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Abstract. The noncatalytic domain of the human T cell 
protein tyrosine phosphatase (TCPTP) is alternatively 
spliced to generate a 45-kD form, p45 Tc, and a 48-kD 
form, p48 Tc (Champion-Arnaud et al., 1991; Mosinger 
et al., 1992). This manuscript concerns structural motifs 
in the noncatalytic segment of the enzyme responsible 
for targeting the two forms to different subcellular 
compartments.  Endogenous and transiently expressed 
p48 Tc associates with the ER, as determined by sucrose 
gradient fractionation and indirect immunofluores- 
cence, respectively. By contrast, p45 TC localizes in the 
nucleus even though upon cell lysis it is not retained 

and fractionates with markers for soluble enzymes. Us- 
ing fusion proteins consisting of [3-galactosidase and 
COOH-terminal  fragments of p48 TC, two motifs neces- 
sary for E R  retention within a 70-residue targeting seg- 
ment have been identified. These include the terminal 
19 hydrophobic residues which comprise a potential 
membrane-spanning segment and residues 346-358 
which encompass a cluster of basic amino acids that 
may represent another  type of E R  retention motif. The 
sequence RKRKR,  which immediately precedes the 
splice junction, functions as a nuclear localization signal 
for p45 Tc. 

p ROTEIN tyrosine phosphatases ( P T P s )  1 exist as both 
intracellular and receptor-linked enzymes. All are 
related through a conserved catalytic domain which 

retains an essential cysteinyl residue surrounded by the 
PTP consensus sequence (I /V)HCXAGXXR(Sfr)G. In- 
traceUular PTPs possess segments outside their conserved 
catalytic domain that often bear distinct structural charac- 
teristics. SH2 (src homology 2) domains, PEST sequences, 
and sequences homologous to the retinaldehyde-binding 
protein or to cytoskeletal proteins that include band 4.1, 
ezrin, and talin have been described. These noncatalytic 
regions appear to have both a regulatory and localization 
function (Fischer et al., 1991; Charbonneau and Tonks, 
1992). Many PTPs display broad and overlapping sub- 
strates specificities in vitro. Consequently, restricting the 
subcellular localization of the intracellular PTPs may play 
an important role in determining which substrates they 
may act upon. 

The T cell protein tyrosine phosphatase (TCPTP) cDNA 
was initially obtained from a human peripheral T cell li- 
brary and found to encode a ubiquitous 48-kD protein, 
p48 Tc (Cool et al., 1989). It has a COOH-terminal noncat- 
alytic segment that is largely hydrophilic except for the last 
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19 residues which are extremely hydrophobic. The enzyme 
associates with the particulate fraction in cell extracts and 
can be solublized by limited trypsinolysis; this results in an 
increase in activity of up to 20-fold as measured in vitro 
with the artificial substrate RCML (reduced, carboxylami- 
domethylated and maleylated lysozyme). A 37-kD form, 
generated by introducing a stop codon after the catalytic 
domain, is predominantly soluble indicating that the 
COOH terminus is instrumental in partitioning the en- 
zyme between the soluble and the particulate fractions (Cool 
et al., 1990). This segment also influences the in vitro spec- 
ificity of the enzyme toward two artificial protein sub- 
strates (Zander et al., 1991). 

Subsequent attempts to clone TCPTP yielded an addi- 
tional cDNA which encodes a 45-kD form, p45 zc (Cham- 
pion-Arnaud et al., 1991; Swarup et al., 1991; Mosinger et 
al., 1992). Isolation of the gene confirmed that TCPTP un- 
dergoes an alternative splicing event near the carboxyl ter- 
minus (Champion-Arnaud et al., 1991). Splicing dramati- 
cally alters the character of the COOH terminus by 
removing the hydrophobic tail of p48TC; this process im- 
plies that the two forms have distinct in vivo sites of action. 

Nothing is known about the regulation or cellular func- 
tion of either form of TCPTP. Therefore, as an initial at- 
tempt to address these issues, the role of the noncatalytic 
region was investigated, p48 Tc and p45 Tc were transiently 
overexpressed and their subcellular localization was deter- 
mined by indirect immunofluorescence. The data indicate 
that alternative splicing leads to a differential localization 
of the two variants. Examination of several mutant forms 
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of the COOH-terminal segment defined the structural mo- 
tifs that specify these subcellular distributions. 

Materials and Methods 

Cell Culture 
COS-I, Rat 2, human embryonic kidney 293, and CHO cells were main- 
tained in DMEM (Biowhitaker, Walkersville, MD; JRH Biosciences, Len- 
exa, KS) with 10% FCS (GIBCO-BRL, Gaithersburg, MD) and penicil- 
lin-streptomycin (Biowhitaker). CHO cell media was supplemented also 
with 0.2 mM proline and 1 IxM methotrexate (Sigma, St. Louis, MO). NIH 
3T3 cells were maintained in D M E M ,  10% CS (GIBCO-BRL) and peni- 
cillin-streptomycin. THP-1, Jurkat, and HL-60 cells were grown in RPMI 
1640 (Biowhitaker, JRH Biosciences) supplemented with 10% FCS, 2 mM 
glutamine and penicillin-streptomycin. Hep G2 cell growth media was F12 
(Biowhitaker), 10% FCS and penicillin-streptomycin. All cells were kept 
in 5% CO2 at 37°C. 

