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Abstract. Nsplp interacts with nuclear pore proteins 
Nup49p, Nup57p and Nic96p in a stable complex which 
participates in nucleocytoplasmic transport. An addi- 
tional p80 component is associated with Nsplp, but 
does not co-purify with tagged Nup57p, Nup49p and 
Nic96p. The p80 gene was cloned and encodes a novel 
essential nuclear pore protein named Nup82p. Immu- 
noprecipitation of tagged Nup82p reveals that it is 
physically associated with a fraction of Nsplp which is 
distinct from Nsplp found in a complex with Nup57p, 
Nic96p and Nup49p. The Nup82 protein can be divided 

into at least two different domains both required for 
the essential function, but it is only the carboxy-termi- 
nal domain, exhibiting heptad repeats, which binds to 
Nsplp. Yeast cells depleted of Nup82p stop cell growth 
and concomitantly show a defect in poly(A) + RNA ex- 
port, but no major alterations of nuclear envelope 
structure and nuclear pore density are seen by EM. 
This shows that Nsplp participates in multiple interac- 
tions at the NPC and thus has the capability to physi- 
cally interact with different NPC structures. 

T 
HE major structural features of the nuclear pore 
complex have now been firmly established. Each 
nuclear pore complex (NPC) 1 is composed of the 

spoke complex sandwiched by an outer (cytoplasmic) and 
inner (nucleoplasmic) ring and the central plug (trans- 
porter). Attached to the inner ring is the nuclear basket 
and protruding from the outer ring are eight short fila- 
ments and particles (for review see Fabre and Hurt, 1994; 
Pant6 and Aebi, 1994; Rout and Wente, 1994). Some of 
these structures must be directly involved in bi-directional 
nucleocytoplasmic transport, which occurs exclusively 
through the nuclear pore complexes (Feldherr et al., 1984; 
Richardson et al., 1988). Concerning active nuclear import 
of proteins, which is NLS mediated and energy dependent, 
it was suggested that the central plug could serve as a 
transporter (Akey, 1992), whereas the channels between 
the spokes (Hinshaw et al., 1992) or between the trans- 
porter and the spokes (Akey and Radermacher, 1993) may 
allow passive diffusion of small molecules; furthermore, 
the short cytoplasmic filaments and the nuclear baskets 
were proposed to be involved in the early docking steps at 
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the NPC for protein import and RNA export, respectively 
(Feldherr et al., 1984; Richardson et al., 1988; Mehlin et 
al., 1992). 

Whereas a mechanistic picture for the cytoplasmic phase 
of nuclear protein import is beginning to emerge (Powers 
and Forbes, 1994), very little is known about the following 
steps at the NPC, in particular which nuclear pore proteins 
are involved in the actual translocation process and how 
they act. It is likely that some of the cytosolic/nuclear fac- 
tors required for nucleocytoplasmic transport such as the 
NLS receptor complex initially identified by Adam and 
Gerace (1991) and later shown to be importin 60/90 (G6r- 
lich et al., 1994; G6rlich et al., 1995) which is also called 
karyopherin a/J3 (Moroianu et al., 1995; Radu et al., 1995), 
Hse70 (for review, see Goldfarb, 1992), the small GTPase 
Ran/TC4 (Moore and Blobel, 1994b), its guanine nucleo- 
tide exchanger RCC1 (Kadowaki et al., 1993; Tachibana et 
al., 1994), and the Ran-associated protein B2 (Moore and 
Blobel, 1994a) may transiently interact with NPC compo- 
nents during transport of the substrate through the NPC 
channel, but how this occurs is still unknown. The observa- 
tion that substrates for nuclear import can bind to the nu- 
clear envelope under conditions in which translocation is 
inhibited was taken as evidence that NLS receptor(s) can 
dock at the NPC presumably by binding to specific NPC 
proteins. Nuclear protein import is inhibited by microin- 
jection of the lectin wheat germ agglutinin (WGA) that 
binds to a family of NPC proteins (Finlay et al., 1987; Da- 
bauvalle et al., 1990). The interaction of this family of nu- 
clear pore proteins with cytosolic transport factors is also 
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suggested by the fact that immobilized rat liver NPC pro- 
teins on WGA-Sepharose resin could deplete a soluble ac- 
tivity from the cytosolic extract required for nuclear trans- 
port in permeabilized mammalian cells (Sterne-Marr et 
al., 1992). Importin 60/90 (G6rlich et al., 1994; G6rlich et 
al., 1995) or karyopherin a/J3 (Moroianu et al., 1995; Radu 
et al., 1995) are sufficient to mediate the nuclear pore 
binding of the karyophile and therefore represent the cy- 
tosolic NLS-receptor; interestingly, importin 60/karyo- 
pherin c~ show sequence homology to yeast Srplp (Yano 
et al., 1992) which is localized at the NPC and physically 
associated with bona fide nucleoporins such as Nuplp and 
Nup2p (Belanger et al., 1994). Accordingly, Srplp is a 
good candidate for a nuclear import factor which (tran- 
siently) associates with components of the nuclear pore 
complex. Another interesting example of a physico-func- 
tional interaction of soluble transport factors and nuclear 
pore proteins is the recent finding that nucleoporins such 
as Nup2p have homology to Ran-binding proteins (Ding- 
wall, C., personal communication) and thus could interact 
with Ran/TC4, another key factor in nucleocytoplasmic 
transport (Moore and Blobel, 1994b). 

There is evidence suggesting a role of NPC proteins in 
both nuclear protein import and RNA export. Antibodies 
against nucleoporins as well as WGA were used to inhibit 
nuclear accumulation of proteins and RNA export reac- 
tions (Featherstone et al., 1988; Finlay et al., 1987). Immu- 
nodepletion of nuclear pore proteins such as p62 and its 
associated p58 and p54 components from Xenopus egg ex- 
tracts used to reconstitute nuclei caused inhibition of nu- 
clear protein uptake in this in vitro system (Finlay et al., 
1991). In the yeast system, nuclear pore proteins were 
shown to be required for in vivo accumulation of nuclear 
reporter proteins inside the nucleus by analyzing condi- 
tionally lethal nucleoporin mutants at the restrictive con- 
dition. Among the tested NPC proteins, Nsplp (Mutvei et 
al., 1992; Nehrbass et al., 1993), Nup49p (Doye et al., 
1994), Nic96p (Grandi et al., 1995) and Nuplp (Bogerd et 
al., 1994) exhibited defects in uptake of nuclear reporter 
proteins. Nucleoporin mutants were also analyzed for an 
impaired mRNA export by in situ hybridization (Amberg 
et al., 1992; Kadowaki et al., 1992) and Nupl l6p (Wente 
and Blobel, 1993), Nup145p (Fabre et al., 1994), Nup49p 
(Doye et al., 1994), Nup133p (Doye et al., 1994; Li et al., 
1995), Nuplp (Bogerd et al., 1994; Schlaich and Hurt, 
1995), and Nup159p (Gorsch et al., 1995) are involved in 
the export reaction. Clearly, some of the nuclear pore pro- 
teins, such as Nuplp, are required for both efficient nu- 
clear protein import and RNA export. Interestingly, dif- 
ferent mutant alleles of a single nucleoporin, as shown for 
Nup49p, can specifically affect nuclear protein accumula- 
tion or poly(A) + RNA export (Doye et al., 1994). 

