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Abstract. To study an endocytotic role of the GTP- 
binding protein RhoA in Xenopus oocytes, we have 
monitored changes in the surface expression of sodium 
pumps, the surface area of the oocyte and the uptake of 
the fluid-phase marker  inulin. Xenopus oocytes possess 
intracellular sodium pumps that are continuously ex- 
changed for surface sodium pumps by constitutive 
endo- and exocytosis. Injection of Clostridium botuli- 
num C3 exoenzyme, which inactivates Rho by ADP-  
ribosylation, induced a redistribution of virtually all in- 
tracellular sodium pumps to the plasma membrane and 
increased the surface area of the oocytes. The identical 
effects were caused by injection of ADP-ribosylated re- 
combinant R hoA into oocytes. The C3 exoenzyme acts 
by blocking constitutive endocytosis in oocytes, as de- 
termined using a mAb to the ~1 subunit of the mouse 
sodium pump as a reporter  molecule and oocytes ex- 

pressing heterologous sodium pumps. In contrast, an 
increase in endocytosis and a decrease in the surface 
area was induced by injection of recombinant Vall4- 
RhoA protein or Vall4-rhoA cRNA. PMA stimulated 
sodium pump endocytosis, an effect that was blocked 
by a specific inhibitor of protein kinase C (G6 16) or by 
ADP-ribosylation of Rho by C3. Similarly, the phorbol 
ester-induced increase in fluid-phase endocytosis in oo- 
cytes was inhibited by G6 16, C3 transferase, or by in- 
jection of ADP-ribosylated RhoA. In contrast to C3 
transferase, C. botulinum C2 transferase, which ADP- 
ribosylates actin, had no effect on sodium pump en- 
docytosis or PMA-stimulated fluid-phase endocytosis. 
The data suggests that RhoA is an essential component  
of a presumably clathrin-independent endocytic path- 
way in Xenopus oocytes which can be regulated by pro- 
tein kinase C. 

T 
HERE is substantial evidence that GTP-binding pro- 
teins of the Ras superfamily play essential roles at 
virtually every stage of intracellular membrane trans- 

port (for recent reviews, see Gruenberg and Clague, 1992; 
Pfeffer, 1992; Ferro-Novick and Novick, 1993; Novick and 
Brennwald, 1993). Protein transport from the Golgi appa- 
ratus to the plasma membrane requires the expression of 
the Sec4 gene, which encodes a protein with 30% homol- 
ogy to Ras (Salminen and Novick, 1987). A similar yeast 
protein, Yptl,  has a role in ER to Golgi transport (Schmitt 
et al., 1988; Segev et al., 1988). Mammalian counterparts 
of Sec4 and Yptl  have been grouped into a family denoted 
Rab proteins (Touchot et al., 1987; Haubruck et al., 1987) 
and also found to be essential for membrane traffic (for re- 
views, see Pfeffer, 1992; Ferro-Novick and Novick, 1993; 
Fischer v. Mollard et al., 1994). Owing to their variety and 
organelle-specific distribution (Chavrier et al., 1990), the 
different Rab proteins have been proposed to confer spec- 
ificity to individual membrane targeting and/or fusion 
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events (Rothman and Orci, 1992). Rab4 (van der Sluijs et 
al., 1992) and Rab5 (Bucci et al., 1992; Novick and Brenn- 
wald, 1993; Trowbridge et al., 1993) are, for instance, asso- 
ciated with the plasma membrane and early endosomes 
and involved in endocytosis; while Rab3a, which is pre- 
dominantly found on synaptic vesicles, is involved in regu- 
lated exocytosis (Fischer v. Mollard et al., 1990, 1991). 

In addition to Rab proteins, the ARF 1 and SAR families 
of Ras-like GTP binding proteins function in intracellular 
transport. ARF, characterized originally as ADP-ribosy- 
lating factor, is required for the assembly of the non-clath- 
fin coatomer complex onto Golgi membranes (Donaldson 
et al., 1992; Palmer et al., 1993) and subsequent budding of 
COP-coated vesicles (Orci et al., 1993). It is also required 
for the membrane binding of the AP-1 adaptor particle, a 
clathrin coat protein (Stamnes and Rothman, 1993). Re- 
constitution and inhibition studies have revealed that 
ARF plays a role in several membrane trafficking events 
including intra-Golgi transport (Kahn et al., 1992), early 

1. Abbreviat ions  used in this paper: ARF, ADP-ribosylating factor; BSP, 
brain-specific protein; GST; glutathione-S-transferase; ORI, oocyte Ringer 
solution; PKC, protein kinase C. 
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endosome fusion (Lenhard et al., 1992), and nuclear mem- 
brane fusion in Xenopus egg extracts (Boman et al., 1992). 
SAR proteins are required for budding of transport vesi- 
cles from the ER (similar to Yptl),  but constitute a sepa- 
rate subfamily of Ras-related proteins. Like all GTP-bind- 
ing proteins, the Ras-related proteins act as molecular 
switches, with an active GTP-bound form and an inactive 
GDP-bound form. Although the precise step-by-step func- 
tion of Ras-like proteins in membrane traffic is unclear, 
most data supports the view that the GTP/GDP-induced 
conformational switching is paralleled by a membrane as- 
sociation-dissociation cycle. 

The three mammalian Rho proteins (A, B, and C) and 
the two Rac proteins (1 and 2) are members of a separate 
subfamily of Ras-like proteins (Madaule and Axel, 1985; 
Didsbury et al., 1989) and are thought to be involved in 
the organization of the cytoskeleton. The C3 exoenzyme 
from Clostridium botulinum (Aktories et al., 1987; Braun 
et al., 1989) selectively ADP-ribosylates Rho proteins on 
asparagine 41 in the putative effector region (Sekine et al., 
1989) and renders them biologically inactive (Paterson et 
al., 1990). Introduction of C3 into a variety of cells has 
been shown to alter the shape of these cells as a result of 
disassembly of actin microfilaments (Chardin et al., 1989; 
Paterson et al., 1990; Wiegers et al., 1991). Likewise, injec- 
tion of Rho GDP dissociation inhibitor, which stabilizes 
the GDP-bound inactive form of Rho, mimics the C3 ef- 
fect and induces rounding up of fibroblasts and the disap- 
pearance of actin stress fibers (Miura et al., 1993). When 
normal and mutant RhoA were microinjected into serum- 
starved fibroblasts, there was a rapid formation of actin 
stress fibers and focal adhesions (Ridley and Hall, 1992). 
This response, which was also observed after the external 
addition of serum, lysophosphatic acid, or bombesin, was 
blocked by the C3 exoenzyme (Ridley and Hall, 1992). 

Rac proteins, sharing 60% identity with Rho (Didsbury 
et al., 1989), are required for superoxide generation by 
NADPH oxidase in phagocytic cells (Abo et al., 1991; 
Knaus et al., 1991). They are also involved in the organiza- 
tion of the actin cytoskeleton (Ridley et al., 1992). Micro- 
injection of Racl  or addition of growth factors stimulated 
actin filament accumulation at the plasma membrane to 
form membrane ruffles in confluent fibroblasts, while a pi- 
nocytotic accumulation of large vesicles was observed in 
subconfluent fibroblasts (Ridley et al., 1992). Racl  acti- 
vated Rho to stimulate the Rho-dependent formation of 
actin stress fibers (Ridley and Hall, 1992), an effect that 
was blocked by C3. Rac proteins have been reported to 
also be substrates of C3 in vitro (Didsbury et al., 1989). 
However, C3 failed to impair Racl-induced membrane 
ruffling (Ridley and Hall, 1992), which is consistent with 
the low efficiency of C3-induced ADP-ribosylation of Rac 
in vivo (Just et al., 1992). 

We have previously observed that exposure of prophase- 
arrested Xenopus oocytes to the tumor promoter PMA 
induces a pronounced reorganization of the plasma mem- 
brane, associated with a disappearance of virtually all mi- 
crovilli (Vasilets et al., 1990) and the appearance of large 
pinocytotic vesicles underneath the cell surface (Schmalz- 
ing et al., 1991b). In these studies, changes in the surface 
expression of sodium pumps was shown to closely parallel 
changes in the surface area of the oocytes, suggesting that 

sodium pumps can serve as a general marker of cell sur- 
face recycling in these cells. Since fluid-phase endocytosis 
and membrane ruffling appear to be closely associated 
processes in various cells (Bar-Sagi et al., 1987; Keller, 
1990), we considered the possibility that members of the 
Rho/Rac family are involved in the regulation of mem- 
brane organization of Xenopus oocytes. Here we report 
that Rho but not Rac proteins participate in the control of 
constitutive endocytosis in Xenopus oocytes. Further- 
more, we present evidence that PMA acts through Rho to 
stimulate fluid-phase endocytosis. 

