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Abstract. Prolonged Ca 2÷ influx is an essential signal 
for the activation of T lymphocytes by antigen. This in- 
flux is thought to occur through highly selective Ca 2+ 
release-activated Ca 2+ (CRAC) channels that are acti- 
vated by the depletion of intracellular Ca 2+ stores. We 
have isolated mutants of the Jurkat human T cell line 
NZdipA to explore the molecular mechanisms that un- 
derlie capacitative Ca 2+ entry and to allow a genetic 
test of the functions of CRAC channels in T cells. Five 
mutant cell lines (CJ-1 through CJ-5) were selected 
based on their failure to express a lethal diphtheria 
toxin A chain gene and a lacZ reporter  gene driven by 
NF-AT, a Ca 2÷- and protein kinase C-dependent  tran- 
scription factor. The rate of Ca 2+ influx evoked by 
thapsigargin was reduced to varying degrees in the mu- 
tant cells whereas the dependence of NF-AT/lacZ gene 
transcription on [Ca2+]i was unaltered, suggesting that 
the transcriptional defect in these cells is caused by a 
reduced level of capacitative Ca 2÷ entry. We examined 

several factors that determine the rate of Ca 2+ entry, in- 
cluding CRAC channel activity, K+-channel activity, 
and Ca 2+ clearance mechanisms. The only parameter  
found to be dramatically altered in most of the mutant 
lines was the amplitude of the Ca 2+ current (IcRAC), 
which ranged from 1 to 41% of that seen in parental 
control cells. In each case, the severity of the ICRAC de- 
fect was closely correlated with deficits in Ca 2÷ influx 
rate and Ca2+-dependent gene transcription. Behavior 
of the mutant cells provides genetic evidence for sev- 
eral roles of ICRAC in T cells. First, mitogenic doses of 
ionomycin appear to elevate [Ca2+]i primarily by acti- 
vating CRAC channels. Second, ICRAC promotes the re- 
filling of empty Ca 2+ stores. Finally, CRAC channels 
are solely responsible for the Ca 2÷ influx that underlies 
antigen-mediated T cell activation. These mutant cell 
lines may provide a useful system for isolating, express- 
ing, and exploring the functions of genes involved in ca- 
pacitative Ca 2+ entry. 

T 
HE activation of T lymphocytes encompasses a highly 
coordinated sequence of cellular events, beginning 
with antigen binding to the T cell receptor (TCR) l 

and culminating in clonal T cell proliferation and the ac- 
quisition of immune function. The earliest events include 
tyrosine kinase activation, which triggers the activation of 
phospholipase C~ and the consequent generation of dia- 
cylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3; 
Weiss and Littman, 1994). DG activates protein kinase C 
(PKC), whereas IP3 leads to a biphasic rise in [Ca2+]i; both 
of these signals appear to be required to promote T cell ac- 

1. Abbrev ia t ions  used in this paper: 13-gal, 13-galactosidase; [Ca2+]i, in- 
tracellular free Ca 2+ concentration; CPA, cyclopiazonic acid; dipA, 
diphtheria toxin A chain; EF-2, elongation factor 2; FDG, fluorescein 
di-13-D-galactopyranoside; ICRAC, Ca 2÷ release-activated Ca 2÷ current; IL- 
2, interleukin-2; IP3, inositol 1.4,5-trisphosphate; MUG, 4-methylumbel- 
liferyl [3-D-galactoside; NF-AT, nuclear factor of activated T cells; PdBU, 
phorbol 12,13-dibutyrate; PKC, protein kinase C; TCR. T cell receptor; 
TG, thapsigargin. 

tivation, largely by ensuring the production of interleu- 
kin-2 (IL-2), which drives the progression of T cells through 
the cell cycle in a Ca 2+- and PKC-independent fashion 
(Truneh et al., 1985; Crabtree and Clipstone, 1994). 

[Ca2+]i m u s t  be elevated for tens of minutes to enable 
IL-2 production and the commitment of T cells to the acti- 
vation pathway, yet release of Ca ~+ from intracellular stores 
by IP3 produces only a transient rise and is unable by itself 
to support activation (Goldsmith and Weiss, 1988; Neg- 
ulescu et al., 1994). Several studies in T cells (Gouy et al., 
1990; Mason et al., 1991; Sarkadi et al., 1991) have shown 
that the Ca 2+ signal is sustained by a process termed ca- 
pacitative Ca 2+ entry (Putney, 1990), by which the main- 
tained depletion of intracellular stores by IP3 activates 
Ca 2+ influx across the plasma membrane. The channels 
underlying capacitative Ca 2÷ entry have been character- 
ized in detail in several nonexcitable cells, including T cells 
and mast cells (Hoth and Penner, 1993; Zweifach and 
Lewis, 1993; Premack et al., 1994; for reviews see Penner 
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et al., 1993; Fasolato et al., 1994; Lewis and Cahalan, 
1995). The corresponding current has been termed Ca 2+ 
release-activated Ca 2+ c u r r e n t  (IcRAC; Hoth and Penner, 
1992), and it is thought to be responsible for [Ca2+]i oscil- 
lations in T cells (Lewis and Cahalan, 1989; Donnadieu et  
al., 1992; Dolmetsch and Lewis, 1994), as well as for pro- 
longed Ca z+ elevation in activated mast cells (Fasolato et 
al., 1993). The capacitative Ca 2+ entry mechanism appears 
to be extremely widespread (for review see Putney and 
Bird, 1993) and may involve multiple types of Ca2+-per - 
meable, store-operated channels (SOCs; Ltickhoff and 
Clapham, 1994; Vaca et al., 1994) of which the CRAC 
channels described above are one subtype. 

Little is known about the capacitative Ca 2+ entry mecha- 
nism at a molecular level. The sensor for the content of 
Ca 2+ stores, as well as the signaling pathway that commu- 
nicates store depletion to the CRAC channels, has not yet 
been identified. Multiple signaling mechanisms have been 
proposed, including a novel diffusible activator, GTP-bind- 
ing proteins, tyrosine kinases, cGMP and direct coupling 
between the proteins in the ER and the plasma membrane 
(for review see Putney and Bird, 1993; Fasolato et al., 1994). 
A novel approach may be needed to resolve the mecha- 
nism of CRAC channel activation. 

Isolation and cloning of the CRAC channel would aid 
greatly in studies of the activation mechanism, but several 
factors make this a challenging goal. First, a lack of spe- 
cific, high-affinity ICRAC inhibitors precludes channel puri- 
fication based on ligand binding. CRAC channels are in- 
sensitive to a variety of classical Ca 2+ channel antagonists 
but are inhibited by imidazole antimycotic compounds (e.g., 
econazole and SK&F 96365) with K1/2 values in the micro- 
molar range (Chung et al., 1994; Franzius et al., 1994). How- 
ever, at these concentrations, the compounds also block 
other types of channels (Villalobos et al., 1992; Franzius et 
al., 1994), making their use problematic in studies of the 
functional roles of CRAC channels in intact cells. Second, 
CRAC channels differ in their fundamental properties of 
ion selectivity, gating, and unitary conductance from all 
previously cloned voltage-gated Ca 2+ channels, lessening 
the likelihood of a successful cloning approach based on 
homology. However, recent evidence that the trp gene of 
Drosophila encodes a depletion-activated channel similar 
but not identical to the CRAC channel (Vaca et al., 1994) 
raises the possibility that homologous genes may encode 
channels underlying capacitative Ca 2+ entry in verte- 
brates. Finally, the ubiquitous nature of capacitative Ca 2+ 
entry complicates cloning attempts based on heterologous 
expression in oocytes and other cells, and will hinder func- 
tional studies of cloned and mutated CRAC channel 
genes. 

Mutant cell lines defective for capacitative Ca 2+ entry may 
provide powerful tools to address these problems. A re- 
cent study by Partiseti et al. described a patient with a se- 
vere T cell immunodeficiency due to a defect in CRAC 
channel activity (Partiseti et al., 1994). In addition, a spe- 
cific method for selecting Ca 2+ influx mutants has been de- 
scribed (Serafini et al., 1995), employing a strategy based 
on activation of the nuclear factor of activated T cells (NF- 
AT), a ras/PKC- and CaZ+-dependent transcription factor 
(Clipstone and Crabtree, 1992). NF-AT integrates the ras/ 
PKC- and Cae+-signaling pathways in the following way. A 

nuclear-targeted subunit (NF-ATn) is synthesized de novo 
in response to PKC activation, while a cytosolic subunit 
(NF-ATc or NF-ATp) translocates to the nucleus in response 
to the activation of the phosphatase calcineurin by Ca2+/ 
calmodulin (Crabtree and Clipstone, 1994; Rao, 1994). As- 
sociation of the nuclear and cytosolic subunits within the 
nucleus creates active NF-AT, which in conjunction with 
other transcription factors promotes the synthesis of IL-2 
and other T cell activation proteins (Durand et al., 1988; 
Flanagan et al., 1991). Serafini et al. (1995) exploited the 
extremely high induction ratios of NF-AT to construct a 
Ca2+-dependent "suicide" gene in the Jurkat human T cell 
line, consisting of a trimer of NF-AT binding sites driving 
the expression of the diphtheria toxin A chain (dipA) gene. 
Mutagenized cells that survived in the presence of ionomy- 
cin and phorbol ester included two mutant clones, M101 
and M108, that displayed a significant defect in capacitative 
Ca 2+ entry. 