Because of these allele-specific effects on nucleocyto- 
plasmic transport, it is important to analyze with which 
protein(s) a single nucleoporin physically interacts. This 
may help to elucidate the mechanism by which NPC pro- 
teins are connected to different nucleocytoplasmic trans- 
port machineries. Subcomplexes of the nuclear pore com- 
plex have been described from both higher eukaryotes and 
yeast. Examples are the p62 complex isolated from rat 
liver nuclei or Xenopus egg extracts and composed of 
three subunits p62, p58, and p54 (Finlay et al., 1991; Da- 

bauvalle et al., 1990; Kita et al., 1993; Buss and Stewart, 
1995) and a hetero-dimeric complex from rat consisting of 
glycoproteins p250 and p75 (Pant6 et al., 1994). In yeast, 
immunoprecipitation studies using anti-Srplp antibodies 
revealed that Srplp, which was initially identified as a sup- 
pressor of RNA polymerase I mutants (Yano et al., 1992), 
is associated with Nuplp and Nup2p nucleoporins (Be- 
langer et al., 1994). On the other hand, Nuplp and Nup2p 
do not stably associate with each other. Since NUP1 and 
NUP2 interact genetically (Loeb et al., 1993), the most 
likely explanation for this data is functional redundancy 
between the Nuplp-Srplp and Nup2p-Srplp complexes. 
We have previously shown that nucleoporin Nsplp, the 
yeast homologue of p62 (Carmo-Fonseca et al., 1991), is 
physically associated with several proteins including nucleo- 
porin Nup49p, Nup57p, and Nic96p (Grandi et al., 1993). 
Furthermore, a core complex is built up by Nsplp, Nup49p, 
and Nup57p, whereas Nic96p is more loosely associated 
via its heptad repeats containing domain (Grandi et al., 
1995). Functional interactions in vivo can be inferred by the 
fact that combinations of mutant alleles among these four 
nucleoporins cause synthetic lethal phenotypes (Grandi et 
al., 1995). 

In the course of purifying Protein A-tagged Nsplp by 
IgG-Sepharose chromatography, besides Nic96p, Nup57p, 
and Nup49p, also a p80 component co-purified (Grandi et 
al., 1993). However, when other tagged members of the 
Nspl complex were affinity-purified, this p80 component 
was absent. To further investigate this specific interaction 
between Nsplp and p80, we cloned the p80 gene. Here, we 
show that Nup82p (corresponding to p80) is a novel nucleo- 
porin which interacts with a fraction of Nsplp and has a 
role in poly(A) + RNA transport. 

Materials and Methods 

Yeast Strains, Media, and Microbiological Techniques 
In Table I, the yeast strains used in this study are listed. Yeast cells were 
grown on minimal SD/SGAL medium supplemented with all amino acids 
and nutrients except those used for the selection (CSM medium; BIO101, 
La Jolla, CA) or rich YPD/YPGal medium; plasmid transformation, gene 
disruption, sporulation of diploid ceils, and tetrad analysis were per- 
formed essentially as described in Wimmer et al. (1992). 

Plasmids 
The following yeast plasmids were used in this study: pUN100, ARS/CEN 
plasmid with the LEU2 marker (Elledge and Davis, 1988); pSB32, ARS/ 
CEN plasmid with the LEU2 marker (Nehrbass et al., 1990); pRS316, 
ARS/CEN plasmid with the URA3 marker (Sikorski and Hieter, 1989); 
pRS314, ARS/CEN plasmid with the TRP1 marker (Sikorski and Hieter, 
1989); YEp13-Mat~2-1acZ (Nehrbass et al., 1993), 2 Ix high copy number 
plasmid with the LEU2 marker; pCH1122-NSP1 (Wimmer et al., 1992), 
ARS/CEN plasmid with the URA3 marker. 

Purification of Nup82p and Peptide Sequencing 
For the generation of the internal peptide sequences derived from the p80 
component, the purified ProtA-Nsplp complex was analyzed by SDS- 
12% polyacrylamide gel electrophoresis and the Coomassie blue stained 
p80 band (see Fig. 1) was excised from the Laemmli slab gel (amberlite 
MB-6-treated acrylamide/bisacrylamide). The p80 band was digested in 
the gel matrix with trypsin (1-2 mg of TPCK-treated trypsin) according to 
Eckerskorn and Lottspeich (1989). The digestion was performed at 37°C 
for 20 h, and the derived peptides were eluted from the gel with 10% tri- 
fluoroacetic acid (TFA) in water. Peptides were separated by reverse 
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Table  I. Yeas t  S t ra ins  

Strain Genotype 

RS453 

PG2 

NUP82 shuffle 

ProtA-Nup82 

GAL::ProtA-NUP82 

NUP82-- 

nup133- 

Ala6-nspl 

Ala6-nspl/ProtA- 
Nup82A624-713 

a/a, ade2/ade2, trpl/trpl, leu2/leu2, ura3/ 
ura3, his3/his3 

a/R, ade2/ade2, trpl/trpl, leu2/leu2, ura3/ 
ura3, his3/HIS3::nup82/NUP82 

a, ade2, trpl, leu2, ura3, HlS3::nup82, 
(pRS316-URA3-NUP82); haploid progeny 
derived from PG2 

a, ade2, trp l,  leu2, ura3, his3, HIS3 : :nup82, 
(pUN 100-LEU2-ProtA-Nup82) 

a, ade2, trpl, leu2, ura3, his3, HIS3::nup82, 
(pUN100-GAL10::ProtA-NUP82) 

a, ade2, trpl, leu2, his3, NUP82; haploid 
progeny derived from RS453 

a, ade2, trpl, leu2, his3, ura3, nup133::HlS3 
(Doye et al., 1994) 

a, ade2, trp l , leu2, his3, ura3 , Ala6-nsp l : : HlS3 
(Wimmer et al., 1993) 

a, ade2, trp l , leu2, ura3 , Ala6-nsp l : : HIS3 , 
nup82: :HIS3, (pCH 1122-URA3-NSP 1), 
(pUN 100-LEU2-NUP82A624-713) 

phase HPLC using a C18 column (Vydac, 4.6 × 250 mm) with a Waters 600 
HPLC (Millipore). The solvent system used was 0.1% (vol/vol) TFA in 
water (aqueous phase) and 0.085% TFA in acetonitrile (organic phase). 
After an initial lag phase of 10 min at 2% organic phase, a gradient of 2-30% 
organic phase was run over 63 min (1% per 2.25 min) using a flow rate of 
0.5 ml/min. Fractions were collected manually according to the absorption 
at 215 nm monitored by a Waters model 486-UV detector. Peptides were 
identified by Edman sequencing and mass spectrometry. Automated se- 
quence analysis of the purified peptides was performed using a type 473A 
protein sequencer (Applied Biosystems). Electrospray ionisation mass 
spectroscopy of the peptides was performed using a Finnigan TSQ MAT 
700 mass spectrometer. 