Materials and Methods 

Materials 
C. botulinum C3 exoenzyme (Aktories et al., 1987, 1988), Clostridium li- 
mosum exoenzyme (Just et al., 1992), and C. botulinum C2 toxin (Ohishi 
et al., 1980) were purified as described. For microinjection, botulinum C3 
exoenzyme and limosum exoenzyme were dissolved in 100 mM NaC1 and 
100 mM Na-phosphate, pH 7.5; C2 was dissolved in 50 mM triethanol- 
amine-HCl, pH 7.5. PMA was obtained from Sigma Chem. Co. (Munich, 
Germany) and dissolved in DMSO. Protein kinase C (PKC) inhibitor G0 
16, a synthetic compound structurally related to staurosporine (compound 
23 in Hartenstein et al., 1993) and its inactive congener G6 32 were pro- 
vided by Dr. C. Schachtele (G6decke AG, Freiburg, Germany) and dis- 
solved in DMSO. The final DMSO concentration was in each case less 
than 0.5%. 

Recombinant Proteins 
cDNAs for rhoA, Va114-rhoA, and racl were subcloned into the pGEX- 
2T vector and recombinant fusion proteins were expressed in Escherichia 
coli and purified as described (Ridley et al., 1992). Briefly, bacteria were 
sonicated in lysis buffer consisting of 50 mM Tris-HC1, pH 7.5, 50 mM 
NaCI, 5 mM MgC12, 1 mM DTT, and 1 mM PMSF. The supernatant 
(10,000 rpm, 10 min, 4°C) was incubated for 30 min at 4°C with glu- 
tathione-agarose beads (Pharmacia Biotech, Freiburg, Germany). The 
beads were extensively washed with the lysis buffer without PMSF and re- 
suspended in 50 mM Tris-HC1, pH 7.5, 2.5 mM CaC12, 100 mM NaCI, 5 
mM MgC12, 1 mM DTT. Glutathione-S-transferase (GST) fusion protein 
was cleaved with thrombin (Sigma) (1.6 U per ml). Beads were pelleted by 
centrifugation and the supernatant was freed of thrombin by benzami- 
dine-Sepharose (Pharmacia). The recombinant GTP-binding proteins 
were dialyzed against 100 mM NaC1, 50 mM Tris-HCl (pH 7.5), 5 mM 
MgCI2 and frozen in aliquots until use. 

Preparation of ADP-ribosylated RhoA 
250 Ixl of agarose-coupled GST-RhoA beads were incubated with 10 Ixl 
DTT (100 mM), 20 Ixl NAD (10 mM), 20 Ixl MgCI2 (100 mM), 50 ~1 
Clostridium. botulinum C3 transferase (20 ixg/ml), and 650 ixl triethanol- 
amine-HCl (25 mM; pH 7.5) for 30 min at ambient temperature. ADP- 
ribosylated GST-RhoA beads were washed twice with PBS and again with 
150 mM NaCI/50 mM triethanolamine-HC1 (pH 7.5). RhoA was cleaved 
from the fusion protein by incubating 250 Ixl beads with 250 Ixl thrombin 
(1.6 U/ml), 150 mM NaCI, 50 mM triethanolamine (pH 7.5), 2.5 mM CaC12 
for 30 min at ambient temperature. ADP-ribosylated RhoA was freed 
from thrombin by using benzamidine-Sepharose as described above. To 
test that the preparation was free of C3 transferase, ADP-ribosylated 
RhoA (1 Ixg) was added to 1 jxg of nonmodified RhoA and incubated for 
30 min with 0.1 IxM [3zP]NAD in the above mentioned ADP-ribosylation 
buffer without unlabeled NAD. Thereafter, the proteins were analyzed by 
SDS-PAGE and autoradiography. No labeling of proteins was detected. 

cRNA Synthesis 
The cDNA for Val14-rhoA was subcloned into pSP64-poly(A) (Promega) 
and linearized with EcoRI behind the poly(dT) region of the vector. The 
plasmids containing the cDNAs for the 131 subunit of the mouse sodium 
pump (Gloor, 1989) and the cd subunit of Torpedo californica sodium 
pump (Noguchi et al., 1987) were used as described (Schmalzing et al., 
1991a). Capped cRNAs were synthesized in vitro with SP6 RNA poly- 
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merase (Pharmacia), passed through Sephadex G-50 columns (Yisraeli 
and Melton, 1989), extracted with phenol/chloroform, and recovered by 
precipitation with salt and ethanol. For efficient translation in oocytes 
(Schmalzing et al., 1992), the mouse [31 sodium pump subunit cRNA was 
polyadenylated in vitro by incubation with poly(A) RNA polymerase 
from E. coli (Pharmacia) (Drummond et al., 1985). All the other cRNAs 
acquired poly(A) tails already during synthesis by transcription of the 
poly(dT) tails of the cDNA templates. Polyadenylated cRNAs were dis- 
solved in sterile water at a concentration of 0.5 mg/ml, using the optical 
density reading at 260 nm for quanfitation (OD 1.0 = 40 Ixg/p.l). 

Microinjection and Maintenance of Oocytes 
Xenopus laevis females were obtained directly from South Africa. Follicle 
cell-free oocytes of oogenesis stages V or VI were obtained as described 
(Schmalzing et al., 1991a) and injected with 46-nl aliquots of toxins, re- 
combinant proteins, or cRNAs as indicated in the figure legends, cRNA- 
injected oocytes that were cultured for several days were kept at 19°C in 
sterile oocyte Ringer's solution (1 mM K+-ORI: 90 mM NaC1, 1 mM KC1, 
1 mM CaCl2, and 10 mM Hepes, pH 7.4) supplemented with 1 mM MgC12 
and 50 mg/l gentamycin. The culture medium was changed daily. 

In some experiments, oocytes were induced to mature with 1 I~M 
progesterone. Germinal vesicle breakdown was scored by the appearance 
of a white spot at the animal pole and, occasionally verified by manual dis- 
section of oocytes after fixation in 5 % TCA. 

ADP Ribosylation 
Cytosolic protein extracts from Xenopus oocytes were ADP-ribosylated 
by botulinum C3 exoenzyme (Mohr et al., 1990), limosum exoenzyme 
(Just et al., 1992), or botulinum C2 toxin (Aktories et al., 1986) as de- 
scribed. Briefly, after the indicated pretreatment, 10 oocytes were frozen 
in 200 ~l of 0.32 M sucrose and 1 mM PMSF. After thawing, the oocytes 
were homogenized and centrifuged for 10 min at 1,000 g and 4°C. The re- 
sulting interphase was used for the ADP-ribosylation assay. ADP-ribosy- 
lation was performed with 50 mM triethanolamine-HC1 (pH 7.5), 2 mM 
MgClz, 1 mM DTT, 0.3-1 I~M [32P]NAD (~37 kBq) and 0.1 p~g/ml C3, 0.1 
p.g/ml limosum exoenzyme or 1 ~g/ml C2 toxin (enzyme component C2I), 
respectively, for 30 min at 37°C in a total volume of 50 ~l. Labeled pro- 
teins were analyzed by SDS-PAGE and subsequent autoradiography or 
phosphorimaging (PhosphorImagcr PSF; Molecular Dynamics, Sunny- 
vale, CA). 