Here we report the isolation of five additional Jurkat 
mutants (CJ-1 through CJ-5) defective for capacitative Ca 2+ 
entry. We have characterized the physiological basis of the 
deficits in NF-AT-dependent gene transcription and Ca 2+ 
influx in these and the previously derived mutants. In all 
cases, the severity of the defects in gene transcription and 
capacitative Ca 2+ entry are closely linked. Furthermore, 
the reduced level of Ca 2+ influx in the mutants appears to 
be due to a selective defect in either the CRAC channel, its 
expression, or its activation, rather than to other factors 
like K + channel expression or Ca 2+ clearance mechanisms 
that indirectly influence net Ca 2+ influx. These mutants 
provide compelling genetic evidence for the roles of IcRac 
in refilling stores and in mediating the sustained [Ca2+]i 
rise necessary for the activation of T lymphocytes by anti- 
gen. The mutant cell lines may also present a tractable sys- 
tem for the isolation and expression of genes encoding ele- 
ments of the capacitative Ca 2+ entry pathway. 

Materials and Methods 

Cell Lines and Culture 

The Jurkat clones J.NFATZ.1 (Fiering et al., 1990) and NZDipAA.5.22 
(Serafini et al., 1995) have been described previously. J.NFATZ.1 cells 
carry a construct consisting of the hygromycin resistance gene and a tri- 
mer of NF-AT binding domains linked to a minimal IL-2 promoter driving 
expression of lacZ. The parental line (NZDipA 1.5.22) was derived from 
J.NFATZ.1 by stable transfection with a similar construct including the 
neomycin resistance gene and in which NF-AT controls the expression of 
dipA, the gene encoding the membrane-impermeant catalytic A chain of 
diphtheria toxin. Cells were grown in culture medium consisting of RPMI 
1640 (Mediatech, Herndon, VA) supplemented with 10% FCS (Gemini 
Bio-Products, Inc., Calabasas, CA), 2 mM glutamine (Mediatech), and pen- 
icillin-streptomycin (50 U/ml and 50 ~g/ml; Mediatech). Cells were con- 
tinuously maintained in log-phase growth at 37°C with 6% COz. Cells 
were counted in the presence of acridine orange/ethidium bromide stain 
to distinguish live from dead cells. Ceils were cycled bimonthly through 
three passages in 300 ~g/ml hygromycin (Calbiochem-Novabiochem In- 
ternational, San Diego, CA) and 1 mg/ml geneticin (Sigma Chemical Co., 
St. Louis, MO) to ensure the stability of the NFATZ and NFAT-DipA 
constructs, respectively. OKT3 mAb (Ortho Pharmaceuticals, Raritan, 
NJ) and goat anti-mouse IgG (Southern Biotechnologies, Birmingham, 
AL) were generously provided by Dr. P. Katsikis (Stanford Univ., Stan- 
ford, CA). Anti-integrin-associated protein mAb was the kind gift of Dr. 
F. Lindberg (Washington Univ_, St. Louis, MO)~ and anti-CD5, CD11a, 
and CD45 mAbs were provided by Dr. M. Roederer (Stanford Univ., 
Stanford, CA). All other antibodies were purchased from Caltag (So. San 
Francisco, CA). 
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Mutagenesis 
Mutants were generated following a protocol modified from Serafini et al. 
(1995). 2 x 10 ~ NZDipA cells were mutagenized by 200 rads of ~, radiation 
from a 137Cs source (<30% lethality). The irradiated cells were divided 
equally into 13 flasks within 1 h and were thereafter passaged indepen- 
dently. After 6 d, cells (~5 x 10S/ml) were treated for 24 h at 37°C in stim- 
ulation medium (culture medium containing 2 ~M ionomycin [Calbio- 
chem-Novabiochem] and 50 nM phorbol 12,13-dibutyrate [PdBU; Sigma]), 
washed twice and returned to culture medium at a density of 0.5-1 x 106/ 
ml. The parental (NZDipA) cell line, in which NF-AT controls expression 
of dipA, dies in response to stimulation with the NF-AT activators iono- 
mycin and PdBU within 3-4 d. The cells were stimulated again after they 
resumed a normal growth rate, and this protocol was repeated 3-6 times 
until the cells no longer died significantly after stimulation. Surviving cells 
include the desired trans mutants with defects in NF-AT~lependent  gene 
transcription as well as cis mutants. Cis mutants include cells in which the 
NFAT-dipA construct has been modified or lost, and cells that have ac- 
quired dipA tolerance. Many of the undesired cis mutants were elimi- 
nated by FACS-sorting 106 cells from each flask and retaining those with 
low [Ca2+]~ after treatment with 1 ~M thapsigargin (TG; LC Services, 
Woburn, MA), or those with low 13-galactosidase (13-gal) expression (see 
below) after an 8-h incubation in stimulation medium. Each flask was 
sorted 3-6 times in this way, allowing 4-6 d recovery between sorts, and 
cloned into 96-well plates in culture medium containing 20% HL-1 (Hy- 
cor, Portland, ME), yielding a total of 956 clones. Of these, 239 clones 
tested negative for I~-gal in a 4-methylumbellifery113-o-galactoside (MUG) 
screening assay (see below) and were grown in hygromycin and geneticin 
for three passages to eliminate any remaining cis mutants. MUG assays 
were repeated and more strictly scored on the surviving 82 clones, reduc- 
ing the total number to 36. We selected for further analysis three clones 
derived from different original flasks (CJ-2 sorted on Ca2+; CJ-4 and CJ-5 
sorted on 13-gal) and two clones derived from the same flask but displaying 
distinctly different Ca 2+ influx phenotypes (CJ-1 and CJ-3, sorted on both 
13-gal and Ca2÷). One additional clone, CJ-6, had a defect in 13-gal induc- 
tion but no detectable alteration in Ca 2. entry. This clone was not further 
characterized. The remaining 29 clones were omitted from further consid- 
eration because they were derived from the same flasks as those described 
above and showed similar Ca 2÷ signaling phenotypes, increasing the likeli- 
hood that they represent sibling clones. In this way, we maximized the 
likelihood that clones CJ-1 through CJ-5 arose through separate mu- 
tagenic events. All clones died rapidly in diphtheria toxin (2 ixg/ml), indi- 
cating that their derivation was in no way due to the acquisition of dipA 
resistance. 

Construction of Diphtheria Toxin-resistant Cell Lines 
107 Mutant and parental (NZDipA) cells were transfected with 50 p~g of 
uncut pgHED7-1 cDNA plasmid by electroporation (0.25 V, 960 p.F; Bio- 
Rad) in 300 t~l culture medium, pgHED7-1 contains a mutant, ADP-ribo- 
sylation-resistant form of elongation factor 2 (EF-2) that confers resis- 
tance to protein synthesis inhibition by diphtheria toxin (Nakanishi et al., 
1988). Cells were then seeded at a density of 105/ml into 24-well culture 
plates. After 48 h, diphtheria toxin (Calbioehem-Novabioehem) was added 
to a final concentration of 2 p.g/ml (sufficient to kill 100% of control cells 
within 3 d) and was maintained at this level by periodic replacement of the 
medium for three weeks. Subclones of surviving cells were selected using 
the criterion that their acute Ca e~ response to TG closely matched that of 
the original (dipA-sensitive) clone. Diphtheria toxin did not alter the growth 
rate of any of the mutant EF-2-transfected clones. 

Stimulation and [3-Galactosidase Assays 
Cells (5 x 105/ml) were treated for 8 h at 37°C in stimulation medium. Ex- 
pression of lacZ was assayed by the FACS-Gal technique (Roederer et al., 
1991), in which cells were loaded with fluorescein di-13-D-galactopyrano- 
side (FDG; Molecular Probes, Eugene, OR), incubated on ice to allow 
13-gal to cleave FDG and generate fluorescein, and analyzed or sorted by 
FACS. Ceils with fluorescence equivalent to unstimulated controls were 
considered 13-gal-negative MUG assays were also used for quantitation of 
LacZ  gene activation (Roederer et al., 1991). Briefly, 105 cells were 
placed in each well of a 96-well plate and stimulated as described above. 
Cells were then lysed, M UG solution was added to a final concentration 
of 3 mM, and fluorescence was measured using a Fluoroskan II plate- 
reader (Titertek, Elfab Oy, Finland). For experiments correlating 13-gal 

production with [Ca2+]i, cells were loaded with fura-2 (see below) and 
stimulated for MUG assays but with phenol red-deficient medium con- 
taining varying amounts of Ca 2÷. Free [Ca 2÷] was adjusted by addition of 
CaCI2 or EGTA, based on a concentration of 0.7 mM Ca 2÷ in normal cul- 
ture medium calculated from the composition of RPMI and lot analyses of 
FCS obtained from the manufacturers. 