Cloning, Sequencing, and Disruption 
of the NUP82 Gene 

The four peptide sequences obtained from the sequence analysis of the 
p80 band were all retained within an ORF of a yeast genomic sequence as 
part of chromosome X. Cosmid 28 which contains this ORF is 40,311-bp 
long and inserted into vector pWE15 (Huang et al., 1994). The position of 
NUP82 ORF in the cosmid 28 is 2,406-4,547 bp. The MIPS code for 
NUP82 is pl  B713 and the working nomenclature is Jl135. The NUP82 
gene was excised as a 3.9-kb long HindIII/SnabI restriction fragment from 
cosmid 28 and subcloned into pUN100 previously cut with HindIII and 
Sinai. A SacI/HindIfI restriction fragment containing the entire NUP82 
gene was excised from the construct pUN100-NUP82 and cloned also into 
pRS316 vector generating pRS316-NUP82. To disrupt the NUP82 gene, 
the HIS3 gene isolated as a 1.1-kb-long BamHI and blunt-ended fragment 
was inserted into the EcoRV site thereby interrupting the Nup82p ORF at 
amino acid 204 (Asp). The nup82::HIS3 gene was excised from pBlue- 
script as a BamHI/SacI fragment and used to transform the diploid strain 
RS453. HIS3 + transformants which contained the nup82::HIS3 integration 
at the NUP82 gene locus were verified by Southern analysis and the het- 
erozygous strain PG2 was sporulated and tetrad analysis was performed. 

Construction of ProtA-NUP82, ProtA-nup82A624-713, 
ProtA-nup82 A460- 713, ProtA-nup82(499- 713), 
and GAL-'ProtA-NUP82 

To tag Nup82p, two IgG binding units from S. aureus protein A were 
joined to the NH2-terminal end of Nup82p. For this gene fusion, a new 
SacI restriction site was first generated after the ATG codon of NUP82 at 
position 410 by PCR-mediated mutagenesis (GAG CTC TCC CAA TCT 
AGT AGG TTA AGT) and a HindIII site at position 2758 in the 3' non- 

coding sequence of NUP82. A Sacl/HindlII restriction fragment corre- 
sponding to the NUP82 gene (but lacking the ATG start codon) was li- 
gated in the correct orientation to a 1.1-kb SacI/SacI restriction fragment 
corresponding to two IgG binding units plus the NOP1 promoter (derived 
from pUN100-ProtA-NIC96 (Grandi et al., 1993)), and the whole fusion 
gene was inserted as SacI/HindlII fragment in pUN100. 

The same ProtA-NUP82 fusion gene under the control of the NOP1 
promoter was also inserted as a BamHI/HindIII fragment into pRS314 
generating pRS314-ProtA-NUP82. 

To construct ProtA-Nup82pA624-713 (which lacks about 1/2 of the car- 
boxy-terminal heptad repeat domain), pUN100-ProtA-NUP82 was cut at 
the unique NcoI site (nt 2277, amino acid 624 [Ser]), blunt-ended and an 
oligonucleotide containing stop codons in all three reading frames 
(Grandi et al., 1995) was inserted. 

To construct the ProtA-nup82A460-713, the ProtA-Nup82pA624-713 
fusion gene with the NOP1 promoter was excised from pUN100-ProtA- 
Nup82 as a BamHI/HindIlI fragment and cloned in pSB32 vector. Here, 
the oligonucleotide containing stop codons in all the three reading frames 
(Grandi et al., 1995) was inserted at a unique PvulI site in the sequence of 
NUP82 ([nucleotide] nt 1748, amino acid 459[Ala]). 

To tag the heptad repeat containing domain of Nup82p, a SacI site was 
generated at nt 1900 (amino acid 499[Cys]) in the sequence of NUP82 by 
PCR (GAG CTC CTG TAT TAG TCC ATG) as well as a HindIlI site at 
nt 2758 using the same primer used to construct the ProtA-NUP82 fusion 
gene. The PCR product was cut with SacI and Hind[II restriction enzymes 
and joined in flame with the 1.1-kb SacI/SacI fragment containing two 
IgG-binding units and the NOP1 promoter in pUN100 opened at its SacI/ 
HindlII sites thereby generating the fusion gene NOP1 promoter-ProtA- 
nup82(499-713). 

To construct the GALlO::ProtA-NUP82 fusion gene, a Sacl/Sacf frag- 
ment containing the URA3-GALIO::ProtA DNA was isolated from 
pBluescript-URA3-GAL10::ProtA-NIC96 (Grandi et al., 1993) and in- 
serted into the SacI site of pUN100-ProtA-NUP82 thereby replacing the 
NOP1 promoter and ProtA DNA sequences. Thus, a ProtA-NUP82 fu- 
sion gene under the control of the GALIO promoter was generated. Fi- 
nally, the URA3 gene in the plasmid was inactivated by inserting an XbaI 

Figure 1. Nup82p (p80) co-purifies with P r o t A - N s p l p ,  but  does  
not  associate with Pro tA-Nup57p .  Ext rac t ion  of  P r o t A - N s p l p  
and P ro tA-Nup57p  with various lysis buffers  and affinity-purifi- 
cat ion by IgG-Sepharose  ch romatography  are descr ibed under  
Materials  and Methods .  A 300-fold equivalent  of  the purif ied 
fractions (P ro tA-Nup57p  Purif icat ion or  P r o t A - N s p l p  Purifica- 
t ion) e luted f rom the  affinity columns by acidic p H  and analyzed 
by SDS-8% acrylamide gel e lec t rophores is  and silver s taining is 
shown.  The  posi t ions  of  the nuc leopor in  bands  are  indicated on  
bo th  sides of  the gels. Note  that  (a) the  band  cor responding  to 
full- length N s p l p  in lane ! is not  visible due to N s p l p  proteolysis  
as verif ied by Wes te rn  blot t ing decora ted  with an t i -Nspl  ant ibod-  
ies (see also Fig. 4 B); and (b) pur i f ied P ro tA-Nup57p  and P ro tA-  
N s p l p  were  not  analysed on the  same gel but  were  aligned ac- 
cording to the  posi t ion of  Nic96p. The  following lysis buffers  
were  used: ( lanes 1 and 3), 20 m M  NaCI, 2% Tri ton X-100, 20 
m M  Tris-HCl,  p H  8.0; ( lane 2) 100 m M  NaCI, 0.2% desoxycho-  
late, 0.02% SDS, 1% NP-40, 50 m M  Tris-HC1, p H  8.0; ( lane 4) 
150 m M  KC1, 20 m M  Tris-HC1, p H  8.0. 
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linker (1010; Biolabs) into the ApaI site (located within URA3). pUN100- 
GAL10::ProtA-NUP82 was transformed into PG2 and LEU + transfor- 
mants were selected. After tetrad analysis on YPGal-plates, haploid prog- 
eny was isolated which were nup82::HIS3 and carried pUN100-GAL10:: 
ProtA-NUP82. These cells were checked for the galactose-dependent ex- 
pression of the ProtA-Nup82p fusion protein on Western blots as de- 
scribed (Grandi et al., 1993). Repression of transcription of the fusion 
gene and the subsequent growth phenotype was measured by shifting the 
GAL::ProtA-NUP82 strain from galactose to glucose containing medium 
(YPGal and YPD). 