Estimation of the Surface Number and the Total 
Number of Sodium Pumps 
To assess the number of sodium pump molecules of the cell surface, Na +- 
loaded oocytes were pulse-labeled for 20 min with 1 ~M [3H]ouabain 
(0.86 TBq/mmol, New England Nuclear) in the presence of 37 kBq/ml 
[14C]sucrose (Amersham) exactly as described (Schmalzing et al., 1991a). 
Na ÷ loading increases the affinity for ouabain and was achieved either by 
continuous maintenance of oocytes in K÷-free ORI or by a 1-h incubation 
in a NaCl-based medium without divalent cations just before the ouabain 
binding assay (Schmalzing et al., 1991a) as indicated in the figure legends. 
To determine the total number of sodium pumps per cell (surface plus in- 
ternal), oocytes were first permeabilized for 30 min at 5°C and 300 p.M 
digitonin (Schmalzing et al., 1989,1990) in NaC1-EGTA medium (110 mM 
NaC1, 1 mM MgC12, 10 mM EGTA, 10 mM Tris-HC1, pH 7.4) and then in- 
cubated at 25°C for 4 h with 0.1 p.M [3H]ouabain in NaC1-EGTA (without 
digitonin) supplemented with 2 mM ATP (sodium salt), pH 7.4. After re- 
moval of unbound radioactivity by washing for 1 h at 5°C in NaC1-EGTA 
under gentle shaking, ceils were dissolved individually in 5% SDS and 
counted in 2 ml of Quickszint 2000 (Zinsser, Frankfurt/Main, Germany). 
Nonspecific binding was measured with I mM unlabeled ouabain and rep- 
resented less than 5 % of total binding. Digitonin (300 txM) did not cause 
visible damage to the cells. 

Estimation of Endocytosis of Sodium Pumps 
A rat hybridoma clone secreting mAb brain-specific protein (BSP/3) that 
recognizes an external epitope on the mouse 131 sodium pump subunit was 
kindly provided by Dr. C. Goridis (Centre d'Immunologie, INSERM, 
Marseille, France) (Liabeuf et al., 1984). The IgG was isolated by protein 
G-Sepharose CL 4B chromatography (Pharmacia) from the supernatant 
of hybridoma cells and radioiodinated using Na125I (carrier-free, IMS.30; 

Amersham) and Iodo-Beads TM (Pierce Chem. Oud-Beijerland, The Neth- 
erlands) as iodination reagent. Nonincorporated Na125I was removed by 
filtration of the reaction mix through a Sephadex G-50 spin column. Oo- 
cytes expressing exogenous sodium pumps consisting of the mouse [31 sub- 
unit and the Torpedo a l  subunit (injected with C3 exoenzyme or un- 
treated controls) were labeled with 50 txg/ml of freshly prepared mAb 1251- 
BSP/3 on ice in oocyte-PBS (30 mM sodium phosphate, 70 mM NaCI, 1 
mM MgCI2, 0.1 mM CaC12). After 1 h, excess antibody was removed by 
washing in ice-cold ORI. For endocytosis measurements, subsets of these 
cells were kept on ice as controls or incubated in prewarmed medium (21- 
23°C). At predetermined times, 10 oocytes per data point were quickly 
rinsed with ice-cold oocyte-PBS and dissolved individually in 5% SDS. 
Additional ceils were first incubated for 2 rain in 25 mM acetic acid in 0.1 M 
NaC1, pH 2.5, to strip surface-bound 1251-BSP/3 and then dissolved in SDS. 
The acid treatment has been shown in pilot experiments to release >95% 
of 125I-BSP/3 from control oocytes kept continuously on ice. Cell-associ- 
ated radioactivity was determined by liquid scintillation counting. Non- 
specific binding was defined as binding of 125I-BSP/3 to oocytes injected 
with H20 instead of sodium pump-specific cRNAs, and amounted to 1-2% 
of total binding to the cRNA-injected cells. Endocytosed 125I-BSP/3 was 
estimated as the residual radioactivity that could not be eluted by the acid 
wash at a given time minus the acid-resistant radioactivity associated with 
cells that were not rewarmed. 

Electrophysiological Measurements 
Since the sodium pump is electrogenic, pump activity can be expressed as 
the current generated by the sodium pump. Under maximum stimulating 
conditions sodium pump current is a measure of the number of sodium 
pump molecules in the surface membrane. To achieve this, pump current 
was determined by conventional two-microelectrode voltage clamp as 
membrane current generated by 5 mM K ÷ in Na+-free solution at a hold- 
ing potential of - 6 0  mV (Vasilets et al., 1993). To monitor changes in the 
membrane surface area simultaneous to the sodium pump current, the 
membrane capacity was determined by integrating the current transients 
induced by 20 mV depolarizing voltage pulses applied from the holding 
potential (Vasilets et al., 1990). 

Electron Microscopy 
For electron microscopy, oocytes incubated under the indicated condi- 
tions were fixed at ambient temperature with a fixative consisting of 
1.25% glutaraldehyde, 1% formaldehyde, 1 mM CaCl2, 50 mM Hepes/ 
NaOH, pH 7.4. After 3 h, the cells were washed in 0.1 M cacodylate-HC1, 
pH 7.4, followed by postfixation in 1% OsO4 in 0.1 M cacodylate-HC1 
buffer for 1 h at ambient temperature, and overnight block staining with 
uranyl acetate in H20 at 4°C. Finally, the cells were dehydrated through a 
graded ethanol series and, using propylene oxide as an intermedium, em- 
bedded in Spurr's resin (Spurt, 1969) or Epon812 (Serva Biochemicals, 
Heidelberg, Germany). Thin sections were cut with a diamond knife, col- 
lected on copper grids, stained with uranyl acetate and lead citrate, and 
examined in a Siemens 101 Elmiscope. 

Fluorescent Labeling of Actin 
For localization of actin filaments, cells were fixed in PBS-buffered form- 
aldehyde (10%) for 4 h at room temperature and stored overnight at 4°C 
in the presence of the fixative. Subsequent incubations were done at room 
temperature. After two washes with PBS (20 min each), free aldehyde 
groups were blocked with 2% glycine in PBS for 20 rain. Cells were then 
permeabilized for 30 min in PBS, 0.1% Triton X-100, 1% defatted BSA, 
and stained for 2 h in the same medium supplemented with 0.5 ~M 
rhodamine-phalloidin. Stained cells were washed three times in PBS con- 
taining 0.05% Triton X-100 (20 min each), postfixed for 1 h in PBS-buff- 
ered formaldehyde (4%), dehydrated through a graded ethanol series, 
and embedded in Spurr's resin (Spurr, 1969). Sections cut at 1 Ixm were 
viewed and photographed with a Zeiss Axiophot fluorescence micro- 
scope. 

Miscellaneous 
Uptake of [3H]inulin (72 GBq/mmol; Amersham) was determined as de- 
scribed (Vasilets et al., 1990) at ambient temperature (21-23°C). 

Unless otherwise indicated, each figure contains representative data 
given as the means _+ SEM of 10-15 separate determinations in individual 
oocytes from one of at least three reproducible experiments. 
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Results 

C3 Exoenzyme Induces a Translocation of lntracellular 
Sodium Pumps to the Oocyte Surface 

Xenopus oocytes contain similar numbers of sodium pumps 
both at the cell surface and in intracellular membranes 
(Schmalzing et al., 1989). Although the surface pumps are 
continuously endocytosed and recycled to the cell surface, 
the sizes of the two pump pools do not change significantly 
over a period of days (Schmalzing et al., 1991a). This sug- 
gests that the endo- and exocytotic processes that deter- 
mine the subcellular distribution of sodium pumps are 
tightly coupled. We monitored the [3H]ouabain binding 
capacity to study the influence of botulinum C3 trans- 
ferase on endo- and exocytosis. As shown in Fig. 1 A, in- 
jection of botulinum C3 ADP-ribosyltransferase (1 ng/cell) 
caused a t ime-dependent increase in ouabain binding, as 
determined by a 20 rain [3H]ouabain pulse that labels 
~>97% of surface sodium pumps. Although the results dis- 
played in Fig. 1 A suggest that the increase in the number  
of surface sodium pumps was biphasic, other experiments 
indicate that the increase is completed within 1 h after the 
C3 injection. The dose response curve determined 2 h af- 
ter C3 injection is shown in Fig. 1 B. C3 injected at >1 ng/ 
cell induced a maximal increase in the ouabain binding ca- 
pacity by 60-100%; approximately 20 pg were half-maxi- 
mally effective. In 19 experiments with oocytes from dif- 
ferent females, the increase in the number  of surface 
sodium pumps observed at 1 ng of C3 per cell averaged 76 
_+ 22% (_  SD). 