FACS Sorting for Low [Ca 2+]i 
Cells were loaded with 1 I~M indo-1/AM (Molecular Probes) for 30 rain at 
22-25°C, washed, and resuspended for analysis in staining medium (RPMI- 
1640 deficient in phenol red, 4% FCS, 10 mM Hepes, pH 7.4). Loaded 
ceils were stimulated with 1 p,M TG, and the ratio of fluorescence emis- 
sions at 405 and 515 nm were measured with a FACStar Plus (Becton- 
Dickinson, Los Angeles, CA) as an indication of [Ca2÷]i (Chused et al., 
1987). In control Jurkat cells, the 405/515 emission ratio reached an ele- 
vated plateau within 5-7 rain after TG treatment that was relatively stable 
for >30 min. Mutagenized cells with emission ratios in the lowest 5% of 
the population were collected during a period of 8-25 rain after TG addi- 
tion. 

Video Microscopic Measurements of [ Ca2 + ]i 
Cells were loaded at 22-25°C for 30 min with 1 izM fura-2/AM (Molecular 
Probes) and attached to poly-L-lysine-coated glass coverslip chambers on 
the stage of a Zeiss Axiovert 35 microscope equipped with a Zeiss Achro- 
stigmat objective (NA 1.3). Imaging experiments were performed as pre- 
viously described (Dolmetsch and Lewis, 1994). Cells were alternately il- 
luminated at 350 +_ 5 nm and 380 - 6 nm, and the fluorescence emission at 
h >480 nm was captured with an intensified CCD camera (Hamamatsu 
Corp., Bridgewater, N J) and was digitized and analyzed using a VideoProbe 
imaging system (ETM Systems, Irvine, CA). Ratio images were recorded 
at intervals of 3-5 s. [Ca2+]i was estimated from the relation [Ca2+]i = K* 
(R - Rmin)/(Rma X - R), where the values of K*, R,,L,, and R ~  were deter- 
mined from an in situ calibration of fura-2 in Jurkat T cells loaded by in- 
tracellular dialysis as described previously (Dolmetsch and Lewis, 1994). 
Ringer's solution contained (in mM) 155 NaCI, 4.5 KC1, 2 CaC12, 1 MgC12, 
10 D-glucose, and 5 Hepes (pH 7.4 with NaOH). Ca2+-free Ringer's solu- 
tion was prepared by substituting MgCI2 for CaC12, and EGTA Ringer's 
was made by the further addition of 1 mM EGTA (pH 7.4 with NaOH). 
All experiments were conducted at 22-25°C unless otherwise noted; for 
experiments at 37°C, Ringer's solutions were further supplemented with 
5% FCS to maintain the cells in good health. 

The Ca 2÷ clearance rate was measured in fura-2 imaging experiments 
by stimulating cells with ionomycin in Ringer's solution, and after steady- 
state [Ca2+]i was reached, perfusing with EGTA-Ringer's.  At steady-state, 
the net Ca 2+ flux across both organellar membranes and the plasma mem- 
brane are zero; thus, sudden elimination of Ca 2÷ influx by extracellular 
EGTA causes a decline in [Ca2+]i that reflects the rate of ongoing Ca 2+ 
clearance from the cytosol. The perfusion chamber had a 90% exchange 
time of <1 s; therefore, the rate of decline (d[Ca2÷]~/dt) was measured 
from the steepest slope, which occurred within 3 s of the solution change. 
High concentrations of ionomycin (2--4 txM) and Ca 2÷ (5-10 mM) were 
necessary to elevate [Ca2+]~ in M101, M108, and C J-1 to levels comparable 
to those attained by the parental cells and less severe mutants after stimu- 
lation with 0.5-1 ~M ionomycin and 2 mM Ca 2+. The different sensitivi- 
ties to ionomycin are presumably due to the activation by ionomycin of 
capacitative Ca 2+ entry in cells with functional CRAC channels (see text). 
It should also be noted that FCS in the medium greatly attenuates the ef- 
fect of ionomycin on [Ca2+]i , presumably by binding to the ionophore. 

Heterokaryon Fusions 
Before fusion, groups of partner cells were treated for 30 min at 22-25°C 
with 20 nM calcein/AM (Molecular Probes) to label the cytoplasm or with 
25 ng/ml 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlor- 
ate (diI, stock solution at 2.5 mg/ml in 100% ethanol; Molecular Probes) 
to label the plasma membrane. After three washes in RPMI 1640, cells 
were fused at 22-25°C essentially as described previously (Goldsmith et 
al., 1988), but in the presence of (by volume) 54% polyethylene glycol 
(PEG-1000; Electron Microscopy Sciences, Fort Washington, PA), 46% 
RPMI 1640, and 25 i~l/ml of 7.5% sodium bicarbonate. After fusion, cells 
were returned to the 6% CO~ incubator at 37°C for 1 h to permit recovery, 
after which they were loaded with fura-2/AM for Ca 2+ imaging as de- 
scribed above. After each Ca 2+ imaging experiment, cells were observed 
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using fluorescein and rhodamine filter sets (Chroma Technology Corp., 
Brattleboro, VT) to determine which cells clearly contained both calcein 
and dil, indicating a fused pair. Neither dye interfered with fura-2 mea- 
surements under the conditions used. Typically, ~5% of the cells appeared 
to be unambiguously double-labeled, and their [Ca2+]i values were selec- 
tively averaged using Igor Pro software (WaveMetrics, Lake Oswego, OR). 

Patch-Clamp Recording 

Patch-clamp experiments were performed at 22-25°C in the whole-cell con- 
figuration (Hamill et al., 1981). Patch pipettes were pulled from 100-1xl 
capillaries (VWR Scientific Corp., South Plainfield, NJ), coated with Syl- 
gard TM (Dow Corning Corp., Midland, MI), and fire-polished to resis- 
tances of 2-8 MfL Uncompensated series resistance ranged from 5-20 
MI). Membrane currents were recorded with an Axopatch 200 amplifier 
(Axon Instruments, Foster City, CA), filtered at 1.5-2 kHz, and digitized 
at a sampling rate of 5 kHz using an ITC-16 interface (Instrutech Corp., 
Great Neck, NY). Patch-clamp software consisted of extensions to Igor 
Pro generously provided by R. Bookman and J. Harrington (University of 
Miami, FL). All voltages were corrected for a liquid junction potential of 
-12 mV between internal solutions and the bath solution. Pipette and cell 
capacitance were measured and electronically canceled at the beginning 
of each experiment. All data were corrected for leak currents collected 
before activation of ICRAC, IK(V) , or IK(Ca ) unless otherwise noted. 

The external solutions described above were also used in patch-clamp 
experiments with the following additions and changes. 22 mM Ca2+-Ringer's 
was prepared by the addition of 20 mM CaC12 to Ringer's. K ÷ Ringer's, 
prepared by replacing NaC1 in Ringer's with KCI, was used to maximize 
the size of Ca2+-activated K + currents (Grissmer et al., 1992). For mea- 
surements of ICRAC the pipette solution contained (in raM) 140 Cs aspar- 
tate, 3.01 MgCI2, 0.66 CaC12, 11.68 EGTA ([Ca2+]free ~10 nM), and 10 
Hepes (pH 7.2 with CsOH). For measuring voltage-gated K + current the 
pipette contained (in raM) 140 K aspartate, 2 MgCI2, 0.1 CaC12, 1.1 EGTA 
([CaZ+]tr,.~ ~17 nM), and 10 Hepes (pH 7.2 with KOH). For studies of 
Ca2+-activated K ÷ channels the pipette contained (in mM) 140 K aspar- 
tate, 2 MgC12, 1.15 CaC12, 1.1 EGTA ([Ca2+]fr,, ~54 txM), and 10 Hepes 
(pH 7.2 with KOH). 

Results 

Generation of Mutants Defective for NF-AT 
Directed Transcription 

T cell signaling mutants were selected from a population 
of Jurkat NZDipA cells after mutagenesis by -y-irradia- 
tion, as first described by Seraflni et al. (1995). Using this 
strategy (see Methods) we have isolated five mutant cell 
lines, CJ-1 to CJ-5 (for Ca 2÷ Jurkat mutants). The mu- 
tant cell lines proliferate at rates comparable to that of 
J.NFATZ.1 before, during, and after stimulation with ion- 
omycin and PdBU. A dipA-resistant subclone of each mu- 
tant line and of parental (NZDipA) cells was selected af- 
ter stable transfection with a plasmid encoding a mutant 
EF-2 protein (Nakanishi et al., 1988; see Methods), and these 
cells were used in all experiments involving protein syn- 
thesis. As illustrated in Fig. 1, stimulation of the mutants 
elicited between 0 and 40% of the level of 13-gal produced 
by control cells. The mutant phenotypes were maintained 
throughout more than 8 wk (35 generations) of continuous 
culture in the absence of any intentional selection pres- 
sure, thus demonstrating the genetic stability of the de- 
fects. Taken together with the original (dip-A sensitive) 
mutants' ability to survive stimulation with ionomycin and 
phorbol ester, the reduced production of 13-gal shows that 
all five mutants bear defects in NF-AT-mediated gene 
transcription. 