Construction of Synthetic Lethal Strains 
In order to combine the Ala6-nspl allele with the ProtA-Nup82pA624-713 
mutant, strain Ala6-nspl containing pCHl122-URA3-NSPL and the 
NUP82 shuffle strain, complemented by the pUN100-ProtA-NUP82A624- 
713 were mated. Diploids growing on SD-ura-leu selective medium were 
sporulated. Haploid progeny was selected which was HIS +, U R A  +, and 
LEU +. One of these progeny, Ala6-nspl/ProtA-NUP82A24-713, was 
plated on 5-FOA-containing plates to induce the loss of the pCH1122- 
URA3-NSP1 plasmid. The Ala6-nsp1/ProtA-NUP82A624-713 strain was 
also transformed with the TRPl-containing pRS314-ProtA-NUP82 plas- 
mid before growth on 5-FOA-plates. 

Immunoprecipitation and Indirect Immunofluorescence 
Immunoprecipitation experiments were performed as described in Berg6s 
et al. (1994) with the following modifications: the lysis buffer used was 
0.2% Triton X-100, 150 mM KCI, 20 mM Tris-HCl, pH 8, 5 mM MgCl z 
and a protease inhibitor cocktail; the antibodies used were anti-Nspl rab- 
bit immune serum (EC10-2) (Hurt, 1988), anti-Nup57 rabbit immune se- 
rum, anti-GLFG rabbit immune serum (Grandi et al., 1995), rabbit anti- 
chicken IgG (Medae, Hamburg, Germany). Note that all these specific 
IgG rabbit antibodies cross-react with the ProtA-tag of the used fusion 
proteins on Western blots due to the general binding of Protein A to the 
constant region of rabbit IgG molecules. The strains used for the immuno- 
precipitation experiments were grown in YPD medium. If strains express- 
ing non-functional nup82 mutant alleles were used they were grown in 
selective SDC medium. Strains were grown at 30°C prior to immunopre- 
cipitation. Immunofluorescence experiments to analyse nuclear protein 
import and mRNA export phenotypes were performed as described 
(Doye et al., 1994). As nuclear reporter the fusion protein Matc~2-1acZ 
was used (Doye et al., 1994). Since the LEU2 marker in the nup82 mutant 
strains was no longer available, the pRS316-URA3-Mat~2-1acZ was con- 
structed. Accordingly, a SalI/HindIII restriction fragment containing the 
MatoL2-lacZ fusion gene was cut from YEpl3-LEU2-Mat~2-1acZ and 
cloned into pRS316-URA3. 

Thin Section Electron Microscopy 
Thin section EM which was performed essentially according to Byers and 
Goetsch (1991) is described in Doye et al. (1994). Briefly, GAL::ProtA- 
nup82 cells grown for 9 h in glucose-containing medium were fixed in 2% 
paraformaldehyde/2% glutaraldehyde before the cell wall was removed 
by glusulase (Dupont; NEN, Boston, MA) and zymolyase 20T (Seikagaku 
Corp., Tokyo, Japan). Postfixation was done in 2% osmium tetroxyde fol- 
lowed by en block staining in 1% uranyl acetate. Dehydrated samples 
were embedded in Epon according to standard procedures. Samples were 
contrasted by staining with uranyl acetate and Renold's lead. 

Miscellaneous 
DNA manipulations (restriction analysis, end filling reaction, ligation, 
PCR amplification, etc.) were done essentially according to Maniatis et al. 
(1982). Isolation of total yeast DNA and Southern analysis was done as 
described in Sherman, 1990. 

Results 

Nup82p Specifically Co-purifies with ProtA-Nsplp 
When Nsplp tagged with IgG-binding sequences derived 
from protein A was affinity-purified under non-denaturing 
conditions, several prominent bands co-isolated. Among 

these bands Nup49p, Nup57p, and Nic96p were shown to 
form a complex with Nsplp and also to functionally inter- 
act as revealed by genetic analysis (Grandi et al., 1993, 
1995). The eluate from the IgG-Sepharose column, how- 
ever, contained a band of approximately 80 kD (termed 
p80) whose intensity somehow varied from preparation to 
preparation, but could be recovered under different ex- 
traction and purification conditions (Fig. 1, ProtA-Nsplp 
purification). Initially, this band was considered to be less 
specific, because p80, in contrast to Nic96p, could still as- 
sociate with the Ala6-nsplp mutant in which 6 charged 
residues were changed to neutral alanines within the 
Nsplp carboxy-terminal domain (Wimmer et al., 1993). 
Surprisingly, when ProtA-Nup57p (Fig. 1, ProtA-Nup57p 
purification), ProtA-Nup49p (Grandi et al., 1993), or ProtA- 
Nic96p (data not shown) were affinity purified under the 
same conditions, all the other members of the complex co- 
purified, but p80 was absent. This suggested that a fraction 
of Nsplp interacts with p80 whereas another pool of 
Nsplp molecules is organized in a complex with Nup49p, 
Nup57p, and Nic96p. 

To further characterize the separate Nsplp-containing 
complexes, we sought to clone the gene encoding the p80 
component. The p80 band, corresponding to about 15-20 
Ixg of protein was excised from SDS-polyacrylamide slab 
gels and sequence data were obtained for four tryptic pep- 
tides (Fig. 2). Two peptides were long enough to generate 
degenerate oligonucleotide primers to clone the p80 gene 
by PCR from a yeast genomic library. At the same time, a 
cosmid clone of about 40 kb in length containing part of 
yeast chromosome X was sequenced (Pohl, T., GATC, 
Konstanz, Germany). At one end of the insert, a long open 
reading frame was found which contained the four tryptic 
peptides derived from the p80 component (Fig. 2). As de- 
duced from the DNA sequence, this open reading frame is 
capable of encoding a protein of 713 amino acids or 82-kD 
molecular weight which fits well with the apparent molec- 
ular mass of p80 on SDS-PAGE (Figs. 1 and 2). The gene 
was therefore designated NUP82 (for Nuclear Pore Pro- 
tein of 82 kD, see also later). The Nup82p amino acid se- 
quence does not reveal significant homology to known 
protein sequences present in the data libraries nor does it 
contain FSFG and GLFG repeat sequences as found in 
other NPC proteins. However, the last 200-amino acid 
residues of Nup82p are predicted to form a coiled-coil 
structure due to the presence of heptad repeats (Fig. 2, 
lower panel). Similar heptad repeat sequences are also 
present in several other nucleoporins including Nsplp, 
Nup49p, Nup57p, and Nic96p (Wimmer et al., 1992; 
Grandi et al., 1993, 1995). 