Since a large portion of the recycling pool of sodium 
pumps of Xenopus oocytes resides in the cell interior, it 
was tempting to attribute the above observations to a re- 
distribution of sodium pumps from intracellular mem- 
branes to the plasma membrane.  The ouabain binding site 
of intracellular sodium pumps faces towards the interior of 
intracellular compartments and can be rendered accessible 
for [3H]ouabain by nonselective permeabilization of intra- 
cellular membranes with SDS (Schmalzing et al., 1989). 
After  permeabilization, the ouabain binding capacity pro- 
vides an estimate of the total number  of sodium pumps per 
cell. Fig. 2 illustrates that oocytes injected with 1 ng of C3 

have the same total number  of sodium pumps as control 
oocytes injected solely with H20.  Comparison of the total 
number  of pumps with the number  of surface pumps indi- 
cates that C3 induces a translocation of virtually all intra- 
cellular sodium pumps to the cell surface. 

C3 Exoenzyme Induces a Simultaneous Increase of  
Membrane Surface and Sodium Pump Current 

We have previously observed that a reduction of the num- 
ber of surface sodium pumps is associated with a reduction 
in the surface area of oocytes (Vasilets et al., 1990). To ex- 
amine whether mobilization of intracellular sodium pumps 
by C3 exoenzyme reflects an increase in the surface area, 
we monitored the cell surface area by measuring the elec- 
trical capacitance of the oocyte surface membrane. In ad- 
dition, we measured sodium pump currents in the same 
cells as an estimate of the number  of surface sodium 
pumps. Results are shown in Fig. 3. At  time zero C3 was 
injected into the oocyte, and after an ~10-min delay, both 
membrane capacitance and sodium pump current increased 
with similar time constants of  ~15  min (see legend to fig- 
ure), leading eventually to a 50% increase in surface area 
and a 88% increase of sodium pump current (Fig. 3 A). 
Assuming a specific membrane capacitance of 1 txF/cm 2, 
the change in membrane surface area AF = Fmax - F0 can 
be estimated to be about 0.075 cm 2 (F0 = 0.15 cm 2, Frnax = 
0.225 cm2). Given that the turnover rate for pump activity 
is about 50 s -1 (Vasilets et al., 1993), the change in the 
number of surface pump molecules per cell AN = Nma x - N O 
amounted to 6.9 x 109 pump molecules (No = 3.7 X 109 -= 
250 pumps/l~m 2 and Nma x = 10.6 X 109 ~ 470 pumps/txm2). 
Ouabain binding measurements on C3-injected oocytes 
from various females yielded very similar results in the 
number  of surface sodium pumps, ranging from 4.2 to 8.3 
X 109 pump molecules per cell. 

C3 Exoenzyme Increases the Number 
of Sodium Pumps at the Oocyte Surface by Blocking 
Constitutive Endocytosis 

Since sodium pumps cycle continuously between the plasma 
membrane and intracellular compartments,  either acceler- 
ation of exocytosis or inhibition of endocytosis could ac- 
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Figure 1. C3 exoenzyme-induced increase of 
the number of surface sodium pumps. Oo- 
cytes were injected with C3 exoenzyme (0) 
and then assayed for the number of surface 
sodium pumps, using [3H]ouabain as a ligand. 
Ouabain binding data were normalized to 
that of nontreated oocytes of the same batch 
which were assayed in parallel (O). (A) Time 
course of the C3 effect. Oocytes were loaded 
with Na ÷ by incubation in K+-free ORI, in- 
jected with C3 (1 ng/cell), and subsequently 
maintained in the same medium for the indi- 
cated time. (B) Concentration dependence. 
Oocytes from the same cell batch as in A 
were injected with C3, incubated for 2 h in 1 
mM K÷-ORI, and loaded with Na ÷ in the 
Ca 2÷- and Mg2÷-free medium just before the 

ouabain  binding assay. The line drawn th rough  the data  points  represen ts  a nonl inear  least squares  fit to a rectangular  hyperbola:  half- 
maximal  effect  at 23 _+ 4 pg C3 per  cell; maximal  increase by 71 _+ 4%,  cor responding  to 6.5 _+ 0.4 fmol of  ouabain  binding sites (S.D. of  
the  least squares  fit). 
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Figure 2. C3 exoenzyme changes the number of surface sodium 
pumps without net change in the total number of sodium pumps. 
Oocytes were injected with 10 ng C3 and kept in 1 mM K÷-ORI 
for 2 h at ambient temperature. One set of cells was loaded with 
Na + by incubation in the NaC1/Tris medium and directly assayed 
for the number of surface sodium pumps (filled columns). A sec- 
ond set of cells was permeabilized at 10 ~tM digitonin and assayed 
for the total number of sodium pumps (surface plus internal, 
open columns) in the presence of 0.02% SDS and ATP as de- 
tailed previously (Schmalzing et al,, 1989). 

count for the observed mobil izat ion of  intracel lular  so- 
dium pumps. To distinguish between these two possibili t ies 
we deve loped  an endocytosis  assay based on the coin- 
ternal izat ion of a monoclonal  ant ibody bound  to surface 
sodium pumps and the subsequent  acid-str ipping of  non- 
internalized label. Since monoclonal  antibodies that recog- 
nize endogenous  sodium pumps are not  available,  we took  
advantage  of the possibil i ty to express by c R N A  injection 
an interspecies hybr id  sodium pump in oocytes,  consisting 
of the [31 subunit  of the mouse and the etl subunit  of 
Torpedo californica (Schmalzing et al., 1991a). Surface- 
expressed exogenous al/[31 sodium pump complexes 
could then be t raced by an available mAb ,  BSP/3, that  
binds to an ectodomain of the mouse [31 subunit (Liabeuf et  

al., 1984). 
To study the C3 effect on endocytosis ,  oocytes express- 

ing Torpedo ed/mouse  [~1 sodium pumps at the cell sur- 

face were p re t rea ted  with the C3 exoenzyme (1 ng/cell) for 
2 h and then labeled on ice at a saturat ing concentra t ion of 
125I-BSP/3. Since endocytosis  is b locked at 0°C, 125I-BSP/3 
bound  to the mouse [31 subunit  remains on the cell surface 
as long as the oocytes are kept  on ice. To init iate endo- 
cytosis, cells were washed and t ransferred to 21-23°C 
medium. A t  various times, oocytes were removed  and ana- 
lyzed for total  cell-associated 125I-BSP/3 by liquid scintilla- 
t ion counting. In  addi t ional  cells, 12SI-BSP/3 remaining on 
the cell surface was s t r ipped by acid wash before  liquid 
scintil lation counting. As  shown in Fig. 4 A,  C3-injected 
oocytes bound  "~20% more  125I-BSP/3 than oocytes in- 
jected solely with H20 ,  most  l ikely as a result  of the trans- 
locat ion of intracel lular  Torpedo a l / m o u s e  [31 sodium 
pumps to the p lasma membranes .  Dur ing incubation,  total  
cell-associated radioact ivi ty decl ined by 10% as a result  of 
dissociation of surface-bound 125I-BSP/3 (Fig. 4 A).  Acid-  
resistant  125I-BSP/3 on cells kept  on ice represen ted  7% of 
the total  cel l-associated 125I-BSP/3. On warming, the acid- 
resistant  radioact ivi ty increased at an initial rate  of 0.6% 
of the total  cell-associated radioact ivi ty per  min (Fig. 4 B, 
controls),  most  likely because bound  125I-BSP/3 was re- 
moved from the cell surface into an acid-resistant,  intracel- 
lular compar tment .  Subtract ion of acid-resistant  radioac-  
tivity de te rmined  at t ime zero indicates that  at least 30% 
of the 125I-BSP/3 was in an internal  compar tmen t  after 90 
min. In contrast ,  in oocytes pre- injected with C3, the inter-  
nalizat ion of p r ebound  125I-BSP/3 was greatly de layed 
(Fig. 4 B, + C3), suggesting that  C3 acts by inhibiting en- 
docytosis of sodium pumps ra ther  than by st imulating 
their  exocytosis. 

C3 Does not Block Progesterone-induced Endocytosis 
of  Sodium Pumps 

A dramat ic  change in the number  of surface sodium 
pumps occurs during proges terone- induced  meiot ic  matu-  
ration,  which prepares  oocytes for fertilization. A t  the 
t ime of germinal  vesicle breakdown,  virtually all sodium 
pumps are t ranslocated f rom the cell surface to the inte- 
r ior  (Schmalzing et al., 1990). To investigate whether  C3 
prevents  this kind of internal izat ion of sodium pumps,  we 
exposed  oocytes injected with 10 ng C3 to 1 txM progester-  
one to induce maturat ion.  Af te r  16 h at 19°C, cells with the 
typical  white spot at the animal  pole  (indicative of germi- 

250 

.~ 200 

150 

100 
c 

o. 50 

a .  