Ca 2+ Dependence of  Transcription in the Mutants 

Deficient generation of [3-gal could result from mutations 
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Figure 1. Somatic cell mutants CJ-1 through C J-5 exhibit defects 
in NFAT-dependent expression of [3-gal. 13-gal levels were mea- 
sured in a MUG assay in diphtheria toxin-resistant subclones of 
the mutant cell lines. Responses of unstimulated (open bars) and 
stimulated (8 h in culture medium with 2 IxM ionomycin and 50 
nM PdBU at 37°C, solid bars) cells are shown as mean _+ SEM of 
triplicate wells from the combined results of at least three experi- 
ments. A diphtheria toxin-resistant subclone of the NZDipA pa- 
rental cell line is shown here for comparison and is used as a 
control throughout this study. 

at various points in the pathway linking ionomycin and 
PdBU to the expression of lacZ. As an initial attempt to 
determine the site at which NF-AT-mediated transcrip- 
tion was disrupted, we examined the Ca 2+ dependence of 
~-gal induction in the mutant cells. Under standard stimu- 
lation conditions, ionomycin elevates [Ca2+]i to a lower 
level in mutant cells than in control cells. After 45-min 
stimulation in complete medium with 2 IxM ionomycin and 
50 nM PdBU at 37°C, [Ca2+]i was 638 _+ 44 nM in parental 
cells, but only 318 - 35 nM in CJ-1 and 393 -+ 10 nM in 
CJ-4 (~600 cells/experiment, mean _+ SEM, n = 2). 
Among the mutants, the degree of [Ca2+]i elevation was 
well correlated with the severity of the transcriptional de- 
fect. To explore further the Ca 2+ dependence of transcrip- 
tion, cells were treated with 2 IxM ionomycin + 50 nM 
PdBU in the presence of varying levels of extracellular 
Ca 2+ ([Ca2+]o). As shown in Fig. 2 A, transcription of lacZ 
in the mutants was restored by elevation of [Ca2+]o. Maxi- 
mal 13-gal expression levels ranged from ~0.6-1.1 times 
the levels observed in control cells. These maximal levels 
are within the range we observed from subclones derived 
from parental Jurkat cells (data not shown). Among the 
different mutants, the amount of additional Ca 2+ needed 
to raise expression to normal levels is correlated with the 
severity of the defect in 13-gal production. 

If a smaller than normal [Ca2+]i rise is in fact responsible 
for the mutants' transcriptional defect, then the rescuing 
effect of high [Ca2+]o may reflect the restoration of normal 
[Ca2+]i . Alternatively, high [Ca2+]o may be needed to boost 
[Ca2+]i t o  supernormal levels if the NF-AT-transduction 
pathway has been altered to have a reduced Ca 2+ sensitiv- 
ity. To distinguish between these possibilities, we measured 
[Ca2+]i in each of the mutants 45 min after stimulation un- 
der the conditions shown in Fig. 2 A. [~-gal expression (nor- 
malized to maximal expression for each clone) was then re- 
plotted as a function of [Ca2+]i in Fig. 2 B to illustrate the 
Ca 2+ dependence of NF-AT-dependent transcription. The 
dependence of lacZ expression o n  [Ca2+]i appears to be 
normal in all of the mutants, being initiated at [Ca2+]i above 
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Figure 2. Dependence of 13-gal expression on extracellular and 
intracellular Ca 2+. (A) [3-gal expression in the indicated clones, 
stimulated as in Fig. 1 but with medium containing various levels 
of Ca 2+. Mean fluorescence values (_+ SEM) of background-cor- 
rected triplicate samples from three to four different experiments 
are expressed as a fraction of the control for each experiment. 
CJ-2 and CJ-5 were omitted for clarity but fall within the range of 
responses shown here. M101 and M108 have lower maximal re- 
sponses than the other clones. (B) 13-gal responses from A, plot- 
ted against [Ca2+]i. Each [Ca2+]i value represents triplicate mea- 
surements from 200-300 fura-2-1oaded cells in two independent 
experiments. 13-gal levels are normalized to the maximal expres- 
sion level for each clone to illustrate the Ca 2÷ sensitivity of tran- 
scription. 

~300 nM and saturating at a [Ca2+]i of ~600 nM. There- 
fore, the transcriptional pathway downstream of the [Ca2+]i 
rise appears to function normally, and the transcriptional 
defect in the mutant  cells can be attributed to a subnormal 
elevation of [Ca2+]i by ionomycin. 

Jurkat Mutants Are Defective in Capacitative 
Ca 2+ Entry 

Ionomycin has been shown to activate capacitative Ca 2+ 
entry and ICRAC in a variety of  cells (Mason et al., 1991; 
Hoth  and Penner, 1993; Morgan and Jacob, 1994; Premack 
et al., 1994), presumably by releasing Ca 2÷ from intracellu- 
lar stores. Thus, the subnormal ionomycin-evoked [Ca2+]i 
elevation in the mutants might reflect an underlying defect 
in the capacitative Ca 2÷ entry mechanism. However, the 
results could also be explained by a multidrug resistance 
phenotype by which the cells rapidly expel ionomycin. We 
therefore treated the mutants with thapsigargin (TG), an 
inhibitor of  S E R C A  Ca2+-ATPases that depletes intracel- 
lular Ca 2÷ stores and elicits capacitative Ca 2+ entry (Gouy 

et al., 1990; Thastrup et al., 1990; Mason et al., 1991; Sark- 
adi et al., 1991). In the absence of extracellular Ca z+, TG 
causes a transient Ca 2+ rise resulting from the unopposed 
leakage of Ca 2+ from internal stores followed by Ca 2+ ex- 
trusion across the plasma membrane. As illustrated in Fig. 
3, a maximal dose of TG (1 ixM) evoked a significant Ca 2+ 
release transient in every cell line, demonstrating the pres- 
ence of  TG-sensitive C a  2+ stores. After [Ca2+]i returned to 
baseline, the stores appeared to be completely depleted in 
both mutants and parental cells, as a high concentration of 
ionomycin (5 IxM) released intracellular Ca 2+ at only ~ 5 %  
of the rate observed in untreated cells (data not shown). 
After  store depletion was complete, 2 mM Ca 2+ was reap- 
plied to measure the degree of depletion-activated Ca 2~- 
influx. The rate of Ca 2+ entry varied among the mutants, 
as indicated by the maximal rate of [Ca2+]i rise as well as 
the subsequent peak and plateau [Ca2+]i values. The kinet- 
ics and amplitude of the responses appear to fall into three 
categories: a nearly complete absence of response (CJ-1, 
M101, and M108), small (CJ-2 and CJ-3), and intermediate 
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Figure 3. Mutants  exhibit a range of defects in capacitative Ca 2+ 
entry. In A-C,  fura-2-1oaded cells were stimulated with 1 ~zM TG 
in Ca2+-free Ringer 's solution to deplete internal stores (filled 
bar). Capacitative Ca 2+ entry is indicated by the [Ca2+]i rise that  
occurs after subsequent  readdition of 2 mM Ca 2÷ (open bar). 
Each trace represents the average response of ~250 ceils in four 
to eight experiments for each clone, totaling between 950 and 
2200 individual cells. The parental  cell trace (dotted line) appears 
in all three panels for comparison. (A) CJ-5 and CJ-4. (B) CJ-3 
and CJ-2. (C) CJ-1, M101, and M108 responses. 
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(CJ-4 and CJ-5) responses. These defects in TG-triggered A 
Ca 2+ influx suggest that a deficit in the capacitative Ca 2+ ls00- 
entry mechanism underlies the mutant phenotypes. The 
fact that intracellular Ca 2+ release induced by TG and iono- 
mycin appears to be normal precludes alternative explana- ~ 1000. 
tions such as a multidrug resistance phenotype or aberrant 
expression of TG-insensitive pumps in the ER. The rate of 
ionomycin-evoked intracellular Ca 2+ release in EGTA- soo 
Ringer's solution was 176 +- 65 nM/s for parental cells, 127 
_+ 44 nM/s for CJ-1, and 162 _ 71 nM/s in M108 (results of 
two to three experiments, total of >700 cells). Taken to- 0 0 
gether, these results support the notion that mitogenic 
doses of ionomycin (1-2 txM in the presence of 10% FCS) 
elevate [Ca2+]i in normal T cells primarily by depleting B 
stores and promoting capacitative Ca 2+ influx rather than ts00~ 
by directly transporting a significant amount of Ca 2+ 
across the plasma membrane (Morgan and Jacob, 1994; 
Wilson et al., 1994; Serafini et al., 1995). ~ 10o0 

Like the transcriptional defects described above, the mu- ~- 
tant Ca 2÷ influx phenotypes were unchanged over 35 gen- 
erations in culture (8 weeks), indicating that they too are 5oo 
genetically stable. Interestingly, TG fails to evoke Ca 2+ 
entry in ~5  % of parental Jurkat cells. However, subclones 
of unmutagenized parental cells selected by FACS for low 0 
Ca 2+ responses generated populations that responded to 
TG in a manner indistinguishable from the original paren- 
tal cells (data not shown). It is possible that the nonre- 
sponsive cells in the parental population correspond to 
cells in M phase, a period in which capacitative Ca 2+ entry 
may be suppressed (Preston et al., 1991). Thus, mutagene- 
sis appears to be necessary to derive genetically stable Ca 2+ 
signaling mutants of the type we describe. 