NUP82 Gene Disruption, Localization, and Purification 
of ProtA-Nup82p 

To investigate whether the NUP82 gene is essential for 
cell growth, we performed either a gene disruption or re- 
pression of gene expression. For the gene disruption, the 
HIS3 marker was inserted at a convenient restriction site 
of the NUP82 gene thereby interrupting its open reading 
frame (see Materials and Methods). After transformation 
and selection for HIS + transformants, heterozygous dip- 
loids HIS3::nup82/NUP82 were obtained by homologous 
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Amino Acid Sequence of NupB2p 

1 MSQSSRLSAL PIFQ~LS~ QSPRyIFSSQ 

51 DSr.yaSL~S ~LV~DTFH VISSTSGDU. 

101 EDVSIQDAFQ IFHYSIDEEE VGPKSSIKKV 

151 ITMFDILNSQ EKPIVLNKPN NSFGLDARVN 

201 EGGDIFAFYP FLPSVLLLNE KDLNLILNKS 

251 KQLQFVSKLH ENWNSRFGKV DIQF~YRLAK 

301 NIATILIDNG QNEIVCVSFD DGSLILLFKD 

351 IERVKLQREI KSLITLPEQL GKLYVISDNI 

401 DLNPLAGLKF ESKLEDIATI ERIPNLAYIN 

451 SSDMKPQSTA AETSISTEKS DTVCDGFKMS 

501 SPCERIIPSA DRQIPLKNEA SENQLEIFTD 

551 NRIHEQQFEL TRQLQSTCKI ISKDDDLRRK 

601 RFSKLSKKLS QIAESNKFKE KKISHG~24KW 

651 LQQDLSYLKS ELTRIEAETI KVDKKSQNEW 

701 LLQVSQEFTT KTQ* 

PEI'COIL-Analysis of Nup82p 
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Figure 2. Amino acid sequence of Nup82p. (A) Predicted amino 
acid sequence of the Nup82p protein as deduced from the DNA 
sequence. Underlined are the four peptide sequences obtained 
from the amino acid sequence analysis of the p80 band and found 
within the Nup82p ORF. (B) Prediction of coiled-coil regions in 
the Nup82p carboxy-terminal domain; the program PEPCOIL 
was applied which reveals potential coiled-coil regions in protein 
sequences using the algorithm of Lupas et al. (1991). 

recombination. Sporulation of heterozygous integrants and 
tetrad analysis gave a 2:2 segregation for viability (Fig. 3 A), 
and the his- genotype co-segregated with the growing 
haploid progeny. Microscopic inspection of germinated 
HIS3::nup82 progeny showed that cells stopped growth at 
the two to four cell stage. The lethal phenotype of the 
HIS3::nup82 disruption mutant can be complemented by the 
cloned NUP82 gene present on a single copy plasmid 
(Fig. 3 A). 

To repress NUP82 gene expression, the authentic pro- 
moter of NUP82 was replaced by the GALIO promoter; in 
addition, the Nup82p was tagged with IgG-binding se- 
quences derived from Staphylococcus aureus protein A at 
its amino terminal end in order to follow the Nup82p deple- 
tion during gene repression. A haploid GAL::ProtA-NUP82 
strain was constructed (see Materials and Methods) which 
grew normally in galactose-containing medium, but com- 
pletely stopped cell growth after about 12 h shift in glucose- 
containing medium as compared to an isogenic NUP82 ÷ 

Figure 3. Disruption of the Nup82 gene or repression of NUP82 
gene expression causes cell death. (A) Tetrad analysis of diploid 
strain PG2 which is heterozygous for NUP82 (nup82::HIS3/ 
NUP82) and PG2 transformed with pUN100-ProtA-NUP82. (B) 
Growth of strains GAL::Prot-NUP82 and isogenic NUP82 ÷ on 
galactose-containing (YPGal) and glucose-containing (YPD) 
plates. Equivalent amount of cells and derived 1/10 and 1/1130 di- 
lutions were spotted onto the indicated plates and incubated at 
30°C for 3 d. By this "dot spotting," the relative growth rates of 
the used strains can be directly scored on plates. (C) Immunoblot 
analysis of cell extracts derived from NUP82 + and GALl0: :  
ProtA-NUP82 strains after the indicated times in glucose-con- 
taining YPD medium. The same amounts of cell equivalents from 
a whole cell extract were analysed by SDS-PAGE and Western 
blotting. The ProtA-Nup82p fusion protein was visualized using 
IgG coupled to HRP. 

strain (Fig. 3 B). Concomitant with gene repression, ProtA- 
Nup82p disappeared from cell extracts (Fig. 3 C). 

To determine the subcellular localization of Nup82p, we 
tagged it with protein A. The ProtA-Nup82p fusion pro- 
tein is functional and complements the lethal nup82::HIS3 
mutant (Fig. 3 A). As expected, by indirect immunofluo- 
rescence with anti-ProtA antibody, a ring-like and punc- 
tate staining of the nuclear envelope is observed which is 
similar to the immunofluorescence staining of other yeast 
nucleoporins (Fig. 4 A, upper panel). In addition, when ex- 
pressed in the nup133- strain which shows clustered 
NPCs, ProtA-Nup82p also clustered together with other 
nucleoporins (Fig. 4 A, lower panel). This nup133 mutant 
allows to test whether a given protein is physically linked 
to the nuclear pore complexes (Doye et al., 1994). This 
data shows that Nup82p is localized at the NPC and sug- 
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Figure 4. Intracellular location and purification of ProtA-Nup82p. (A) Indirect immunofluorescence was performed on strains nup82- 
and nup133-, both expressing ProtA-Nup82p. To detect ProtA-Nup82p, rabbit anti-chicken IgG was used as first antibody followed by 
goat anti-rabbit IgG coupled to Texas red. A ring-like and punctate staining of the nuclear periphery is observed in nup82- cells, 
whereas clustering together with other nucleoporins is seen in nup133- cells. To detect yeast nucleoporins, mAb414 (BAbCO, Berkley, 
CA) was used. Cells were also stained for DNA using Hoechst 33258 and viewed by Nomarski optics. (B) Affinity-purification of 
ProtA-Nup82p was done as described under Materials and Methods. The eluate from the IgG-Sepharose column was analyzed by SDS- 
PAGE and Silver staining (lane 1) and immunoblotting (lanes 2 and 3) using IgG coupled to HRP to visualize ProtA-Nup82p fusion 
protein (lane 2) and anti-Nspl antibodies to detect Nsplp (lane 3). The positions of ProtA-Nup82p, Nsplp and a molecular weight stan- 
dard are indicated. Note that in (lane 1) the faint band migrating slightly faster than ProtA-Nup82p corresponds to full-length Nsplp 
and that anti-Nspl antibodies also recognize the ProtA-Nup82p fusion protein. The strong band around 50 kD is a major breakdown 
product of ProtA-Nup82p since it is also detected by Western blotting using IgG-HRP. 

gests that it is not an unspecific contaminant o f  affinity- 
purified Nsplp. 