A 

o 

0 - -  I 
-40 -20 

250 

20O 

t~ 150 

100 I I I I I 
0 20 40 60 80 20 40 60 80 100 

Time (min) Sodium pump current (nA)  

120 

Figure 3. C3 exoenzyrne-induced changes of 
sodium pump current and membrane capaci- 
tance. (A) Voltage-clamped oocytes were incu- 
bated in Na*- and K *-free medium. Every 5-15 
min, the electrical capacitance of the plasma 
membrane was determined (squares), followed 
by a perfusion of the test chamber for a few 
minutes with the same medium supplemented 
with 5 mM K + for maximum activation of the 
sodium pump. The resulting increase of out- 
ward holding current was monitored and taken 
as the pump-generated current (circles). C3 (1 
ng/cell) was injected at time zero. Data were 
fitted by y = Ymax - ( Y m a x  - yo)e it- ~o) (with 
time constant "r = 16 rain, delay time to = 10 
min). Y0 and Ymax are 33 and 85 nA, and 150 and 

224 nF, respectively. Results are means -+ SEM from seven independent experiments. (B) Correlation between membrane capacity and 
sodium pump current. Same data as in A. 
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Figure 4. C3 exoenzyme blocks internalization 
of sodium pumps expressed in oocytes. Oo- 
cytes were coinjected with 20 ng of cRNA for 
the Torpedo cO subunit and 4 ng of cRNA for 
the mouse 131 subunit. After 3 d at 19°C, the 
cells were injected with H20 (open symbols) or 
1 ng C3 (filled symbols), kept for 2 h at 22°C, 
and then surface labeled for 2 h on ice with 
freshly iodinated BSP/3. After removal of un- 
bound ligand, the cells were warmed at 22°C, 
and, at various times, either directly analyzed 
for total 125I-BSP/3 binding (O, e )  or first incu- 
bated for 2 min at pH 2.5 to strip surface-bound 
~25I-BSP/3 ([~, II) and then analyzed. (A) Cell- 
associated radioactivity before and after the 
acid wash. (B) The amount of 125I-BSP/3 inter- 
nalized is expressed as a percentage of the total 
ligand associated with the cells at each time 
point. 

nal vesicle breakdown) were selected, loaded with Na +, 
and then assayed for surface binding of [3H]ouabain. C3 
treatment neither prevented germinal vesicle breakdown, 
as verified by sectioning of TCA-fixed oocytes, nor the in- 
ternalization of the sodium pumps. Oocytes matured in 
the absence and presence of injected C3 bound 3 -+ 2 cpm 
and 4 __- 3 cpm of [3H]ouabain, respectively, as opposed to 
230 -+ 12 cpm of [3H]ouabain bound to nonmature oocytes 
of the same female. The number  of intracellular sodium 
pumps was also identical in oocytes matured in the ab- 
sence and presence of injected C3 (450 _+ 13 cpm vs. 440 2 
18 cpm of bound [3H]ouabain). 

C3 Exoenzyme ADP Ribosylates RhoA in Oocytes 

C3 exoenzyme is known to ADP-ribosylate small GTP 
binding proteins of  the Rho family (Braun et al., 1989). To 
examine whether C3 affects Rho in oocytes, subsets of the 
same C3-treated cells that were also used for the [3H]oua- 
bain binding assay (Fig. 1) were homogenized and incu- 
bated with [32p]NAD and C3 (100 ng/ml). Fig. 5 shows that 
a cytosolic protein of ~20  kD could be radiolabeled, most 
intensely in oocytes not previously injected with the C3 
exoenzyme (lanes 1 and 2). Analysis of the labeled protein 
by two-dimensional gel electrophoresis revealed that its 
isoelectric point is identical with that of R h o A  from human 
platelet membranes (results not shown). This, in conjunc- 
tion with its cross-reactivity with a polyclonal RhoA-spe-  
cific anti-peptide antibody (from Santa-Cruz Biotechnol- 
ogy, Santa Cruz, CA) identifies the main substrate for C3 
in Xenopus oocytes as being RhoA.  Pretreatment of intact 
oocytes with C3 diminished the amount  of R h o A  protein 

Figure 5. Time course of C3- 
catalyzed ADP-ribosylation 
of endogenous Rho in oo- 
cytes. Noninjected oocytes 
(lane 1) and oocytes injected 
with HzO (lane 2) or C3 (1 
ng/cell, lanes 3-7) were incu- 
bated in K+-free ORI. At the 
indicated times, subsets of 

these cells were lysed and ADP-ribosylation was performed as 
described in the Materials and Methods section. Labeled pro- 
teins were analyzed by SDS-PAGE and autoradiography. 

remaining for subsequent in vitro [32p]ADP-ribosylation 
in a time- (Fig. 5, lanes 3-7) and dose-dependent manner 
(not shown). This indicates that increasing amounts of  en- 
dogenous R h o A  became modified by the prior C3 injec- 
tion and could therefore not be labeled. The time course 
of C3-catalyzed ADP-ribosylat ion of R h o A  correlates 
well with the t ime-dependent increase in ouabain binding 
(see Fig. 1 A and Fig. 5). 

ADP-Ribosylated Recombinant RhoA Mimics the 
Effect of  C3 on the Distribution of  Sodium Pumps 

C. limosum transferase, which ADP-ribosylates the same 
substrates as C3 (Just et al., 1992) was used to exclude that 
a contamination of C3 was responsible for the increase in 
ouabain binding. The limosum exoenzyme increased oua- 
bain binding to the same extent as observed with C3 (not 
shown). To unequivocally demonstrate that ADP-ribosy-  
lation of Rho and not of other proteins is responsible for 
the inhibition of endocytosis, we studied the effect of 
ADP-ribosylated recombinant R h o A  protein, which has 
been reported to act as a dominant negative inhibitor of  
endogenous Rho proteins (Paterson et al., 1990). For this 
purpose, a GST-RhoA fusion protein was isolated and 
ADP-ribosylated by C3 in vitro. After  extensive washing, 
recombinant R h o A  was cleaved by thrombin treatment. 
ADP-ribosylated R h o A  contained no detectable C3 as 
tested by the incubation of ADP-ribosylated R h o A  to- 
gether with [32p]NAD and unmodified R h o A  (results not 
shown). Even minor traces of contaminating C3 would 
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Figure 6. Externalization 
and internalization of sodium 
pumps by ADP-ribosylated 
R h o A  and Val l4 -RhoA,  re- 
spectively. Oocytes loaded 
with Na + by incubation in 
K+-free ORI  were injected 
with 24 ng of ADP-ribosy- 
lated R h o A  protein or 12 ng 
of unmodified Va l l4 -RhoA 
protein. At  the indicated 
times, cells were analyzed for 
the number  of surface so- 
dium pumps. 
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Figure 7. Internalization of surface sodium 
pumps upon overexpression of Vall4-RhoA. 
(A) Oocytes were injected with the indicated 
amounts of cRNA encoding Vall4-rhoA. After 
overnight incubation at 19°C, the cells were 
loaded with Na ÷ by incubation in NaC1/Tris 
medium and then assayed for the number of 
surface sodium pumps. (B) Oocytes were in- 
jected with H20 (controls), 12 ng Vall4-Rho A 
protein, or 12 ng Vall4-rhoA cRNA either 
alone or together with 10 ng C3 exoenzyme as 
indicated. After 3 h at 22°C, the cells were 
loaded with Na ÷ by incubation in NaCl/Tris 
medium and assayed for the number of surface 
sodium pumps. 

give rise to labeling of the added  unmodif ied  RhoA.  When  
ADP-r ibosy la t ed  R h o A  was injected into the oocytes we 
observed  a large increase in the ouabain  binding capaci ty  
(Fig. 6). Compar ison  with Fig. 1 A shows that  the increase 
was slower than that  after the C3 injection, but  that  the 
maximal  increase (60-80 %) was of vir tual ly the same mag- 
ni tude as after the injection of C3. 