Heterokaryon Cell Fusions 

Transient heterokaryon fusions between mutant and pa- 
rental control cells were made to determine whether the 
mutant phenotypes result from dominant inhibitory ef- 
fects at the protein level Each donor population of cells 
was stained with either diI or calcein to permit microscopic 
identification of fused pairs, and [Ca2+]i was measured us- 
ing the protocol described in Fig. 3 in cell heterokaryons 
within several h of their formation. As illustrated in Fig. 4 
A, the response of CJ-2-parental cell heterokaryons was 
intermediate between that of mutant-mutant and parent-  
parent responses. In a similar fashion, fusion of all other 
mutant cell lines with parental cells yielded intermediate 
responses. Thus, the mutant phenotypes are not com- 
pletely dominant, and it is unlikely that the mutant cells 
produce an inhibitor of Ca 2+ entry that cannot be over- 
come by sufficient quantities of coexpressed wild-type 
proteins. 

Because the mutant phenotypes are not completely dom- 
inant, it is possible to test for complementation by inter- 
mutant fusion. Significant complementation, as manifested 
by a Ca 2+ response larger than that of either mutant, would 
indicate that the normal gene products of different mu- 
tants are able to combine to restore normal Ca 2+ influx. 
For these experiments we selected CJ-1, CJ-2, and CJ-4 as 
representative of the three different categories of mutant 
Ca 2+ phenotype (see Fig. 3), and fused them in every pos- 
sible pair-wise combination with each other. A typical ex- 
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Figure 4. The mutant phenotypes are not completely dominant 
and are non-complementing. (A) The CJ-2 Ca 2+ response pheno- 
type is non-dominant. The average responses of C J-2 cells fused 
to parental cells (30 heterokaryons) falls between those of self- 
fused parental cells (42 homokaryons) and self-fused CJ-2 cells 
(22 homokaryons). (B) CJ-1 and CJ-2 do not complement each 
other. The average response of CJ-1 cells fused to CJ-2 cells (25 
heterokaryons) lies between those of self-fused CJ-1 cells (25 
homokaryons) and self-fused CJ-2 cells (22 homokaryons), with 
no evidence of complementation of either mutant defect. 

periment in which CJ-1 was fused to CJ-2 is shown in Fig. 4 
B. In each case, heterokaryon fusions yielded Ca 2÷ influx 
responses intermediate between those of the two partners 
indicating a failure of preexisting proteins to complement 
the mutant phenotypes. 

Characterizing the Defect in Capacitative Ca 2+ Entry 

Several factors are known to influence the net rate of ca- 
pacitative Ca 2+ entry in T cells, including CRAC channel 
activity, K ÷ channel activity and the rate of Ca 2+ clearance 
via membrane Ca2+-ATPases (Donnadieu et al., 1992; 
Lewis and Cahalan, 1995). We systematically analyzed 
each of these parameters in the mutant cells to localize fur- 
ther the site of the Ca 2+ influx defect. 

Measurements of ICRAC in Mutant Cells. CRAC channel 
activity was determined from the maximal amplitude of 
ICRAC observed under voltage-clamp conditions. Internal 
stores were depleted by incubation with TG in CaZ+-free 
Ringer's solution, and ICRAC was measured after the subse- 
quent addition of 22 mM external Ca 2+, a concentration 
that saturates the channel's conduction pathway (Hoth 
and Penner, 1993; Premack et al., 1994). ICRAC was mea- 
sured in response to hyperpolarizing voltage steps (0 to 
-120 mV, Fig. 5 A) or to voltage ramps ( -120  to +70 mV, 
Fig. 5 B). The resulting currents were identified as ICRAC 
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on the basis of several characteristic properties: a depen- 
dence on store depletion and extracellular Ca z+, voltage- 
independent gating, rapid inactivation during hyperpolar- 
izing voltage steps (Fig. 5 A), an inwardly rectifying 
current-voltage relation lacking a clearly defined reversal 
potential (Fig. 5 B), and the absence of  visually detectable 
current noise (Penner et al., 1993; Fasolato et al., 1994; 
Lewis and Cahalan, 1995). The results of these experi- 
ments (summarized in Fig. 8) illustrate that maximal de- 
pletion of Ca 2+ stores in the mutants activates IcRAC to 
varying extents ranging from almost no current (e.g., CJ-1 
or M101) to 41% current (CJ-5) relative to parental con- 
trol cells. Because TG is able to fully deplete the stores in 
the mutants (Fig. 3, above), the diminished level of ICRAC is 
likely to reflect abnormal C R A C  channel function or ex- 
pression, or a defect in the channel activation mechanism 
(see Discussion). 

K ÷ Channel Function in Mutant  Cells. Jurkat T cells ex- 
press both voltage-gated and Ca2+-activated K + channels, 
and indirect evidence suggests that these channels can in- 
fluence Ca 2÷ signaling by controlling the r electrical driving 
force for Ca 2+ entry (reviewed by Lewis and Cahalan, 
1995). Voltage-gated K ÷ currents (IK(v)) were observed in 
response to depolarizing voltage steps more  positive than 
~ - 5 0  mV; representative examples from control cells and 
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Figure  5. ICRA¢ is reduced in the mutant cells. ]CRAC w a s  r e -  
corded in the presence of 22 mM Ca 2+ after store depletion with 
1 IxM TG. (A) ICRAC elicited in single cells by hyperpolarizing 
voltage pulses from 0 to -120 mV. The currents decay due to 
rapid inactivation by intracellular Ca 2÷. (B) ICRAC evoked by 95- 
ms voltage ramps from -120 to +70 mV applied from a holding 
potential of 0 mV. Each trace was obtained from the correspond- 
ing cell shown in A. Responses in A and B have been corrected 
for leak current using traces collected in CaZ+-free Ringer's solu- 
tion before and after activation of ICRAO 

three mutant  cells are shown in Fig. 6 A. These currents 
were identified as type n K ÷ currents (Lewis and Cahalan, 
1995) on the basis of their voltage dependence,  kinetics, 
and inactivation properties (Cahalan et al., 1985). Most of 
the mutants exhibited normal levels of IK(V); the sole ex- 
ception was M108 (Fig. 6 A), which displayed only 5% of 
the control current level. 

The expression of Ca2+-activated K ÷ channels was mea- 
sured with pipette solutions containing a maximally acti- 
vating concentration of  Ca 2+ (>10 ~M, see Grissmer et al., 
1992) and with extracellular K + Ringer's solution to enhance 
the size of the current (IK(c~)). Under  these conditions, ac- 
tivation of CaZ+-activated K + channels was complete within 
several minutes of intracellular dialysis. Currents were 
evoked by voltage ramps from - 1 2 0  to +20 mV and were 
corrected for leak currents measured before activation of 
IK(c~); representative results are shown in Fig. 6 B. Only 
CJ-3 expressed functional K(Ca) channels at a level signif- 
icantly lower than control (18%); all other mutants ex- 
pressed IK(ca ) at between 50 and 100% of the control level. 
The amplitudes of both voltage-gated and Ca2+-activated 
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Figure 6. Functional expression of K + channels in mutant cells. 
(A) Voltage-gated type n K ÷ currents in parental and selected 
mutant cells. IK(V) was activated by pulses from -40 to +60 mV 
in 20-mV increments (top), delivered every 30 s from a holding 
potential of -70 mV. (B) Ca2+-activated K ÷ currents in parental 
and mutant cells. IK(ca) was activated by dialysis with >10 I~M 
free Ca 2+ in the presence of extracellular K + Ringer's; averaged 
currents in response to voltage ramps from -120 to +20 mV are 
shown. Each trace was obtained from a cell of the corresponding 
clone indicated in A. The inward inflection seen at voltages more 
positive than -40 mV results from slow changes in IK(V) during 
whole-cell recording (Cahalan et al., 1985), such that subtraction 
of the "leak" current collected just after break-in does not fully 
remove the contribution of IK(v) at later times. The slope conduc- 
tance of IK(ca) was measured between -100 and -50 mV, below 
the activation range of IK(v). 
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K ÷ currents in the entire series of mutants  is summarized 
in Fig. 8. 