Antibody Preparation 
Polyclonal antibody 1910H was directed against the peptide sequence CK- 
RPRLTDT coupled to keyhole limpet hemocyanin (Calbiochem, San Di- 
ego, CA) with sulfo-MBS (Pierce, Rockford, IL). Polyclonal antibodies 
2200C and 6228 were directed against a 37-kD form of TCPTP obtained 
from a baculovirus expression system and purified from Sf9 ceils as de- 
scribed (Zander et al., 1991). Antibodies were generated in New Zealand 
white female rabbits by subcutaneous injection after standard procedures. 
For purification of the antibodies by affinity chromatography, the peptide 
was coupled to Affigel 102 (BioRad, Richmond, CA) with sulfo-MBS, and 
the 37-kD form of TCPTP was coupled to cyanogen bromide-activated 
Sepharose 4B (Pharmacia LKB Biotechnology, Piscataway, NJ) as per the 
manufacturer's instructions. Rabbit antiserum was passed 5-10 times 
through the appropriate affinity matrix. The column was washed exten- 
sively with 10 mM Hepes, pH 7+4 containing 50 mM NaC1 before elution 
with 5 M MgC12. After dialysis, the eluted antibody was concentrated by 
ultrafiltration using an XM-50 membrane (Amicon Inc., Beverly, MA). 

Preparation of Extracts of Total Cellular Protein 
Nonadherent cells were harvested by centrifugation at 5,000 rpm for 5 min 
at 4°C, washed with PBS and resuspended in 10 vol of extraction buffer 
consisting of 25 mM Hepes, pH 7.4, 150 mM NaCl, 10% glycerol, 1% Tri- 
ton X-100, 2 mM EDTA, 2 mM EGTA, 0.002% PMSF, 1 mM benzami- 
dine, 4 i~g/ml leupeptin, and 50 KI U/ml aprotinin. Adherent cells were re- 
moved from the plate by trypsinization, washed with PBS and resuspended 
in extraction buffer. The extracts were incubated on ice for 10 rain and 
centrifuged at 12,000 g for 10 rain at 4°C. 

Immunoprecipitation and Western Blotting 
TCPTP was immunoprecipitated with 4 ~g affinity-purified antibody 
2200C, 2.5 ~l Protein A Sepharose (Sigma) and 7.5 i~l Sepharose CL-6B 
(Pharmacia) overnight at 4°C. The beads were washed twice with buffer 
without SDS and once with either water or PBS before resuspension in 
SDS-PAGE sample buffer. 

For Western blotting, proteins were transferred onto nitrocellulose 
(Schleicher and Schuelt, Keene, NH). Blocking of the nitroceUulose mem- 
brane and antibody incubations were carried out in 20 mM Tris-HCl, pH 
7.5, 300 mM NaCl, 2% BSA (Fraction V, Sigma) and 0.5% Tween-20; 
washes were performed in the same buffer without BSA. The primary an- 
tibody against TCPTP was 1 Ixg/ml mAb CF4 (Oncogene Science, Union- 
dale, NY), and the secondary antibody was sheep anti-mouse IgG conju- 
gated to horseradish peroxidase (Amersham Corp., Arlington Heights, 
IL) at a 1:10,000 dilution. Immunoreactive proteins were visualized with 
the ECL Western blotting detection system (Amersham) on Hypcrfilm- 
MP (Amersham). 

Gradient Fractionation 
THP-1 cells (108) were harvested by centrifugation for 5 min at 4,000 g at 
4°C, washed with PBS and resuspended in 2 ml hypotonic buffer consist- 
ing of 5 mM Hepes-KOH, pH 6.8, 1 mM EDTA, and protease inhibitors 
as indicated above. Cells were swelled on ice; sucrose was added to a final 

concentration of 250 mM, and the cells were disrupted by 20 strokes of a 
type A pestle in a Dounce homogenizer. Nuclei were removed by centrif- 
ugation for 2 min at 800 g. Supernatants were layered over a discontinu- 
ous sucrose gradient and centrifuged as described (Bole et al., 1986). 13 
1-ml fractions were collected from the bottom of the gradient. Immuno- 
precipitation of TCPTP was performed as described above using 300 ILl of 
each fraction. PTP1B and docking protein were detected by Western blot- 
ting using 10 i~1 of each fraction, mAb FG6, which detects PTPIB, was ob- 
tained from Oncogene Science. Docking protein mAb 12B4 was a kind 
gift from Dr. David Meyer (UCLA). 