Overexpression of  RhoA Stimulates Endocytosis 

Since inact ivat ion of endogenous  R h o A  by A D P  ribosyla- 
t ion or injection of inact ivated exogenous R h o A  blocked 
endocytosis  of sodium pumps (see Figs. 4 and 6), we antic- 
ipa ted  that  in t roduct ion of exogenous R h o A  into oocytes  
would act in an opposi te  manner  and accelerate  endocyto-  
sis. Indeed,  as also shown in Fig. 6, injection of biologically 
active recombinant  V a l l 4 - R h o A  protein into oocytes caused 
a large decrease  in the ouaba in  binding capacity. This ef- 
fect was par t icular ly  marked  with the dominant ly  acti- 
vated Val14-Rho prote in  (Fig. 6), but  was also observed 
with normal  R h o A  (results not  shown). Muta t ion  of amino 
acid 14 from Gly  to Val corresponding to the Val12Gly 
oncogenic muta t ion  in Ras,  decreases the intrinsic GTPase  
activity of R h o A  and makes  it unresponsive to GTPase-  
activating proteins,  thus prevent ing its inactivation. A sim- 
ilar decrease  in the ouabain  binding capacity was also 

evoked  by injection of po lyadenyla ted  Vall4-rhoA c R N A  
into oocytes  (Fig. 7 A).  A t  high doses of injected R h o A  
prote in  or rhoA cRNA,  the p lasma membrane  of the oo- 
cytes became leaky after several  h, eventual ly result ing in 
cell death.  Inject ion of C3 together  with recombinant  
R h o A  or  rhoA c R N A  prevented  both the d isappearance  
of sodium pumps from the plasma membrane  (Fig. 7 B) 
and the oocyte  death.  Paral lel  ouabain  binding measure-  
ments  on intact and on de te rgent -permeabi l ized  oocytes 
revealed that  the overexpress ion of R h o A  caused a trans- 
locat ion of surface sodium pumps to the cell inter ior  with 
no net  change in the total  number  of sodium pumps (re- 
suits not  shown). 

RhoA Stimulates Endocytosis Downstream of PKC 

The effects of R h o A  on oocytes are very similar to those 
of act ivators of PKC such as the diacylglycerol  analog 
PMA,  which has also been  shown to s t imulate f luid-phase 
endocytosis in oocytes and internalization of sodium pumps 
(Vasilets et al., 1990). This p rompted  us to examine if P K C  
and R h o A  were functioning in the same pathway. In 
agreement  with publ ished results, exposure  of oocytes to 
50 nM P M A  induced a rapid  d isappearance  of 70-80% of 
the sodium pumps from the plasma membrane  (Fig. 8). In- 
volvement  of PKC can be inferred from the finding that  
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Figure 8. C3 exoenzyme and the PKC inhibi- 
tor G6 16 block PMA-induced internalization 
of sodium pumps. (A) Na+-loaded oocytes 
were injected with H20 (-C3) or 20 ng C3 
(+C3) and kept in K+-free ORI. After 2 h at 
22°C, subsets of these cells were exposed for 
50 min to the indicated concentrations of 
PMA and then assayed for the number of sur- 
face sodium pumps. (B) Na+-loaded oocytes 
were preincubated for at least 15 min at 22°C 
in K+-free ORI in the absence ( - G 6 )  or 
presence of 10 p,M G6 16 (+GO16). Subsets 
of these cells were then exposed to 50 nM 
PMA or injected with 12 ng of Vall4-RhoA 
protein as indicated. Following incubation for 
50 min (PMA) or 2 h (RhoA), the number of 
surface sodium pumps was determined. When 

indicated GO 16 was present at all stages of the experiment including the injection of RhoA and the ouabain binding assay. Data were 
referred to that of control oocytes which were processed in parallel. In untreated oocytes, GO 16 had no effect on the number of surface 
sodium pumps. 
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the PMA effect could be suppressed with GO 16 (Fig. 8 B), 
a recently identified PKC-specific kinase inhibitor (Harten- 
stein et al., 1993), but not with G6 32, an inactive deriva- 
tive of GO 16 (results not shown). Most notably, the PMA 
effect on sodium pump endocytosis was blocked by the in- 
troduction of C3 into the oocytes before the addition of 
PMA (Fig. 8 A). This indicates that PMA acts upstream of 
RhoA to stimulate the internalization of sodium pumps. 
The failure of G6 16 to prevent sodium pump internaliza- 
tion caused by the recombinant Vall4-RhoA protein (Fig. 
8 B) or Va114-rhoA cRNA (not shown) is also compatible 
with PKC action upstream to RhoA. 

We also monitored the uptake of [3H]inulin as a marker 
of fluid-phase endocytosis to substantiate the involvement 
of endogenous RhoA in PMA-induced fluid-phase en- 
docytosis. PMA (50-100 nM) induced a two- to fivefold in- 
crease in [3H]inulin uptake that was totally blocked with 
G6 16, but not with G6 32, indicating PMA acts upon PKC 
(results not shown). The time course of the internalization 
of inulin in the absence and presence of PMA is illustrated 
in Fig. 9 A. PMA-induced inulin uptake displayed biphasic 
kinetics. After a phase of enhanced uptake, which lasted 
for 15-45 rain, the rate of endocytosis slowed and returned 
to normal values. Injection of the C3 exoenzyme did not 
affect basal inulin uptake, but completely blocked the in- 
ternalization of inulin elicited by a later addition of PMA 
(Fig. 9 B). Furthermore, inactivation of endogenous RhoA 
by injection of ADP-ribosylated RhoA likewise blocked 
PMA-induced internalization of inulin (Fig. 9 B). 

To demonstrate that RhoA affects fluid-phase endocy- 
tosis by itself we studied the effect of recombinant RhoA 
on [3H]inulin uptake. Fig. 10 shows that increasing the ac- 
tivity of RhoA by injection of purified active Vall4-RhoA 
protein stimulated inulin endocytosis by a factor of 2-3. 
This increase in inulin endocytosis was insensitive to inhi- 
bition of PKC with G8 16 (Fig. 10), corroborating the view 
that RhoA acts downstream of PKC. The observation that 
Val14-RhoA-induced fluid-phase endocytosis could be 
blocked by coinjection of C3 transferase agrees with the 
results showing that C3 acts specifically on Rho. Injection 
of C3 alone did not, however, detectably diminish the in- 
ternalization of inulin (Fig. 9). 

Actin is not Involved in the Effects of RhoA or C3 
on Endocytosis 

Since RhoA is known to affect the actin cytoskeleton, it 

Figure 10. Vall4-RhoA stimulates fluid-phase endocytosis. Oo- 
cytes were injected with 25 ng Vall4-RhoA protein either alone 
or in combination with 10 ng C3. After a subsequent 60 rain inter- 
val, the oocytes were allowed to internalize [3H]inulin for 60 min. 
When indicated 10 IxM of the PKC inhibitor GO 16 was present 
during all stages of the experiment including the injection of 
RhoA. 

seemed possible that the effects of RhoA and C3 on en- 
docytosis were secondary to a redistribution of the mi- 
crofilament network. Xenopus oocytes contain a large 
store of soluble nonmuscle actin in addition to cortical 
bundles of actin filaments (Franke et al., 1976). We there- 
fore examined the distribution of rhodamine-phalloidin, 
which binds to filamentous but not to monomeric actin, by 
fluorescence microscopy. In control oocytes rhodamine- 
phalloidin revealed a dense network of actin bundles im- 
mediately beneath the plasma membrane (Fig. 11 A). The 
orientation of most of the actin bundles was perpendicular 
to the cell surface and suggests that they are confined to 
the microvillis. Consistent with lengthening or shortening 
of the microvilli (see electron micrographs below), the 
stained cortical sections were broader or thinner in oo- 
cytes injected with C3 exoenzyme (Fig. 11 B) or RhoA 
(Fig. 11 C), respectively. We conclude from these results 
that neither C3 nor RhoA profoundly affects actin organi- 
zation of the oocytes. A profound reorganization of actin 
took place however upon injection of the enzyme compo- 
nent of C. botulinum C2 toxin, C2I, which by ADP-ribosy- 
lating G-actin, inhibits actin polymerization (Aktories et 