The Rate of Ca 2÷ Clearance in Mutant Cells. Hyperactiv- 
ity of Ca 2+ clearance mechanisms such as plasma mem- 
brane Ca2+-ATPases could also contribute to the apparent  
reduction in capacitative Ca 2+ entry observed in the mu- 
tant cells. We therefore compared the Ca 2+ clearance rates 
of mutant  and control Jurkat cells. As illustrated by the ex- 
ample in Fig. 7 A, cells were stimulated with ionomycin to 
achieve a steady-state [Ca2+]i, whereupon extracellular 
Ca 2÷ was removed by perfusion with EGTA-Ringer ' s ,  re- 
suiting in a rapid decline of [Ca2+]i . For each cell in the 
population, the steady-state [Ca2+]i was measured just be- 
fore Ca 2+ removal, and the slope (d[Ca2+]i/dt) after Ca 2÷ 
removal was used to estimate the overall rate of Ca 2÷ 
clearance, a product  of the combined activity of Ca 2÷- 
ATPases, exchangers, and Ca 2÷ buffers in the cell. As de- 
picted in Fig. 7 B, the Ca 2+ clearance rates in CJ-1 and pa- 
rental cells were similar, both increasing with [Ca2+]i . All 
other mutants  showed the same relationship (data not 
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Figure 7. The Ca 2÷ clearance rate in mutant cells is normal. (A) 
Measurement of the clearance rate in a single CJ-3 cell. 2 p,M ion- 
omycin was applied in Ringer's solution to increase [Ca2+]i to a 
steady-state value ([Ca2+]s~). Subsequently, Ca2+-free EGTA- 
Ringer's solution was applied and the steepest rate of [Ca2+]i de- 
cline was determined (d[Ca2+]i/dt). (B) Ca 2+ clearance rates in 
parental (0) and CJ-1 ((3) cells. Each point represents measure- 
ments of clearance rate (d[Ca2+]i/dt) and [Ca2+]ss from a single 
cell. The behavior of other mutant clones was indistinguishable 
from that of the CJ-1 and parental cells shown here. 

shown), demonstrat ing that C a  2+ clearance mechanisms in 
the mutant  cells are normal. 

Ion Channel Defects Account  for  Diminished 
Capacitative Ca 2÷ Entry 

Of the several factors known to influence capacitative 
Ca  2+ entry, only the activity of C R A C  channels and K + 
channels were found to be altered in the mutant  cells. Fig. 
8 A compares the amplitudes of ICRAC in these cells with 
the rate of capacitative Ca 2+ entry (measured in Fig. 3). 
ICRAC is significantly smaller than control (unpaired Stu- 
dent 's  t-test, p < 0.02) in all the mutants.  In all but M108, 
the magnitude of ICRAC is roughly correlated with the rate 
of capacitative C a  2+ entry, supporting the conclusion that 
subnormal  activity of C R A C  channels is responsible for 
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Figure 8. Comparison of CRAC and K + channel activity with the 
rate of capacitative Ca z+ entry. (A) The maximal rates of capaci- 
tative Ca 2÷ influx (open bars) and the maximal amplitudes of 
ICRAC (filled bars; normalized for cell capacitance) for the mu- 
tants are plotted relative to those of parental cells (influx rate: 
65 --+ 6 nM/s; ICRAC amplitude: 0.61 - 0.09 pA/pF). Influx rate 
was determined from the rate at which [Ca2+]i increased immedi- 
ately after readdition of Ca 2+ to depleted cells (Fig. 3). ICRAC was 
measured during the last 20 ms of current responses to hyperpo- 
larizing pulses (Fig. 5 A). Bars show mean values - SEM of four 
to eight experiments on ~250 cells each (influx rates) or of 5-12 
cells (IcRAC). (B) K + channel expression in the mutant cells. The 
maximal conductance of K(V) (open bars) and K(Ca) channels 
(filled bars) in the mutants are shown relative to levels in paren- 
tal cells (gK(v): 0.33 --- 0.06 nS/pF; gK(ca): 0.18 ----- 0.05 nS/pF). The 
maximum current after a saturating pulse to +20 mV (Fig. 6 A) 
was used to calculate gK(v), based on a reversal potential of -80 
mV. The slope conductance between -100 and -50 mV was used 
to measure gK(ca) (Fig. 6 B). Bars show means --- SEM of 5-10 
cells. Asterisks indicate values significantly different from paren- 
tal cells (p < 0.05; unpaired Student's t-test). 
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the defects found in these cells. In most but not all of the 
mutants, the activity of voltage-gated K ÷ channels and 
Ca2+-activated K ÷ channels does not differ significantly 
from that of parental cells (Fig. 8 B). K(V) channel activity 
was significantly lower than control (p < 0.02) only in 
M108, and Ca2+-activated K + channel expression was sig- 
nificantly below control only in CJ-3. The near absence of 
functional voltage-gated K ÷ channels in M108 may explain 
the discrepancy between ICRAC amplitude and the Ca e+ in- 
flux rate in those cells, in light of evidence that blockade of 
K(V) channels inhibits the mitogen-evoked [Ca2+]i rise in 
Jurkat cells (Lin et al., 1993). 

The correlation between ICRAC amplitude and the rate 
of capacitative Ca e+ entry in most of the mutants suggests 
that the mutant phenotypes result from a variable reduc- 
tion in CRAC channel activity, such as might result from 
defective channel expression or activation. However, the 
kinetics of each mutant's response to Ca 2÷ readdition after 
store depletion is complex and is not simply a scaled ver- 
sion of the parental response (Fig. 9 A). For example, 
[Ca2+]i in CJ-4 reaches a peak value approaching that of 
parental cells, but subsequently falls within 400 s to only a 
fraction of the parental level. Such kinetic behavior could 
reflect several possibilities, including enhanced slow inac- 
tivation of CRAC channels (Zweifach and Lewis, 1995b) 
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Figure  9. Mutant phenotypes can be mimicked in parental cells 
by a reduction in Ca 2+ influx. (A) Overlay of parental and se- 
lected mutant cell responses to Ca 2+ readdition after depletion of 
stores by TG. Data are replotted from Fig. 3. CJ-1, CJ-2, and CJ-4 
each display a unique Ca 2+ "signature" that encompasses the full 
range of capacitative Ca 2+ entry defects found in the complete set 
of mutant clones. (B) Responses of store-depleted parental cells 
to the readdition of varying levels of Ca 2+. Each trace is the aver- 
age response of >500 cells in two to four experiments. Under  
conditions of reduced Ca 2+ influx, capacitative Ca 2+ entry in 
wild-type cells closely resembles the characteristic responses of 
the mutant clones in A. 

or the absence of a protein needed to maintain channel ac- 
tivity. To address this issue, we asked whether the range of 
mutant Ca 2+ responses could be mimicked by a simple re- 
duction of Ca z+ influx in parental cells. In the experiment 
shown in Fig. 9 B, the stores of parental cells were depleted 
with TG in Ca2+-free Ringer's, and varying amounts of 
Ca 2+ (0.2-2 mM) were added to produce a range of Ca 2+ 
influx rates. The kinetics and amplitudes of the resulting 
Ca 2÷ responses are strikingly similar to those of mutants 
C J- l ,  C J-2, and CJ-4 shown under standard conditions 
(2 mM Ca 2+) in Fig. 9 A. In addition, the response of CJ-4 
can be made to resemble that of parental cells by elevating 
extracellular Ca 2÷ to 22 mM (data not shown). Thus, the 
mutant phenotypes can be accounted for by a simple re- 
duction in the activity of CRAC channels, without a need 
to invoke additional changes in their kinetic behavior. 