Assays of Marker Enzymes 
NADPH-cytochrome c reductase was assayed with 75 I~1 of each fraction 
as described except that 190 ~M NADPH was used in the reaction (Wil- 
liams and Kamin, 1962). Na+,K+-ATPase was determined from 10 IX] of 
each fraction according to Schimmel et al. (1973) except that the reaction 
volume was 200 p+l and the final ouabain and NaN 3 concentrations were 
2.5 and 1 mM, respectively. The reaction was stopped with 200 p.l of 10% 
trichloroacetic acid. Galactosyl transferase activity (Pesonen et al., 1984) 
was measured for 60 min at 37°C with 50 p3 of each fraction in a reaction 
volume of 100 Ixl. The final reaction mixture contained 25 mM Hepes, pH 
7.5, 20 mM MnC12, 1 mM DTr ,  1 mM ATP, 0.05 mM UDP-galactose, 8.5 
mg/mi ovomucoid, 0.2% Triton X-100 and 1 I-LCi UDP-[H3]galactose. The 
reaction was stopped by precipitating 75 p.l on Whatman 3MM filters 
(Whatman, Clifton, NJ) with 10% TCA. Lactate dehydrogenase activity 
was measured with 10 I~1 of each fraction according to Worthington 
(1988). 

Mutagenesis 
Sequential deletion mutants of p48 Tc were constructed using the Muta- 
gene M13 In Vitro Mutagenesis Kit (Biorad) according to the manufac- 
turer's instructions. The mutated cDNAs were inserted into the EcoRI 
site of pBluescript SK+ (Stratagene, La Jolla, CA) for subsequent manip- 
ulations. 

The cDNA encoding p45 Tc was obtained by modification of the p48 zc 
cDNA. The COOH-terminal Xbal-HindlII  fragment was ligated into the 
XbaI and HindlII sites of pBluescript SK+. The nucleotides coding for the 
sequence PRLTDT and a stop codon were inserted at position 1203 of 
the p48 xc cDNA using a PCR strategy. The oligonucleotides (Howard 
Hughes Medical Institute facility, University of Washington, Seattle, WA) 
used to prime the reaction were 5 ' - A A C G A A A A A G A A A A A G G C -  
CAAGAT]?GACAGACACCTAATGGTrATAATGGCACC-3 '  and 5'- 
CATTCTCATITAGCCTC-3 ' .  The reaction conditions were 100 ng tem- 
plate, 10 pmol of each oligonucleotide, 500 I~M of each dNTP, 2.5 mM 
MgCI2, 1X PCR buffer (Promega, Madison, WI) and 5 U Taq polymerase. 
Thermocycling conditions were denaturation for 5 min at 94°C foUowed 
by 35 cycles of 1 min denaturation at 94°C, 1 min annealing at 44°C and 1 
min extension at 72°C followed by a final 5 min extension at 72°C. The 
XbaI-HindlII fragment was excised from the 3.2-kb PCR product and re- 
inserted into the full-length cDNA. All PCR amplified DNA sequences 
were confirmed by sequencing. Deletion of the sequences RKRKR, 346- 
349, 350-358, and 359-365 and the triple point mutation R350Q;K351Q; 
R352Q were achieved in a similar manner. 

Construction of Expression Vectors 
For transient expression of full-length p45 Tc and p48 Tc, the ThaI/Sspl 
fragment of their respective cDNAs was inserted into the SmaI site of the 
pSVL vector (Pharmacia). To produce the 13-galactosidase fusion vectors, 
the various COOH-terminal segments of p48 Tc were amplified by PCR 
using oligonucleotides complementary to the 5' and 3' ends of the desired 
fragment. The oligonucleotides had EcoRI sites at their 5' end to facilitate 
cloning into the expression vector. Reaction conditions were as described 
above except that 2.4 I~g of linearized template was used. Thermocycling 
conditions were 94°C for 2 min followed by 35 cycles of 30 s denaturation 
at 94°C, 30 s annealing at 38°C, 30 s extension at 72°C followed by a final 
5-min extension at 72°C. The fragment obtained was inserted into the 
EcoRI site at position 3629 of the pSV-13-Galactosidase vector (Promega). 
This vector was modified in that the second EcoRI site at position 6743 
had been destroyed. 