Figure 9. Inactivation of endogenous Rho 
blocks PMA-induced fluid-phase endocytosis. 
(A) Influence of C3 exoenzyme on PMA- 
induced internalization of inulin. Oocytes in- 
jected or not with C3 (20 ng/cell) were kept for 
1 h in K÷-ORI before inulin uptake was initi- 
ated in the absence or presence of 50 nM PMA. 
When indicated, cells were withdrawn and ana- 
lyzed for internalized inulin. O Controls; • 50 
nM PMA; [] C3 alone; • C3 + 50 nM PMA. 
(B) Oocytes were injected with H20 (Con- 
trols), 20 ng C3, or 25 ng ADP-ribosylated 
RhoA. After 2 h at 22°C, inulin uptake was ini- 
tiated in the absence (-PMA) or presence of 
50 nM PMA (+PMA) and stopped after 1 h by 
washing the cells as above. 
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al., 1986; Aktories et al., 1986, 1992). Consistent with a 
complete depolymerization of actin C2I-injected oocytes 
totally lacked cortical actin bundles (Fig. 11 D). A com- 
plete modification of actin under these experimental con- 
ditions was demonstrated by the in vitro ADP-ribosylat ion 
of delipidated lysate from C2 toxin-injected oocytes with 
[32p]NAD and new C2 toxin (1 ixg/ml). As shown in Fig. 12 
A (lanes 5 and 6), a polypeptide of 43 kD (actin) was 
radiolabeled in control oocytes, while no labeling of actin 
could be detected when oocytes were treated with C2I be- 
fore lysis (lanes 7 and 8). Surprisingly, despite this dra- 
matic change in actin organization, C2I had virtually no ef- 
fect on either sodium pump distribution (results not 
shown) or basal and PMA-induced internalization of inu- 
lin (Fig. 12 B). 

Ultrastruetural Changes of  Ooeyte Surface Induced by 
RhoA and (73 

To visualize changes in the surface structure that may ac- 

Figure 11. Fluorescence micrographs of 
actin filaments in oocytes. Oocytes were 
injected with H20 (A), 10 ng C3 exoen- 
zyme (B), 23 ng rhoA cRNA (C), or 1.6 
ng C2I (D), and kept for 4 h at ambient 
temperature. Following fixation with 
formaldehyde, actin was stained using 
rhodamine-conjugated phalloidin. The 
numbers in the lower right corner of the 
figures give an estimate of the percent- 
age of surface sodium pumps at the time 
of fixation relative to those of the con- 
trol oocytes. These data were derived 
from ouabain binding measurements on 
subsets of the oocytes used for visualiza- 
tion of actin. Upper and lower photo- 
graphs: phase-contrast photographs of 
the fluorescence images. Bars, 10 I~m. 

count for the changes in the number  of surface sodium 
pumps, control oocytes as well as oocytes injected with 
rhoA c R N A  or C3 were processed for electron micros- 
copy. Fig. 13 A shows that the surface of control oocytes is 
covered with numerous partially branched microvilli. In 
contrast, oocytes injected with rhoA c R N A  have lost most 
of their microvilli (Fig. 13 B) but retained their normal 
pigmentation on light microscopic level. Similar ultrastruc- 
tural changes of the surface structure have been previously 
detected on oocytes treated with P M A  and shown by 
membrane  capacitance measurements to result from a 70-  
80% decrease of the surface area (Vasilets et al., 1990). 
Since C3 injection increases membrane capacitance (Fig. 
3), we expected to observe an increase in the length of mi- 
crovilli in such cells. Indeed, electron microscopy revealed 
that C3-injected oocytes are covered with elongated and 
convoluted microvilli (Fig. 13, C and D). We did not quan- 
tify these changes as the enlargement of the cell surface 
was easily visible. Ouabain binding data indicate that 1 ng 
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Figure 12. Depolymerization of oocyte actin by C. botulinum C2I 
toxin. (A) ADP-ribosylation of actin by C2I. Oocytes injected 
with C2 toxin (lanes 3, 4, 7, and 8) or solely with buffer (lanes 1, 2, 
5, and 6) were kept for 1 h at 22°C before subsets of the cells were 
treated as indicated with PMA. After an additional 1 h at 22°C, 
delipidated lysates were prepared and ADP-ribosylated with 
[32P]NAD and 1 Ixg/ml C2 toxin. Labeled proteins were analyzed 
by SDS-PAGE and autoradiography. M, molecular mass markers 
(in kD). (B) Influence of C2I on PMA-induced internalization of 
inulin. Oocytes were injected with H20, 40 ng C3, or 5 ng C2I as 
indicated. After preincubation intervals lasting 1 (C2) or 2 h 
(C3), the oocytes were allowed to internalize [3H]inulin for 60 
min in the absence (controls) and presence of 50 nM PMA 
(+PMA). 

C3 per cell increased the number of surface sodium pumps 
by 59% in these oocytes. 

Discussion 

A Role for RhoA in Endocytosis 

The present study establishes a role for RhoA in mem- 
brane traffic in Xenopus oocytes on the basis of the follow- 
ing observations. (a) Injection of normal or mutationally 
activated RhoA protein induced a rapid and marked de- 
crease of both the surface area and the number of surface 
pumps, accompanied by increased fluid-phase endocyto- 
sis. (b) Exactly the same changes, albeit with a slower rate, 
were elicited by injection of rhoA cRNA. This excludes 
any possibility that the observed effects were due to a con- 
taminant such as salt or GTPTS in the injected protein 
preparations. (c) The inactivation of endogenous RhoA by 
injection of C3 exoenzyme or ADP-ribosylated recombi- 
nant RhoA led to the opposite effect, an increase in the 
surface area and number of cell surface sodium pumps. Al- 
though C3 has been reported to ribosylate Rac proteins, at 
least in vitro (Didsbury et al., 1989), an involvement of 

Rac in the observed effects of C3 can be ruled out since re- 
combinant Racl  did not affect the number of surface so- 
dium pumps of oocytes (results not shown). Moreover, ri- 
bosylation of Rac by C3 has been shown to require 
detergent, and is therefore unlikely to play a role in vivo 
(Just et al., 1992). Other Ras-like proteins do not serve as 
substrates for C3 (Ridley and Hall, 1992). (d) The C3- 
analogous effect of ADP-ribosylated exogenous RhoA is 
in agreement with previous findings showing that ADP- 
ribosylation turns Rho into a dominant negative configu- 
ration (Ridley and Hall, 1992). Consequently, the efficacy 
of ADP-ribosylated RhoA indicates that endogenous 
RhoA is itself involved in the observed effects. In addi- 
tion, these experiments show that the effect of C3 can be 
entirely attributed to ribosylation and inactivation of en- 
dogenous RhoA. 

Changes in the surface area and the number of surface 
sodium pumps could result from changes either in the rate 
of externalization and/or the rate of internalization. The 
stimulation of fluid-phase endocytosis by activated RhoA 
and the inhibition of constitutive endocytosis of expressed 
sodium pumps by inactivation of RhoA both provide clear 
evidence that RhoA affects endocytosis rather than exocy- 
tosis. Our findings can easily be reconciled with the view 
that RhoA acts as a molecular switch and triggers endocy- 
tosis in its active GTP-bound form, while endocytosis 
ceases when RhoA is inactive. Although sodium pump dis- 
tribution and surface area changed in response to the vari- 
ous treatments as predicted by this model, we were unable 
to demonstrate the expected decrease in basal fluid-phase 
endocytosis of inulin upon inactivation of endogenous 
RhoA. The reason for this discrepancy remains to be de- 
termined. 