ProtA-Nup82p, expressed in the nup82 disrupted strain, 
was also affinity-purified under non-denaturing conditions 
by IgG-Sepharose chromatography (Fig. 4 B). Following 
the same extraction and purification protocol as applied 
for ProtA-Nsplp (Grandi et al., 1993), microgram quanti- 
ties of the tagged ProtA-Nup82p fusion protein (as de- 
rived from about 10 s yeast cells) could be obtained in a 
one-step purification. As revealed by SDS-PAGE and Sil- 
ver staining, ProtA-Nup82p mainly purifies as a single 
band of about 90-kD apparent molecular weight, but sev- 
eral other weaker stained bands became also visible (Fig. 4 
B). Major co-purifying bands (e.g., Nic96p) were not seen. 
When the purified ProtA-Nup82p fraction was analyzed 
by Western blotting using different anti-nucleoporin anti- 
bodies, Nic96p, Nup57p, and Nup49p were not present 
(see also later), but Nsplp could be clearly detected (Fig. 4 
B, lane 3). This Nsplp band corresponds to one of the sub- 
stoichiometric bands in the silver-stained preparation; 
since Nsplp is very susceptible to proteolysis, it was partly 

degraded during ProtA-Nup82p purification (compare 
also Fig. 4 B, lanes 2 and 3, Immunoblotting). 

A Fraction of Nsplp, Free ofNup49p, Nup57p, and 
Nic96p, Is Specifically Associated with ProtA-Nup82p 
via Heptad Repeats Interactions 

To confirm the existence of two pools of Nsplp associated 
with either Nup82p or the Nic96p/Nup57p/Nup49p-con- 
taining nucleoporin complex, native immunoprecipitation 
of ProtA-Nup82p and Nup57p was performed successively 
from a whole cell lysate (Fig. 5 A). The immune pellets and 
supernatants were then analyzed by Western blotting and 
probed for the presence of ProtA-Nup82p, Nsplp, Nup49p, 
Nup57p, and Nic96p. As seen in Fig. 5 B, ProtA-Nup82p 
can be immunoprecipitated with an efficiency of about 
15-20% using rabbit IgGs (P 1, a-ProtA-Nup82). If probed 
with anti-Nspl antibodies, Nsplp is also found in this im- 
mune pellet, whereas Nup57p, Nup49p, and Nic96p are com- 
pletely absent. The remaining supernatant $1 was split in 
half and subjected to a second round of immunoprecipita- 
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Figure 5. Native immunoprecipitation of ProtA-Nup82p. (A) 
Flow chart of the native immunoprecipitation starting with a cell 
extract derived from a yeast strain expressing ProtA-Nup82p. H, 
homogenate; P, immune pellet; S, immune supernatant. (B) Im- 
munoprecipitation from ProtA-Nup82 cell lysates under non- 
denaturing conditions as described under Materials and Methods 
using rabbit IgGs to immunoprecipitate the protein A moiety of 
ProtA-Nup82p (a-ProtA-Nup82 ABs). The derived immune su- 
pernatant was split and one half was re-incubated with rabbit 
IgGs to re-immunoprecipitate ProtA-Nup82p (a-ProtA-Nup82 
ABs), whereas the other half was immunoprecipitated using anti- 
Nup57 monospecific antibodies (a-Nup57 ABs). A onefold 
equivalent of the homogenate (H) and immune supernatant (S) 
and a five-fold equivalent of the immune pellet (P) were ana- 
lyzed by SDS-PAGE before blotting onto nitrocellulose. (E) 
Whole cell lysate of a wild-type RS453 strain. Blots were then 
probed with IgG coupled to HRP, anti-Nsplp (a-Nspl), anti- 
GLFG (a-GLFG; reactive with both Nup57p and Nup49p), and 
anti-Nic96 (a-Nic96) antibodies to detect ProtA-Nup82p, Nsplp, 
Nup49p, Nup57p, and Nic96p, respectively. The co-precipitating 
bands are indicated by arrows, the star marks IgG heavy chain. 
Note that all the specific antibodies also recognize the ProtA- 
Nup82 fusion protein (see also under Materials and Methods), 
because of the ProtA-moiety which binds to any rabbit IgG. This 
is especially evident with anti-Nspl and anti-Nic96 antibodies. 
For the co-migration of Nup2p and ProtA-Nup82p bands, see 
legend to Fig. 6 B. 

tion, using either anti-ProtA-Nup82 reagents as described 
above or monospecific anti-Nup57 antibodies. Nsplp,  but 
not Nup49p, Nup57p, and Nic96p, still co-precipitated 
with ProtA-Nup82p (P 2, a-ProtA-Nup82), whereas anti- 
Nup57 antibodies brought down Nic96p, Nup57p, Nup49p 
plus a larger portion of Nsplp (Fig. 5 B, P3, c~-Nup57). 
These data show that Nup82p is specifically associated 
with a separate fraction of Nsplp,  whereas another pool of 
Nsplp is in a complex with Nup49p, Nup57p, and Nic96p. 

Nup82p exhibits heptad repeats in its carboxy-terminal 
domain which give a probability of coiled-coil secondary 
structure (Fig. 2). As previously shown, heptad repeats in 

Nsplp  and Nic96p are responsible for the physical associa- 
tion with the other nucleoporins of the complex (Grandi et 
al., 1995). In order to see whether the heptad repeat do- 
main in Nup82p is involved in the physical interaction with 
Nsplp,  the carboxy-terminal domain of Nup82p alone 
tagged with ProtA was expressed in yeast. Although 
ProtA-Nup82p(499-713) did not complement the nup82- 
strain, it still could bind to Nsplp  as shown by immunopre- 
cipitation (Fig. 6 A). This binding was specific, since 
ProtA-Nup82p(499-713) was not at all associated with 
Nup57p (Fig. 6 A). Furthermore, a carboxy-terminally 
truncated Nup82p mutant tagged with protein A was gen- 
erated, Nup82pA460-713, which lacks all of the heptad re- 
peats (see also Fig. 2) and can not complement the nup82- 
strain (data not shown). As shown by native immunopre- 
cipitation, deletion of the carboxy-terminal domain of 
Nup82p impairs the binding to Nsplp (Fig. 6 B). 