Transient Expression and Indirect Immunofluorescence 
COS-1 cells were seeded on gelatin-coated coverslips and allowed to at- 
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Figure 1. Schemat i c  r e p r e s e n t a t i o n  of  T C P T P .  T h e  catalytic reg ion  is s h o w n  in black; the  d iagona l  l ines r e p r e s e n t  i n t e rven ing  sequence ;  
the  nonca ta ly t ic  r eg ion  is t he  open  area.  T h e  s e q u e n c e  of  the  nonca ta ly t ic  d o m a i n  ( res idues  316-415) is s h o w n  wi th  the  site o f  a l te rna t ive  
splicing, and  the  C O O H - t e r m i n i  of  p45 Tc and  p48 Tc are  indicated.  Polybas ic  s e g m e n t s  and  the  h y d r o p h o b i c  tail a re  boxed .  

tach for 24 h before transfection by calcium phosphate precipitation es- 
sentially as described (Chen and Okayama, 1987). After 64 h, the cells 
were washed twice with PBS and fixed either with methanol for 2 min at 
-20°C or with 3.2% formaldehyde (methanol free, Polysciences, War- 
rington, PA) in PBS for 15 min at room temperature. Formaldehyde-fixed 
cells were washed twice in 150 mM glycine in PBS and permeabilized for 
6 min in 0.2% Triton X-100 in PBS. Subsequent immunostaining proce- 
dures were identical regardless of the fixation technique. Primary and sec- 
ondary antibodies were diluted in 5% goat serum in PBS and applied for I h 
at room temperature. Unbound antibody was removed by washing three 
times for 10 min in PBS. The primary antibodies were: (a) an anti-13-galac- 
tosidase mAb (Promega) at a 1:15,000 dilution; (b) affinity purified 6228 
at a 1:1,000 dilution; or (c) anti-protein disulphide-isomerase mAb RL90 
(a generous gift from Dr. Charlotte Kaetzel, Case Western Reserve Uni- 
versity) at a 1:1,000 dilution; (d) rabbit antiserum against the EAGE pep- 
tide of 13-COP (a kind gift from Dr. Richard Klausner, NIH) at a 1:500 di- 
lution; rabbit antiserum against yeast hsp60 (a kind gift of Dr. Richard 
Hallberg, Syracuse University) at a 1:100 dilution. Rhodamine or fluores- 
cein-conjugated goat anti-mouse and goat anti-rabbit secondary antibod- 
ies were from TAGO (Burlingame, CA). Mounting media contained 
10.5 % Airvol, 21% glycerol, 2.5 % 1,4-diazobicyclo-[2,2,2]-octane (DABCO) 
and 50 mM Tris-HCl, pH 8.5. Immunofiuorescence was visualized on a Ni- 
kon Diaphot inverted microscope, and photomicrographs were taken with 
a Nikon N2000 camera on Kodak Tmax 400 film. 

Results 

Expression of  Endogenous TCPTP 

The cDNAs encoding TCPTP predict proteins with molec- 
ular masses of 48 and 45 kD (Fig. 1). To determine the rel- 
ative expression levels of the two species, Triton X-100 
extracts were prepared from eleven cell lines and immuno- 
precipitated with affinity purified polyclonal Ab 2200C 
(Fig. 2 A). This antibody was raised against the catalytic 
domain of TCPTP common to both forms. Monoclonal 
Ab CF4, which recognizes an unknown COOH-terminal 
epitope, was used for Western blotting. Five cell lines, in- 
cluding CEM, Jurkat, COS-l, THP-1 and HL-60, expressed 
the 48-kD form in higher amounts, although the relative 
proportions of the two varied, p45 Tc could be seen in HL- 
60 cells upon prolonged autoradiograph exposure. Unex- 
pectedly, these cells exhibited a slower migration of the 
p45TC/p48 Tc doublet as well as a third, faster migrating 
band. Human embryonic kidney 293 and IMR 32 cells con- 
tained the two forms in equal quantities, while Hep G2 
cells contained slightly more p45 Tc than p48 xc. Identical 
results were obtained when cellular extracts were pre- 
pared with 1% SDS rather than Triton X-100. 

Attempts to immunoprecipitate the TCPTP doublet from 
NIH 3T3, Rat 2, or CHO cells (three rodent cell lines) were 
unsuccessful with Ab 2200C raised against the human en- 
zyme. This was surprising because the catalytic domain is 
highly conserved between these species. However, Ab 
1910H, which recognizes the sequence KRPRLTDT at the 
carboxyl terminus of the 45-kD form, readily immunopre- 
cipitated p45 Tc from these three cell lines (Fig. 2 B). Since 
Ab 2200C did not recognize either form of TCPTP in 
these cells, it has not been possible to ascertain whether or 
not p48 Tc is expressed in these cell lines. 

