulated proteins. Cell.46:959-961. 

Rose, M. D., L. M. Misra, and J. P. Vogel. 1989. KAR2, a karyogamy gene, is 
the yeast homolog of the mammalian BiP/GRF78 gene. Cell. 57:1211-1221. 

Sanders, S. L., K. M. Whitfield, J. P. Vogel, M. D. Rose, and R. W. Schekman. 
1992. Sec61 and BiP directly facilitate polypeptide translocation into the ER. 
Cell. 69:353-365. 

Schmid, D., A. Baici, H. Gehring, and P. Christen. 1994. Kinetics of molecular 
chaperone action. Sctence (Wash. DC). 263:971-973. 

Schr~igger, H., and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-poly- 
acrylamide gel electrophoresis for the separation of proteins in the range 
from 1 to 100 kDa. Anal. Biochem. 166:368-379. 

Schroder, H., T. Langer. F.-U. Hartl, and B. Bakau. 1993. DnaK, DnaJ and 
GrpE form a cellular chaperone machinery capable of repainng heat- 
induced protein damage. EMBO (Eur. Mol. Biol. Organ.) J 12:4137-4144. 

Scidmore, M. A., H. H. Okamura, and M. D. Rose. 1993. Genetic interactions 
between KAR2 and SEC63, encoding eukaryotic homologues of DnaK and 
DnaJ in the endoplasmic ret~culum. Mol. Biol. Cell. 4:1145-1159. 

Skowyra, D., C. Georgopoulos, and M. Zylicz. 1990. The E. coli dnaK gene 
product, the hsp70 homolog, can reactivate heat-inactivated RNA poly- 
merase in an ATP hydrolysis-dependent manner. Cell. 62:939-944. 

Stevens, T., B. Esmon, and R. Schekman. 1982. Early stages in the yeast secre- 
tory pathway required for transport of carboxypeptidase Y to the vacuole. 
Cell. 30:439-448. 

Stuart, R. A., D. M. Cyr, E. A. Craig, and W. Neupert. 1994. Mitochondrial mo- 
lecular chaperones: their role in protein translocation. Trends Btochem. Sct. 
19:87-92. 

Tatu. U., I. Braakman, and A. Helenius. 1993. Membrane glycoprotein folding, 
oligomerization and intracellular transport: effects of dithiothreitol in living 
cells. EMBO (Eur. Mol. Bzol. Organ.) J. 12:2151-2157. 

Te Heesen, S., and M. Aebi. 1994. The genetic interaction of kar2 and wbpl 
mutations. Distinct functions of binding protein BiP and N-linked glycosyla- 
tion in the processing pathway of secreted proteins in Saccharomyces cerevi- 
siae. Eur. J. Btochem. 222:631-637. 

Tsugeki, R., and M. Nishimura. 1993. Interaction of homologues of Hsp70 and 
Cpn60 with ferredoxin-NADP+ reductase upon its import into chloroplasts. 
FEBS (Fed. Eur. Biochem. Soc.) Lett. 320:198-202. 

Valetti, C., C. E. Brossi, C. Milstein, and R. Sitia. 1991. Russell bodies: a gen- 
eral response of secretory cells to synthesis of a mutant immunoglobulin 
which can neither exit from, nor be degraded in, the endoplasrmc reticulum. 
J. Cell Btol. 115:983-994. 

Vogel, J. P., L. M. Misra, and M. D. Rose. 1990. Loss of BiP/GRP78 function 
blocks translocation of secretory proteins in yeast. J. Cell Btol. 110:1885- 
1895. 

Wild, J., E. Altman, T. Yura, and C. A. Gross. 1992. DnaK and DnaJ heat 
shock proteins participate in protein export in Escherichia coli. Genes & 
Dev 6:1165-1172. 

Simons et al. CPY Folding in Yeast kar2 Mutants 49 