To demonstrate that Nsplp and Nup82p also function- 
ally interact via their carboxy-terminal domains in the liv- 
ing cell, haploid yeast progeny was constructed containing 
the functional protein A tagged Nup82pA624-713 construct 
which lacks about half of the heptad repeats and, accord- 
ingly, binds less efficiently to Nsplp (data not shown), and 
the thermo-sensitive Ala6-nsplp allele which was integrated 
at the NSP1 locus and thus replaced the wild-type NSP1 
gene (Fig. 7). Mutant cells (Ala6-nspl::HIS3, nup82::HIS3) 
carrying plasmid pCHl122-URA3-NSP1 and pUN100- 
LEU2-ProtA-NUP82A624-713 could grow at 23°C, but 
stopped growth on FOA-containing plates (Fig. 7). Syn- 
thetic lethality, however, was complemented by the pres- 
ence of pRS314-ProtA-NUP82 (Fig. 7). This shows that the 
combination of mutant alleles of NSP1 and NUP82 func- 
tional at 23°C can cause synthetic lethality. Thus, Nsplp and 
Nup82p not only physically but also functionally interact 
via their carboxy-terminal domains. 

Nucleocytoplasmic Transport and Nuclear Envelope 
Structure in Yeast Cells Depleted of  Nup82p 

The fact that Nup82p physically interacts with Nsplp and 
can be found at the NPC prompted us to test whether it 
plays a role in nucleocytoplasmic transport and/or nuclear 
envelope organization. It was shown earlier that repres- 
sion of NSP1 gene expression using a GAL::nspl strain 
caused cytoplasmic accumulation of the Mat~2-1acZ nu- 
clear reporter protein (a fusion protein consisting of the 
yeast transcriptional repressor Mat~, which contains a nu- 
clear localization sequence, and Escherichia coli [3-galac- 
tosidase) and a decrease in NPC density (Mutvei et al., 
1992). When the GAL::nup82 strain was tested in a similar 
way, cells did not reveal a clear defect in nuclear uptake of 
Mat~2-1acZ after 9 h of glucose repression (Fig. 8 A). 
However, when analyzed for nuclear poly(A) + RNA ex- 
port by in situ hybridization using a FITC-labeled oligonu- 
cleotide poly(dT)50 probe (Kadowaki et al., 1992; Amberg 
et al., 1992), GAL10::ProtA-nup82 cells showed a time-de- 
pendent increase in poly(A) + RNA accumulation inside 
the nucleus upon shift to the restrictive growth medium. 
After 6 h in glucose medium, about 30% of-the cells 
showed intranuclear poly(A) + RNA accumulation (data 
not shown) and after 9 h almost all of the cells revealed 
this defective phenotype (Fig. 8 B, GLU). This matches 

Grandi et al. Interaction between Nup82p and Nsp lp 1269 



Figure 6. Native immunoprecipitation of mutant forms of Nup82p. (A and B) Immunoprecipitation from cell lysates expressing tagged 
wild-type ProtA-Nup82p(1-713) or ProtA-Nup82p(499-713) (A), and ProtA-Nup82pA460-713 or ProtA-Nup82p(1-713) (B) under non- 
denaturing conditions was done as described under Materials and Methods. A onefold equivalent of the homogenate (H) and immune 
supernatant (S) and a fivefold equivalent of the immune pellet (P) were analyzed by SDS-PAGE and Western blotting. Blots were 
probed with IgG coupled to HRP (c~-ProtA), anti-Nspl (a-Nspl) and anti-Nup57 (a-Nup57; made against the Nup57p carboxy-terminal 
domain) antibodies. The position of the bands is indicated by arrows. In addition, the circles show the position of the various ProtA- 
Nup82p fusion proteins. The star marks IgG heavy chain. Note that anti-Nspl antibodies cross-react with Nuplp and Nup2p and both 
anti-Nspl and anti-Nup57 antibodies also recognize the ProtA-fusion proteins. The band corresponding to Nup2p (a-Nspl), although 
very closely migrating, is distinct from the band corresponding to ProtA-Nup82p(1-713) as it can be better appreciated in lane H and S 
of (B) and Nup2p does not co-precipitate with any of the fusion proteins. 

well with the depletion of ProtA-Nup82p which is still de- 
tectable after 6 h, but not after 9 h of depletion (see also 
Fig. 3 C). In contrast, GAL10::nspl  cells grown for 12 h in 
glucose medium did not exhibit such a deficiency in 
poly(A) ÷ R N A  export (Fig. 8 B). These data indicate that 
Nup82p expression, in contrast to Nsplp  expression, is re- 
quired for efficient poly(A) + R N A  export from the nu- 
cleus. 

To find out whether depletion of Nup82p from yeast 
cells causes structural abnormalities of the nuclear enve- 
lope or a decrease in the N P C  number, electron micro- 
scopic analysis of fixed and thin-sectioned GAL::nup82 
cells grown for 9 h in glucose-containing medium was per- 
formed (Fig. 9). Although no effort was made to precisely 
quantify NPCs in the Nup82-depleted cells, no striking 
decrease in the nuclear pore number  was noticed as com- 

pared to control cells (Fig. 9). The NPCs were also not al- 
tered in terms of their morphological appearance. Further- 
more, no gross ultrastructural changes of the nuclear 
envelope such as NPC clustering or nuclear envelope her- 
niations and invaginations as described for other nucleo- 
porin mutants (Wente and Blobel, 1993; Doye  et al., 1994; 
Wente and Blobel, 1994) were found in most of the ob- 
served cells. 

Discussion 

Upon defining the physico-functional interactions of  pro- 
teins at the nuclear pore complex, one might also have 
clues as to how nucleocytoplasmic transport occurs on a 
molecular level. It is therefore important  to isolate nuclear 
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ProtA-Nup82p•624-713/Nsplp 

FrotA-Nup82/Ala6-nsplp 

ProtA-Nup82p/~?.4-713 / Ala6-nsplp 

ProtA-Nup821~624-713 / Ala6-nsp 1 p 
+ pRS314-ProtA-Nup82p 

Figure 7. Synthetic lethality between Ala6-nsplp and carboxy- 
terminally truncated Nup82pA624-713. Single and double nspl 
and nup82 mutant strains were constructed as described under 
Materials and Methods; these include the NUP82 shuffle strain 
complemented by pUN100-ProtA-NUP82A624-713 but lacking 
pRS316-URA3-ProtA-NUP82, the Ala6-nspl strain, the Ala6- 
nspl/ProtA-NUP82A624-713 double mutant strain containing the 
pCHl122-URA3-NSP1 plasmid and the latter strain transformed 
with the pRS314-TRP1-ProtA-NUP82 plasmid. For each strain 
the same amount of cells derived from 1/10 and 1/100 dilutions 
from YPD (rich glucose media) liquid cultures were spotted onto 
5-FOA plates and incubated for three days at 23°C. By this "dot 
spotting," the relative growth rates and cell viability of the used 
strains can be directly seen on the plate. 

pore proteins under non-denaturing conditions and iden- 
tify components  with which they interact. These interact- 
ing proteins may be either intrinsic constituents of  the 
NPC or transport factors which transiently associate with 

nuclear pore proteins, e.g., during translocation of sub- 
strates through the NPC. 