Immunofluorescence Localization of  
Overexpressed TCPTP 

Endogenous levels of TCPTP are insufficient to defini- 
tively determine the localization of the enzyme by indirect 
immunofluorescence since no significant staining could be 
detected with affinity purified polyclonal Ab 6228. There- 
fore, p45 Tc and p48 Tc were transiently overexpressed in 

Figure 2. Relative expression of TCPTP isoforms. (A) p48 Tc and 
p45 Tc were immunoprecipitated with Ab 2200C. (B) p45 vc was 
immunoprecipitated with Ab 1910H. mAb CF4 was used for de- 
tection in Western blot analyses (A and B). The amount of pro- 
tein used for each cell line was: CEM, 50 txg; Jurkat, 50 Ixg; THP- 
1,100 Ixg; COS-l, 50 txg; Hep G2, 100 Ixg; HL-60, 500 Ixg; IMR 32, 
250 txg; N1H 3T3, 1 mg; Rat 2, 1 mg; CHO, 1 mg; 293, 250 Ixg. 
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Figure 3. Localization of p48 Tc and p45 Tc by transient overexpression in COS-1 cells. Cells overexpressing p48 Tc were coimmunostained 
for endogenous protein disulphide-isomerase (PDI) to confirm ER localization. Ceils overexpressing p45 Tc were colabeled with propid- 
ium iodide (P/) to demonstrate a nuclear distribution. Polyclonal Ab 6228 was used to immunostain p48 Tc and p45 Tc, and the PDI anti- 
body was RL90. Bar, 10 ixm. 

COS-1 cells to generate  protein levels suitable for immuno- 
staining. 

When  overexpressed,  p48 Tc localizes with a ret icular  
network that  is characterist ic  of  the ER.  This was con- 
f i rmed by showing that  p48 Tc coimmunostains  with the 
E R  marker  prote in-disulphide  isomerase  (PDI) ,  s tained 
with m A b  R L  90 (Kaetzel  et al., 1987). By contrast ,  tran- 

sient overexpress ion of p45 T¢ revealed a nuclear  distribu- 
t ion with staining excluded from the nucleoli  (Fig. 3). 

Fractionation of  Endogenous TCPTP 

THP-1 cells were chosen for the fract ionat ion of  endoge-  
nous TCPTP on a discontinuous sucrose gradient  (Fig. 4). 
COS-1 cells were not used for these exper iments  because 
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Figure 4. Discontinuous sucrose density gradient fractionation of 
endogenous TCPTP in THP-1 cells. (A) Marker enzyme distribu- 
tion: open squares, ER (NADPH-cytochrome c reductase); 
closed squares, plasma membrane (Na+,K+-ATPase); open cir- 
cles, soluble (lactate dehydrogenase); closed circles, Golgi (galac- 
tosyl transferase). The values represent the percent of total 
marker enzyme activity recovered• (B) Immunoprecipitation and 
Western analysis of p48 xc and p45 xc. (C and D) Western analysis 
of docking protein and PTP1B, respectively, p48 xc fractionates 
with ER-associated proteins while p45 xc appears to be soluble. 

suitable resolution of the ER, Golgi, and plasma mem- 
branes could not be obtained• Using immunoprecipitation 
with Ab 2200C followed by Western analysis with mAb 
CF4, p48 xc was detected in all fractions, with levels peak- 
ing in fractions 2, 5, and 9. This pattern followed that of 
the ER marker NADPH-cytochrome c reductase, and dif- 
fered from that exhibited by the Golgi marker galactosyl 
transferase and the plasma membrane marker Na+,K ÷- 
ATPase. Furthermore, fractions were immunoblotted for 
PTP1B, a second ER-associated protein tyrosine phos- 
phatase, and docking protein, a 73-kD integral membrane 
protein of the rough ER (Hortsch et al., 1985)• The distri- 
bution of these markers corresponded to that of p48 xc and 
NADPH-cytochrome c reductase. Earlier fractionation us- 
ing a 20% percoll density gradient clearly indicated that 
p48 Tc was not associated with lysosomes or mitochondria. 
Even though p45 xc resides in the nucleus, upon cell lysis it 
fractionates as a soluble protein as indicated by the marker 
lactate dehydrogenase. Immunoblotting of the nuclear pel- 

let fraction confirmed that none of the 45-kD material re- 
mained with the nuclei (data not shown). 

Based on the immunobtot of THP-1 cell extract, the level 
of p45 xc detected in the sucrose gradient fractions was dis- 
proportionately high relative to the amount of p48 xc re- 
covered. It seemed possible that much of the 48-kD pro- 
tein had been removed with the nuclei by low speed 
centrifugation since the ER is contiguous with the nuclear 
envelope. However, immunoblotting showed that less 
than 5% of p48 xc was present in the nuclear pellet fraction 
(data not shown)• It is not known why the majority of the 
48-kD protein escapes detection after density gradient 
centrifugation but may be due to proteolysis of the C O O H  
terminus during fractionation and the concomitant re- 
moval of the epitope for mAb CF4. 