Genetic Evidence for Functions of  CRAC Channels 

In many cells, the refilling of Ca 2+ stores after depletion by 
IP3 is dependent on extracellular Ca e÷, supporting the no- 
tion that depletion-activated Ca 2+ entry provides the Ca 2+ 
needed for repletion; however, the lack of specific block- 
ers of capacitative Ca 2+ entry has thus far prevented a di- 
rect test of this idea. In fact, the resting content of Ca 2+ 
stores is not related to the maximal magnitude of ICRAC in 
the mutant cells we have isolated, which appears to argue 
against this hypothesis (see Fig. 3). We therefore com- 
pared the refilling process in parental cells and in CJ-1 af- 
ter store depletion by cyclopiazonic acid (CPA), a revers- 
ible inhibitor of SERCA Ca2+-ATPases (Low et al., 1992). 
As shown in Fig. 10 A, stores were depleted with 20 txM 
CPA (a maximal dose) in EGTA-Ringer 's ,  after which the 
CPA was washed out in the presence of FCS. Stores were 
then allowed to refill partially during a 200-s incubation in 
0.2 mM Ca 2+, followed by removal of extracellular Ca 2+ to 
permit [Ca2+]i to return to its resting level. The store con- 
tent was assessed from the maximal rate of Ca 2÷ release or 
from the peak [Ca2+]i observed after the subsequent appli- 
cation of 1 ~xM TG. In the experiment shown in Fig. 10 A, 
stores in C J-1 cells appear to refill more slowly than those 
in parental cells, which correlates with the reduced CRAC 
channel activity in CJ-1. The results from all experiments 
are summarized in Fig. 10 B. The degree of refilling after a 
200-s exposure to 0.2 mM Ca :+ was calculated by dividing 
the store content after partial refilling (corrected for the 
residual store content after CPA treatment) by the steady- 
state store content in resting cells; CJ-1 cells refill 22 _+ 4% 
of their store content under these conditions compared to 
42 ___ 8% for parental cells. Similar results were obtained 
by estimating store content from the peak [Ca2+]i evoked 
by TG; in this case the degree of refilling was 14 ___ 2% for 
CJ-1 and 39 _ 8% for parental cells. Thus, reduced CRAC 
channel activity correlates with a reduced rate of refilling, 
providing genetic evidence in support of a role for CRAC 
channels in replenishing Ca 2+ stores. 

The mutants also provide a means to address whether 
CRAC channels are the only source of Ca 2+ influx during 
T cell activation. Because our mutant selection strategy 
based on ionomycin and phorbol ester stimulation favors 
defects in capacitative Ca 2+ entry, other Ca 2+ entry path- 
ways are likely to be normal in the mutant cell lines. Thus, 
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Figure 10. Refilling of Ca 2+ stores in IcRAC-deficient mutant cells 
is slowed. (A) Protocol to measure store refilling in parental and 
CJ-1 cells. As indicated by the bars, 20 IxM CPA was applied in 
EGTA Ringer's to empty the stores, after which CPA was 
washed out for 100 s with EGTA Ringer's + 5% FCS. Subse- 
quently, 0.2 mM Ca z÷ Ringer's was added for 200 s to allow refill- 
ing. After perfusion of EGTA Ringer's for 150 s, the store con- 
tent was assessed by adding 1 ixM TG. Traces show the average 
responses of 263 parental and 188 CJ-1 cells. (B) Quantification 
of store depletion and refilling in parental cells (filled bars) and 
C J-1 cells (open bars). Store content was estimated from the max- 
imal rate of [Ca2+]i rise induced by 1 ixM TG in EGTA Ringer's 
at three times: after 150 s in EGTA Ringer's (left; initial store 
content, not shown in A), after CPA treatment and washing 
(middle; at 900 s in the experiment shown in A), and after halting 
the refilling process (right; at 1250 s in A). Bars reflect the aver- 
age response of three experiments each with 165-285 cells. The 
last two bars are significantly different from each other (unpaired 
Student's t-test, p < 0.01). 

if depletion-independent channels contribute to Ca 2÷ sig- 
naling in T cells, a more physiological stimulus (TCR cross- 
linking) should evoke Ca 2÷ influx in mutants lacking 
C R A C  channel activity. To examine this possibility, we 
cross-linked the T C R  with OKT3, a murine m A b  against 
CD3, followed by a goat ant i-mouse polyclonal antibody. 
In individual parental, CJ-1, and CJ-4 cells, TCR cross- 
linking in E G T A  Ringer's solution evoked one to several 
small [Ca2+]i transients due to intracellular Ca 2÷ release 
(Fig. 11, A and B). 2 mM Ca 2+ was reintroduced to assess 
the degree of Ca 2÷ influx. Fewer mutants than parental 
cells displayed intracellular release transients in response 
to antibody treatment. Therefore, in order to compare the 
Ca 2÷ influx responses of  the different cell lines we aver- 
aged the responses of only those cells displaying release 
transients that exceeded a level of 300 nM within the first 
100 s of stimulation. These criteria equalized cells of the 
C J-l ,  CJ-4, and parental clones for the level of store re- 
lease and hence the strength of signaling through CD3. In 
parallel experiments, addition of 5 txM ionomycin instead 
of 2 mM Ca 2+ released remaining Ca 2+ stores in mutants 
and parental cells at similar rates, confirming that stores in 

the selected populations were similarly depleted. The aver- 
age responses of cells selected in this manner are shown in 
Fig. 11 C. Both CJ-1 and CJ-4 cells show greatly dimin- 
ished Ca 2÷ influx in response to T C R  cross-linking relative 
to the parental control cells. In fact, the CD3-stimulated 
[Ca2+]i rise appears to be more severely reduced than the 
TG-stimulated rise (compare Figs. 3 A and 9 A). This dif- 
ference may be due to the higher temperature of the anti- 
CD3 experiment (37°C instead of 22-25 ° C as in the TG 
experiments), or to ICRAC inactivation via partial store re- 
filling (Zweifach and Lewis, 1995b), which is prevented by 
thapsigargin but not by stimulation through CD3. These re- 
suits support the conclusion that C R A C  channels are the 
sole route by which T C R  stimulation triggers Ca 2÷ entry. 

Discussion 

We have applied a selection strategy based on the activa- 
tion of NF-AT-dependent  genes to isolate T cell mutants 
with defects in capacitative Ca 2+ entry. The set of mutants 
M101, M108, and CJ-1 through CJ-5 express from 4 to 36% 
of the level of capacitative Ca 2÷ influx found in parental 
Jurkat ceils. Several results indicate that the deficits in ion- 
omycin- and phorbol  ester-induced transcription in the mu- 
tant cells can be attributed to the defect in capacitative 
Ca 2+ entry. First, 2 txM ionomycin in normal culture me- 
dium elicits a subnormal [CaZ+]i rise in the mutants that 
parallels ~-gal production. Second, elevation of [Ca2+]o 
succeeds in restoring NF-AT-dependen t  [3-gal expression, 
and a close comparison of [Ca2+]i with the degree of ex- 
pression under these conditions reveals that the Ca 2÷ sen- 
sitivity of  the transcriptional pathway is normal in the mu- 
tant cells (Fig. 2). These results establish a threshold of 
~300 nM Ca 2÷ for activation of NF-AT in Jurkat cells, 
similar to that reported to activate NF-AT-dependen t  
transcription in a murine T cell hybridoma (Negulescu et 
al., 1994). This value also agrees well with the level of  Ca 2+ 
needed to activate purified calcineurin/calmodulin in vitro 
(Stemmer and Klee, 1994), thus supporting the critical role 
of calcineurin in NF-AT-dependen t  transcription, and 
providing further evidence that the signal transduction 
pathway downstream of Ca 2÷ is intact in the mutant  cell 
lines. 

The Nature of  the Defect in the Mutants 

Examination of several factors that contribute to the net 
rate of  Ca 2+ influx reveals a specific defect in C R A C  chan- 
nel activity as the source of the mutant  Ca 2+ signaling phe- 
notype. Ca 2÷ store content (assessed by TG or ionomycin) 
and clearance mechanisms appear normal, as does K ÷ chan- 
nel expression in most of the mutant lines. In contrast, di- 
rect measurement of ICRAC under voltage-clamp condi- 
tions revealed subnormal C R A C  channel activity ranging 
from i to 41% of control in M101, M108, and CJ-1 through 
CJ-5. In all mutants except M108, the level of  ICRAC was 
roughly correlated with the initial rate of capacitative Ca 2÷ 
entry (4-36%) measured after Ca 2+ readdition to depleted, 
intact (unclamped) cells. Because gene expression was also 
in this range (0-40%), there is a clear link between ICRAC , 
[Ca2+]i, and NF-AT-dependen t  gene expression. Our  fail- 
ure to isolate a true null mutant  for ICRAC is intriguing; it is 
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Figure 11. ICRAC mutants are 
deficient for Ca 2+ influx trig- 
gered via the T cell receptor. 
(A) Ca 2+ release and influx 
in three parental cells. As in- 
dicated by the bar, cells were 
stimulated in EGTA-Ringer's 
containing 1 Ixg/ml OKT3 
mAb followed by secondary 
cross-linking using 5 ~g/ml 
goat anti-mouse antibody. 
Stimulation triggered Ca 2+ 
release transients in single 
cells. Readdition of 2 mM 
Ca 2+ caused a large [Ca2+]i 
increase due to influx. (B) 
Responses of single CJ-1 
cells to TCR cross-linking. In 

response to the same stimulation conditions as in A, release of Ca 2+ stores is not accompanied by significant Ca 2÷ influx in the mutants. 
(C) Comparison of the average responses of parental cells, CJ-1, and CJ-4 mutants to TCR cross-linking. Cells were stimulated as de- 
scribed in A and B, and averages were made from cells showing a Ca 2+ release transient exceeding 300 nM and beginning within 100 s 
of stimulation; 54% of parental cells, 25% of CJ-1 cells, and 16% of CJ-4 cells met this response criterion. Data were obtained from a 
total of 478 parental cells, 147 CJ-1 cells, and 92 CJ-4 cells in two experiments, performed at 37°C using solutions supplemented with 
5% FCS. 

possible that the CRAC channel gene is not functionally 
haploid in the parental cells and therefore is not suscepti- 
ble to a complete knockout by mutagenesis. Alternatively, 
a minimal amount of capacitative Ca 2+ entry may be 
needed to support cell viability or growth. One possibility 
is that the complete absence of ICRAC might promote pro- 
longed periods of store depletion, a condition that has 
been shown to inhibit cell proliferation (Ghosh et al., 
1991). 