We have purified the nuclear pore protein Nsp lp  from 
yeast in order to identify its interacting partners. Nsp lp  
plays a role in uptake of nuclear proteins (Mutvei et al., 
1992; Nehrbass et al., 1993), but is also linked to compo- 
nents which are involved in poly(A) + R N A  export (Doye 
et al., 1994). Recently, we found that Nsp lp  forms a stable 
complex with three other nuclear pore proteins Nup49p, 
Nup57p, and Nic96p (Grandi et al., 1993). Mutations in 
Nsplp,  Nup49p, and Nic96p which weaken physical inter- 
actions in this complex also impair nuclear import (Nehr- 
bass et al., 1993; Doye  et al., 1994; Grandi et al., 1995). 
Here, we demonstrate that another fraction of Nsplp  
which is not associated with the members of the previously 
characterized complex is physically attached to a novel 
NPC protein, Nup82p. This shows that Nsp lp  is present in 
distinct subcomplexes of the NPC. 

The essential Nsp lp  carboxy-terminal coiled-coil do- 
main is sufficient for the interaction with both the nucleo- 
porin complex consisting of Nup49p, Nup57p, and Nic96p 
as well as with the heptad repeats containing carboxy-ter- 
minal domain of Nup82p. How can the same Nsplp  car- 
boxy-terminal domain bind to at least two different pro- 
teins? Interestingly, the continuity of the heptad repeat 
pattern in the Nsp lp  carboxy-terminal domain is inter- 
rupted roughly in the middle of  this domain (Hurt, 1990). 
We have reported earlier that mutations in the first half of  
the Nsp lp  carboxy-terminal domain impair interaction 

Figure 8. Nucleocytoplasmic transport in Nup82p depleted cells. (A) Nuclear import of Mata2-1acZ. GAL10::ProtA-NUP82 cells were 
transformed with pRS316-Matc~2-1acZ on SGal -u ra  plates and transformants were grown either in SGalC -ura  medium (galactose) or 
shifted for 9 h to SDC -ura  medium (glucose). The location of the Mata2-1acZ reporter was analysed by immunofluorescence on 
spheroplasted cells using anti-[3-galactosidase antibodies (1::100 dilution) followed by FITC-labeled goat anti-mouse IgG (1:100 dilu- 
tion). Also nuclear DNA and cell morphology were viewed. (B) Poly(A) + RNA export. Subcellular localization of poly(A) + RNA was 
analysed in GAL10::ProtA-NUP82 cells and GAL10::NSP1 cells by in situ hybridization with a FITC-labeled oligonucleotide poly(dT)50 
probe. GAL10::ProtA-NUP82 and GAL10::NSP1 strains were grown in galactose or for 9 or 12 h in glucose-containing medium, respec- 
tively. Nuclear DNA was stained by Hoechst 33258 and cells were viewed by Nomarski optics. 
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Figure 9. Thin-section electron microscopy of Nup82p depleted 
cells. GAL::nup82 cells grown for 9 h in glucose containing YPD 
medium at 30°C to deplete Nup82p were processed for thin sec- 
tion electron microscopy as described under Materials and Meth- 
ods. Two EM photographs of the same mutant are shown. Ar- 
rowheads indicate nuclear pore complexes, n, nucleus; v, vacuole. 
Bars, 0.2 pom. 

with Nic96p, but Nup82p still remained associated with 
Nsplp (Grandi et al., 1993). It is therefore possible that 
the heptad repeats in the second half of the Nsplp car- 
boxy-terminal domain participate in the interaction with 
Nup82p. We are in the process of testing this by in vitro as- 
sembly of the purified proteins and their derived mutant 
forms. 

Interestingly, also vertebrate p62, which is the presump- 
tive homologue of Nsplp (Carmo-Fonseca et al., 1991), 
seems to be organized in separate complexes: in a 600-kD 
complex together with a p58 and p54 component (which 
could be the Nup57p and Nup49p homologues, respec- 
tively) and a 1 MDa complex together with a p200 compo- 
nent which binds to wheat germ agglutinin (Macaulay et 
al., 1995). 

The reason for multiple interactions of a single nucleo- 
porin is not clear, but in this way nucleoporins may be 
linked to several NPC structures or different factors in- 
volved in nucleocytoplasmic transport (e.g., factors in- 
volved in nuclear protein or snRNP import or export of 
mRNA, snRNA, tRNA, or rRNA). Transcriptional re- 
pression of NUP82 results in accumulation of poly(A) + 

RNA inside the nucleus before any defect in nuclear pro- 
tein import, whereas lack of Nic96p from the cell impairs 
the import of proteins into the nucleus, but mRNA export 
is normal (Grandi et al., 1995). Thus, Nsplp is associated 
with two nuclear pore proteins which do not physically in- 
teract with each other and are somehow involved in differ- 
ent transport pathways at the NPC. Interestingly, in vivo 
experiments showed that Nsplp interacts also genetically 
with a large number of nuclear pore proteins involved not 
only in nuclear protein import, but also in mRNA export 
(Doye et al., 1994) and tRNA biogenesis (Hurt, E. C., un- 
published data). 

Yeast Srplp, localized at the NPC (Yano et al., 1992), 
forms two distinct complexes with Nuplp  and Nup2p (Be- 
langer et al., 1994). Since vertebrate importin, which is one 
of the key components in NLS-mediated nuclear protein 
uptake, is homologous to yeast Srplp (G6rlich et al., 
1994), in this case Nuplp  and Nup2p might form two sepa- 
rate docking sites for the same NLS receptor-dependent 
protein import pathway at the NPC. 

It will be interesting to find out whether a single nucleo- 
porin can be located at different sites of the nuclear pore 
complex, i.e., at the cytoplasmic side which has access to 
the nuclear protein uptake system, and the inner side 
linked to factors involved in RNA export. Although we do 
not know the exact location of Nsplp at the NPC, it may 
be part of the central pore structures (e.g., the plug or 
transporter) by analogy to nucleoporin p62 (see also 
above) which was sublocalized to both sides of the central 
pore channel (for review see Fabre and Hurt, 1994; Peters, 
R., personal communication). Experiments are under way 
to find out whether the two different Nsplp-containing 
complexes are localized at different sites of the yeast NPC 
and whether the purified or in vitro reconstituted com- 
plexes exhibit distinct structures at the electron micro- 
scopic level. 
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