M i n i m a l  E R  Target ing Sequence  

Given the hydrophobic nature of the carboxyl terminus of 
p48 Tc, it was of interest to determine the minimum se- 
quence required for ER targeting. Therefore, chimeric 
proteins were constructed in which the terminal 16 resi- 
dues of 13-galactosidase were replaced by fragments con- 
sisting o£ the last 20 (a.a. 396-415), 25 (a.a. 391-415), 30 
(a.a. 386-415), 40 (a.a. 376-415), 70 (a.a. 346-415), or 100 
(a.a. 316-415) residues of p48 xc. The 100-residue segment 
(see Fig. 1) was considered as a positive control because 
residue 316 occurs approximately at the boundary that sep- 
arates the catalytic from the noncatalytic domain. More- 
over, deletion of an l l - kD  segment had been shown previ- 
ously to affect the distribution of the enzyme, converting 
the particulate p48 xc into a soluble material (Cool et al., 
1990). 

The chimeric protein, [3-galTC316-415, was transiently 
expressed in COS-1 cells, and its localization was deter- 
mined by indirect immunofluorescence using an anti-13- 
galactosidase monoclonal antibody. As shown in Fig. 5, 
unmodified 13-galactosidase appeared as a diffuse cyto- 
plasmic protein. In contrast, [3-galTC316-415 presented a 
reticular profile characteristic of the ER. The noncatalytic 
segment of p48 Tc was capable, therefore, of redirecting 
the localization of ~-galactosidase from the cytoplasm to 
the ER. Nontransfected cells exhibited no immunostaining 
with the 13-galactosidase mAb (data not shown). 

Frangioni et al. (1992) found that PTP1B, a close homo- 
logue of TCPTP within the catalytic segment, localizes to 
the ER through its carboxyl terminal hydrophobic seg- 
ment. Therefore,  it was unexpected that the hydropho- 
bic tail of p48 xc was insufficient for ER targeting since 
13-galTC396-415 distributed throughout the cytoplasm and 
nucleus. A segment of 25 residues (13-galTC391-415) was 
slightly less abundant in the nucleus but in addition dis- 
played intense immunostaining in the perinuclear region. 
Further lengthening of the COOH-terminal fragment to 
30 ([3-galTC386-415) and 40 (~-galTC376-415) residues 
progressively redistributed the fusion proteins from the 
cytoplasm and nucleus to a structure(s) in the region of the 
Golgi apparatus. Extension of the fragment to 70 residues 
(13-galTC346-415) resulted in immunostaining of the ER 
suggesting that a second ER targeting motif may lie be- 
tween residues 346 and 375 (Fig. 5). 

To ascertain if 13-galTC376-415 associates with the Golgi 
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Figure 5. 

complex, cells expressing this fusion protein were cola- 
beled with antibody directed against the E A G E  peptide of 
B-COP, a coatomer subunit of nonclathrin-coated vesicles 
associated with the Golgi complex and pre-Golgi compart- 
ments (Allan and Kreis, 1986; Duden et al., 1991). Co- 
staining indicated that 13-galTC376-415 did indeed associ- 
ate with the Golgi (Fig. 6). This localization could be 
abrogated by exposure of the cells to brefeldin A, a com- 
pound which disrupts Golgi structure (data not shown) 
(Fujiwara et al., 1988; Doms et al., 1989; Lippincott- 

Schwartz et al., 1989). The fusion protein also decorated a 
tubular array not recognized by the B-COP antibody. Since 
this structure resembles mitochondria (Willingham and 
Pastan, 1985), cells were costained with anti-hsp 60, a 
highly conserved heat shock protein that is a normal compo- 
nent of the mitochondria (McMullin and Halberg, 1988). 
The fusion protein coimmunostained with hsp 60 indicating 
that 13-galTC376-415 localized to the extensive mitochon- 
drial network in addition to the Golgi apparatus (Fig. 6). 
Brefeldin A did not affect mitochondrial distribution. 
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Figure 5. Redistribution of 13-galactosidase fusion proteins, p48 Tc COOH- 
terminal segments of 20 (fl-galTC396-415), 25 (fl-galTC391-415), 30 (/3- 
galTC386-415), 40 (fl-galTC376-415), 70 (fl-galTC346-415), and 100 (fl- 
galTC316-415) residues were fused to 13-galactosidase and transiently over- 
expressed in COS-1 cells. Their localization was compared to unmodified 
13-galactosidase. Note the progressive redistribution of the fusion proteins 
from the cytosol and nucleus to multiple structures in the region of the 
Golgi apparatus and finally to the ER. 13-Galactosidase fusion proteins were 
stained with an anti-13-gal mAb. Bar, 10 txm. 

Identification o f  E R  Targeting Sequences 

The finding that p48 Tc required a 70-residue carboxyl ter- 
minal segment for E R  targeting prompted a deletion anal- 
ysis to identify structural motifs responsible for this local- 
ization. A series of mutations was introduced into the region 
encompassing the last 100 residues (a.a. 316-415) in which 
blocks of  10 amino acids were successively deleted while 
leaving the remaining 90 residues intact. Additionally, the 
last 20 amino acids comprising the hydrophobic tail were 
removed as a single mutation. Attempts  to assess the im- 
pact of  the mutations on localization of the full-length 
phosphatase directly were unsuccessful because such dele- 

tions often resulted in proteins that either did not immu- 
nostain or stained very poorly, while others were expressed 
in very few cells. Since it has been difficult to express active, 
delocalized PTPs (Zander  et al., 1993), the mutant  pro- 
teins were inactivated by changing the essential cysteinyl 
residue to serine. This, however, did not improve the im- 
munofluorescence. Therefore, these mutant noncatalytic 
segments were examined as fusion proteins with ~3-galac- 
tosidase. 