What is the molecular locus of the ICRAC defect? Al- 
though mutant proteins apparently do not prevent Ca 2+ 
influx as shown in parental/mutant cell fusions, CJ-1, CJ-2 
and CJ-4 did not display an enhanced response when fused 
to one another. One interpretation of this result is that the 
same gene product may be affected to different extents in 
the different mutants; for example, the expression level of 
the CRAC channel or some rate-limiting protein in its ac- 
tivation pathway may be reduced to varying degrees. Al- 
ternatively, different genes may be affected in different 
mutants, but the proteins they encode may need to inter- 
act during or shortly after synthesis, or organelles from the 
fused cells may need to intermix to reconstitute the Ca 2+ 
entry mechanism. Because gamma ray mutagenesis fre- 
quently results in large chromosomal deletions (Kao and 
Puck, 1969), loss-of-function mutations are more likely 
than subtle alterations in protein sequence. Consistent 
with this prediction, several characteristic properties of the 
CRAC channels expressed in the mutants appeared un- 
changed. For example, the rapid Ca2+-dependent inactiva- 
tion (Fig. 5 A) and the selectivity of CRAC channels (as 
shown by the current-voltage relation; Fig. 5 B) were nor- 
mal. Because rapid inactivation has been shown to be a 
function of single-channel current independent of the num- 
ber of open CRAC channels (Zweifach and Lewis, 1995a), 
we also conclude that the single-channel conductance of 
CRAC channels is not altered. Finally, the unique time 
course of the capacitative Ca 2÷ rise in each of the mutants 
could be mimicked in parental cells simply by reducing ex- 

tracellular [Ca 2+] (Fig. 9), indicating that the range of mu- 
tant phenotypes can be explained by a variable reduction 
in the activity of otherwise normal CRAC channels. The 
mutant phenotypes are clearly not due to a general defect 
in ion channels or membrane proteins, because the activity 
of K + channels (in all but M108 and CJ-3), CaZ+-ATPases, 
and the expression of a variety of surface markers (CD2, 
CD4, CD5, CD45, and integrin-associated protein, data 
not shown) was indistinguishable from that of parental 
cells. Based on these results, we surmise that the mutants 
bear defects in either the expression of CRAC channels or 
proteins involved in their activation. 

The Physiological Funct ions  o f  lcRAC 

The specificity of the ICRAC defects in the mutant cells al- 
lows genetic tests of the physiological functions of CRAC 
channels. One example is the mechanism of elevation of 
[Ca2+]i by ionomycin, which, in combination with phorbol 
esters, is often used as a surrogate in T cell stimulation 
(Truneh et al., 1985). The success of our approach in iso- 
lating mutants in capacitative Ca 2+ entry derives in part 
from the failure of ionomycin by itself to transport enough 
Ca 2+ across the plasma membrane to stimulate NF-AT-  
dependent transcription. Instead, the parallel defects in 
lacZ expression and the [Ca2+]i rise ionomycin in the mu- 
tants suggests that mitogenic doses of ionomycin (1-2 ~M 
in FCS-containing medium; Truneh et al., 1985) activate T 
cells primarily by depleting stores and opening the cells' 
endogenous CRAC channels. This conclusion is consistent 
with the ability of ionomycin to activate ICRAC (Hoth and 
Penner, 1993; Premack et al., 1994) and with the ability of 
SK&F 96365 (a relatively nonspecific blocker of ICRAC ) to 
inhibit the [Ca2+]i rise induced by ionomycin (Mason and 
Grinstein, 1993; Morgan and Jacob, 1994). It is important 
to note that micromolar concentrations of ionomycin in 
the absence of FCS effectively transport Ca 2+ into the cell 
across the plasma membrane (Fig. 7), presumably because 
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of a higher concentration of free ionophore in the absence 
of added protein. 

A widely assumed function of CRAC channels involves 
the refilling of depleted Ca 2+ stores. Indirect evidence sup- 
ports this function: depletion of stores activates Ca 2÷ in- 
flux, refilling of stores is dependent on extracellular Ca 2+, 
and store refilling terminates Ca 2+ influx (Jacob, 1990; 
Putney, 1990; Montero et al., 1992; Zweifach and Lewis, 
1995b). Nevertheless, it is possible that store refilling oc- 
curs through a mechanism distinct from CRAC channels; 
indeed, in resting CJ-1 cells, which display only ~15% of 
the normal level of ICRAC, the resting content of intracellu- 
lar Ca 2+ stores is approximately normal. However, the 
stores in CJ-1 refill more slowly than those in parental 
cells, thus providing strong evidence for a role of CRAC 
channels in replenishing stores. The apparent discrepancy 
between the level of ICRAC (~15%) and the rate of refill- 
ing (35-50%) relative to parental cells has two possible 
interpretations. First, additional pathways not detect- 
able with patch-clamp methods may contribute to store 
refilling. Second, the number of CRAC channels in wild- 
type Jurkat cells may exceed that needed for store replen- 
ishment; thus, they may carry out additional functions such 
as the generation of the prolonged increase in [Ca2+]i  that 
underlies T cell activation, as discussed below. 

A multitude of Ca 2+ influx mechanisms have been 
proposed to mediate TCR-induced Ca 2+ influx, including 
CRAC channels (Zweifach and Lewis, 1993; Partiseti et 
al., 1994; Premack et al., 1994), voltage-dependent Ca 2÷ 
channels (Dupuis et al., 1989; Densmore et al., 1992), IP3- 
dependent Ca 2+ channels in the plasma membrane (Kuno 
and Gardner, 1987; Khan et al., 1992), Na+/Ca 2+ exchange 
(Balasubramanyam et al., 1994), and other mechanisms in- 
dependent of store depletion (Chow et al., 1993; Sei et al., 
1995). Several types of evidence favor CRAC channels as 
the major Ca 2+ influx pathway. First, the sustained [Ca2+]i 

rise evoked by TCR stimulation is strongly inhibited by 
depolarization (Lewis and Cahalan, 1989; Donnadieu et 
al., 1992; Hess et al., 1993) and by SK&F 96365 (Chung et 
al., 1994). Second, in patch-clamp studies the Ca ~+ current 
activated through TCR stimulation is indistinguishable 
from ICRAC elicited by TG (Zweifach and Lewis, 1993; Par- 
tiseti et al., 1994; Premack et al., 1994). Finally, a severe 
immunodeficiency in humans has recently been linked to a 
defect in Ca 2+ signaling and CRAC channel activity (Par- 
tiseti et al., 1994). The hyporesponsiveness of primary T 
cells from these patients strongly supports the role of 
CRAC channels in T cell Ca 2+ signaling. One slight ca- 
veat, however, is that because these patients were "se- 
lected" for immunodeficiency, their T cells may have lost 
the function of multiple redundant Ca 2+ entry mecha- 
nisms, should they exist. It is unlikely that the mutants we 
have isolated would have a defect in both ICRAC and an- 
other Ca 2+ influx pathway, since our ionomycin-based se- 
lection protocol confers no selective advantage to cells 
harboring additional defects in a non-capacitative Ca 2+ en- 
try mechanism. Thus, the failure of TCR cross-linking to in- 
duce significant Ca 2+ influx in mutants CJ-1 and CJ-4 (Fig. 
11) indicates that other Ca 2+ influx pathways do not 
contribute significantly after stimulation with anti-CD3. 
Moreover, the correlation between activation of ICRAC, 

Ca z+ influx, and gene expression emphasizes the causal 

links among these three processes, and leads to the conclu- 
sion that Ca 2÷ entry through CRAC channels is necessary 
for T cell activation. 

The current lack of cells bearing specific defects in ICRAC 
hampers attempts at identifying the genes encoding the 
CRAC channel and the pathway underlying its activation. 
Since their signaling defect appears to be restricted to ca- 
pacitative Ca 2+ entry, mutants M101 and CJ-1, CJ-2, CJ-4 
and C J-5 may serve as useful cloning systems for isolating 
these genes by complementation. The recoverable genes 
may not be limited to those that have been affected in the 
mutants; because cells such as CJ-4 can be rescued by an 
incremental increase in [Ca2+]i,  any gene whose overex- 
pression enhances the operation of the existing pathway 
may be identified. In addition, the extreme ICRAC mutants 
(M101 and CJ-1) may provide a suitable null background 
in which to express and study the function of cloned and 
mutated genes involved in capacitative Ca 2+ entry. 
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