RhoA Acts not Only on Actin 

There is substantial evidence that the members of the 
Rho/Rac family are involved in a variety of actomyosin- 
dependent phenomena including changes of cell shape 
(Paterson et al., 1990), cell motility (Takaishi et al., 1993), 
smooth muscle contraction (Hirata et al., 1992), and cell 
division of Xenopus embryos (Kishi et al., 1993). The per- 
sistently active Vall4-Rho protein was shown to induce a 
dramatic polymerization of actin in starved cells (Paterson 
et al., 1990; Ridley and Hall, 1992), while inactivation of 
Rho by C3 transferase inhibited stress fiber formation and 
caused a destruction of the actin cytoskeleton (Chardin et 
al., 1989; Paterson et al., 1990; Ridley and Hall, 1992; 
Wiegers et al., 1991). Additional evidence that Rho has an 
important role in the regulation of the actin cytoskeleton 
stems from the observation that C3-1ike effects can be elic- 
ited by another ADP-ribosyltransferase, C2 (Paterson et 
al., 1990), which ADP-ribosylates actin monomers directly 
and blocks their polymerization (Aktories et al., 1986; 
Wille et al., 1992). Microfilaments have also been impli- 
cated in fluid-phase and/or receptor-mediated endocytosis 
(Ktibler and Riezman, 1993; Gottlieb et al., 1993). It there- 
fore seemed reasonable to suppose that RhoA acts through 
actin to regulate endocytosis in Xenopus oocytes. Our ex- 
perimental evidence argues against a predominant role of 
actin in RhoA-regulated endocytosis. Firstly, direct inhibi- 
tion of actin polymerization by the C2 transferase com- 
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Figure 13. Cortical aspects of 
oocytes after inactivation or 
overexpression of RhoA. Non- 
injected oocytes (A) and oo- 
cytes injected with 23 ng 
Vall4-rhoA cRNA (B) or 1 ng 
C3 exoenzyme (C and D) were 
kept for 4 h at 22°C and then 
fixed and processed for elec- 
tron microscopy as described 
in Materials and Methods. 
(A-C) animal pole; (D) vege- 
tal pole. Bar, 1 Ixm. 

pletely failed to mimic the C3 effect and to affect endocy- 
tosis in Xenopus oocytes; and secondly, C3 injection did 
not grossly change the distribution of rhodamine-phalloi- 
din-stained actin filaments in oocytes. Analogous to the 
behavior of other Ras-like proteins such as Rab proteins, 
we suggest that the GTP-bound form of RhoA can associ- 
ate with membranes to enhance the budding of endocy- 
totic vesicles. Remarkably, such a function would agree 
with the recently determined localization of human RhoB 
on early endosomes of rat-2 cells (Adamson et al., 1992). 

RhoA is Involved in Constitutive, But 
Not in Progesterone-induced Internalization 
of Sodium Pumps 

Sodium pumps appear to be subjected to constitutive and 
regulated endocytosis in Xenopus oocytes (for a recent re- 
view see Schmalzing, 1994). A constitutive type of endocy- 
tosis takes place in prophase-arrested oocytes, when oo- 
cytes continuously recycle sodium pumps. Our results 
suggest that it is exactly this type of sodium pump internal- 
ization that is regulated by Rho. We surmise that the addi- 
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tional sodium pumps that appear at the plasma membrane 
after blockade of endocytosis by C3 represent the internal 
portion of the recycling pool of sodium pumps. The large 
increase in surface membrane area and sodium pumps in- 
duced by C3 agrees with our concept that oocytes contain 
a large stockpile of internal membranes and sodium pumps 
(Schmalzing et al., 1990). Inactivation of RhoA may cause 
a premature recruitment of stored constituents which may 
normally serve for the formation of new (interblasto- 
meric) plasma membranes after fertilization. The recent 
observation that RhoA is required for cleavage formation 
in Xenopus embryos (Kishi et al., 1993) would support 
such a hypothesis. 

Sodium pump internalization combined with a large re- 
duction of the surface area (Kado et al., 1981) also occurs 
during progesterone-induced meiotic maturation (Schmal- 
zing et al., 1990). However, despite apparent similarities to 
PMA- and RhoA-induced endocytosis, meiotic maturation 
does not lead to enhanced fluid-phase endocytosis and the 
extent of sodium pump internalization is also strikingly dif- 
ferent. After exposure to progesterone, virtually all the 
sodium pumps disappear from the plasma membrane 
(Schmalzing et al., 1990). In contrast, after PMA or RhoA 
treatment, the number of surface sodium pumps never de- 
clined under 20% of its initial value. From the proportional 
changes of the surface area, we conclude that the reduction 
of surface sodium pumps in response to PMA or RhoA is 
limited by the minimum surface area of an oocyte that has 
lost all its microvilli and resembles a smooth ball. Alto- 
gether, we attribute the incomplete removal of surface so- 
dium pumps to constitutive, nonselective endocytosis, as 
opposed to progesterone-regulated endocytosis which seems 
to comprise selective retrieval of sodium pumps from the 
plasma membrane (Schmalzing, 1994). The view that 
PMA/RhoA-induced endocytosis and progesterone-induced 
endocytosis are fundamentally different is further sup- 
ported by the observation that inactivation of endogenous 
RhoA by C3 exoenzyme failed to block progesterone- 
induced internalization of sodium pumps. 

RhoA-mediated Constitutive Endocytosis 
is Clathrin-independent 

Internalization of many recycling receptors is clathrin- 
dependent and can be blocked efficiently by potassium de- 
pletion that removes clathrin-coated pits from the plasma 
membrane. In addition to this well characterized pathway, 
there is evidence for an alternative clathrin-independent 
endocytotic pathway that continues to operate even after 
potassium depletion (Sandvig and van Deurs, 1994). Be- 
cause K + depletion may affect endocytosis, it is of interest 
that the ouabain binding measurements were for method- 
ological reasons performed on oocytes depleted of K + by 
the Na + loading procedure (Schmalzing et al., 1991a). 
Comparison of the data presented in Fig. 1 shows that K + 
depletion has no effect on internalization and externaliza- 
tion of sodium pumps since virtually identical results were 
obtained irrespective of whether C3 and RhoA were intro- 
duced into K+-depleted oocytes (Fig. 1 A) or oocytes with 
normal internal K + (Fig. 1 B). In the later case, Na + load- 
ing was performed immediately before the ouabain bind- 
ing assay. We conclude from these data that RhoA-regu- 

lated internalization of sodium pumps is mediated by 
clathrin-independent endocytosis. 

PKC and RhoA 

PMA stimulates fluid-phase endocytosis in various cell 
systems including Xenopus oocytes by activating PKC. As 
shown here, PMA-induced endocytosis is blocked by C3 
and ADP-ribosylated RhoA indicating that PKC acts 
through Rho upon endocytosis. A similar signal transduc- 
tion pathway, with RhoA located downstream of PKC, has 
been postulated from the inhibitory effect of C3 on PKC- 
induced platelet activation (Morii et al., 1992) and lym- 
phocyte aggregation (Tominaga et al., 1993). Furthermore, 
in KB cells, PMA has been shown to induce membrane 
ruffling by a mechanism involving RhoA (Nishiyama et 
al., 1994). Since membrane ruffling and pinocytosis are 
closely related events, the PMA- or RhoA-induced reor- 
ganization of the oocyte surface can be considered to rep- 
resent the oocyte phenotype of membrane ruffling of cul- 
tured cells. The finding that RhoA reduces the number of 
actin fibers in oocytes is contradictory to this view, be- 
cause RhoA-induced membrane ruffles in KB cells are 
clearly associated with newly formed actin fibers. PMA 
also activates membrane ruffling in Swiss 3T3 cells, but in 
these cells Rac, and not Rho proteins are involved (Ridley 
et al., 1992). Moreover, Hall and coworkers have proposed 
that PMA inhibits the signal pathway that activates RhoA 
by LPA or bombesin (Ridley and Hall, 1994). It remains 
to be clarified whether the apparently different regulatory 
effects of PMA depend on specific PKC isoforms. 

Direct activation of Rho by PKC seems unlikely to ac- 
count for the observed effects, since the deduced amino 
acid sequence of Rho does not contain a consensus se- 
quence for PKC-dependent phosphorylation. Therefore 
other factors must communicate the activatory signal to 
RhoA. RhoA-activating guanine-nucleotide exchange fac- 
tors are possible candidates (reviewed by Boguski and Mc- 
Cormick, 1993). These proteins share a region of similar- 
ity, designated the Dbl domain, that has been recently 
shown to stimulate the release of GDP from Rho-like pro- 
teins (Hart et al., 1994). Indirect evidence for an involve- 
ment of protein phosphorylation in the regulation of Rho 
comes from the recent observation that the phosphoryla- 
tion of Rho-regulating factors alters the ability of Rho to 
serve as an ADP-ribosylation substrate for C3 (Fritz and 
Aktories, 1994). 

Taken together, our results assign RhoA a role in fluid- 
phase endocytosis and recycling of membrane proteins. In 
Xenopus oocytes at least, RhoA seems not to be signifi- 
cantly involved in the organization of the actin cytoskele- 
ton nor is actin itself involved in endocytosis. The down- 
stream activation of RhoA by PKC suggests the existence 
of a signaling pathway in which activation results in an in- 
crease in endocytotic activity and eventually in a profound 
change in the cell surface structure. The physiological 
ligands of this pathway that may be capable of regulating 
endocytotic activity in Xenopus oocytes remain to be iden- 
tified. 
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