Much of  the sequence within the COOH-terminal  re- 
gion could be removed and still retain proper  E R  targeting 
(Table I). As expected, all three mutations affecting the 
hydrophobic tail (a.a. 396-415) abrogated localization to 
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Figure 6. I~-Ga1376-415 localizes to the Golgi apparatus and the mitochondria. B-Galactosidase fused to the 40 terminal residues of 
p48 Tc distributed to a brightly staining perinuclear body and an extensive tubular array as indicated by an anti-B-gal mAb (upper and 
lower left panels). Coimmunostaining with an antibody directed against the EAGE peptide of B-COP revealed B-gaITC376-415 was tar- 
geted to the Golgi apparatus (compare upper right and left panels). Colocalization with an anti-Hsp 60 antibody demonstrated 13-ga1376- 
415 also associated with the mitochondria (compare lower right and left panels). Note the absence of Golgi staining by the Hsp 60 anti- 
body. Arrows indicate position of the Golgi apparatus. Bar, 10 ~m. 

the E R  and resulted in both cytoplasmic and nuclear 
distribution. Two other deletions also interfered with E R  
distribution. 13-galTCA346-355 (data not shown) and 
13-galTCA356-365 (Fig. 7) produced an immunofluores- 
cence pattern similar to that obtained with 13-galTC376- 
415. That is, all three localized with the Golgi apparatus 
and the mitochondria as indicated by costaining with B-COP 
and hsp 60 antibodies, respectively (data not shown). Note 

that the deletions 4346-355 and A356-365 occur in a region 
critical for the ER localization of 13-galTC346-415. As these 
results differed significantly from those reported for PTP1B 
(Frangioni et al., 1992), the same set of deletions was in- 
troduced into a second vector which expressed the muta- 
tions as fusion proteins with chicken muscle pyruvate ki- 
nase (Frangioni and Neel, 1993). This vector has been 
used for a similar targeting experiment with the hydropho- 
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Table L Localization of COOH-Terminal Mutants 

Mutation* Distribution 

A316-325 ER 
A326-335 ER 
A336--345 ER 
A346--355 Golgi/Mitochondria 
A356-365 Golgi/Mitochondria 
A366--375 ER 
A376-385 ER 
A386-395 ER 
A396-405 Cytosolic/Nuclear 
A406-415 Cytosolic/Nuclear 
A396-415 Cytosolic/Nuclear 

A346-349 Golgi/Mitochondria 
A350-358 Golgi/Mitochondria 
A359-365 ER 
R350Q:K351Q:R352Q Golgi/Mitochondria 

* Mutations were introduced into the 100-residue COOH-terminal fragment (amino 
acids 316-415) of the 48-kD form. 

bic segment of PTPIB and, consequently, allows a direct 
comparison of the ER targeting motifs found in the two 
enzymes. Immunostaining patterns produced by the pyru- 
vate kinase chimeras were similar to those obtained with 
[3-galactosidase (data not shown). Therefore, we conclude 
that, unlike PTP1B, the ER localization of p48 zc requires 
a second signal distinct from the hydrophobic tail. 

The most striking characteristic of the two mutations 
[3-galA346-355 and [3-galA356-365 is that both remove a 
portion of polybasic region i (Fig. 1). To assess if this clus- 
ter participates in localizing p48 xc to the ER, four smaller 
mutations were introduced between residues 346-365. These 
include point mutation of RKR to Q Q Q  (13-galTCR350Q; 
K351Q:R352Q) and the deletion of basic segment 1 ([3-gal- 
TCA350-358) and the flanking sequences on either side 
([3-galTCA346-349 and 13-galTCA359-365). Table I summa- 
rizes the results obtained with these four mutations. Only 
[3-galTCA359-365 associated with the ER. Mutation of ei- 
ther the basic cluster or the sequence ESAL ([3-galTC346- 
349) was sufficient to produce immunostaining of the Golgi 
and mitochondria and implicate the first basic cluster as 
having a direct role in maintaining ER distribution (Fig. 7). 

Nuclear  Localization Signal 

The nuclear localization signal (NLS) of the 45-kD form 
was also investigated. NLS are characterized by a high pro- 
portion of basic residues (Dingwall and Laskey, 1991). To 
examine the possibility that a grouping of basic amino ac- 
ids at the C O O H  terminus may function in this capacity, 
several deletions and point mutations were introduced 
into these clusters and transiently expressed as either the 
native PTP or a ~-galactosidase fusion protein carrying the 
terminal 72 residues of the p45 Tc. Identical results were 
obtained for both constructs. Deletion of basic region 2 
(RKRKR; a.a. 377-381) severely deterred movement into 
the nucleus as there was a dramatic increase in the level of 
cytosolic immunofluorescence (Fig. 8). Point mutation of 
each residue to glutamine revealed that within this cluster 
K380 and R381 were critical for efficient nuclear translo- 
cation. The K380Q mutation (Fig. 8) resulted in an immu- 
nofluorescence pattern similar to A377-381 while the 

R381Q mutation was slightly less effective in impairing en- 
try into the nucleus, as seen by a lower level of cytosolic 
immunostaining (data not shown). The R377Q, K378Q, 
and R379Q mutations were without effect, distributing en- 
tirely within the nucleus. The enzyme never appeared to 
be associated with the nucleoli. 

The possibility that basic cluster 2 (RKRKR) may con- 
stitute half of a bipartite NLS was also considered. Bipar- 
tite NLS consist of left and right elements separated by an 
intervening spacer of typically 10 or 11 residues. The up- 
stream component is composed of two basic residues while 
the downstream component requires that at least 3 out of 
5 amino acids be basic. While R K R K R  satisfies the re- 
quirement for a downstream element, the nearest poten- 
tial upstream element is basic cluster 1. Therefore, the tri- 
ple point mutation R350Q;K351Q:R352Q (Fig. 8) and the 
two deletions A346-355 and A356-365 were introduced. 
However, these mutations had no observable effect as 
cells exhibited the same immunostain as those expressing 
p45 Tc. 

D i s c u s s i o n  

The data presented here demonstrate that the 48-kD and 
45-kD forms of TCPTP localize to the ER and nucleus, re- 
spectively. To date, the subcellular distribution of only a 
few other intracellular PTP's has been reported (Frangioni 
et al., 1992; Seki et al., 1992; Woodford-Thomas et al., 
1992; Heald et al., 1993; McLaughlin and Dixon, 1993; Ro- 
han et al., 1993). Previous studies suggest that delocaliza- 
tion of TCPTP can have profound effects. Expression of a 
37-kD form which lacks the noncatalytic segment causes 
the multinucleation of BHK cells and suppresses the v-fms- 
induced transformation of rat-2 cells (Cool et al., 1992; 
Zander et al., 1993). In fact, the 37-kD form can be readily 
expressed only in cells that display a transformed pheno- 
type, suggesting that expression of this truncated species 
could be lethal in the context of a normal cell. 

Association of some proteins with the ER is often medi- 
ated by specific retention signals. Soluble ER proteins have 
a KDEL sequence at the carboxyl end, and various ER 
transmembrane proteins contain a dilysine motif at their 
cytoplasmic C O O H  terminus (Jackson et al., 1990; Munro 
and Pelham, 1987). Furthermore, a variation of the dil- 
ysine motif has been described in the ER chaperone cap 
nexin (Rajagopalan et al., 1994). It is thought that proteins 
with these signals remain in the ER because they are con- 
tinuously retrieved from post-ER compartments (Pelham, 
1988; Rothman and Orci, 1992). In support of this, the 
K D E L  receptor has been localized to the Golgi where it 
sorts KDEL-tagged proteins for transport back to the ER, 
and the dilysine grouping interacts with the coatomer 
assembly of Golgi-derived vesicles, suggesting that the 
coatomer proteins participate in the sorting mechanism 
(Lewis and Pelham, 1992; Cosson and Letourneur, 1994). 
There is also evidence for retrograde vesicular flow be- 
tween the Golgi and the ER in brefeldin A-treated cells 
(Lippincott-Schwartz et al., 1989; Doms et al., 1989). 

p48 Tc contains neither the KDEL nor the dilysine motif. 
Rather, the data obtained through the use of two different 
reporter constructs indicate that the hydrophobic tail and 

Lorenzen et al. Intracellular Localization of TCPTP 639 



Figure 7. Mutations in the C O O H  terminus of p48 T¢ abrogate E R  localization. A series of deletions and one triple point mutat ion were 
introduced into the p48 T¢ COOH-terminal  segment of the 13-galTC316-415 fusion protein. Several mutat ions resulted in a loss of E R  im- 
munostaining in COS-1 cells. Removal  of the hydrophobic tail (a.a. 396-415) led to a cytosolic and nuclear distribution of the fusion pro- 
tein, while those with mutat ions affecting residues 346-358 were found in the Golgi apparatus and the mitochondria.  13-Galactosidase fu- 
sion proteins were stained with an anti-13-gal mAb. Bar, 10 ~m. 
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Figure 8. Nuclear localization signal of p45 Tc. Cells overexpressing 
p45 Tc harboring a deletion of the COOH-terminal sequence RKRKR or 
the point mutant R350Q;K351Q;R352Q were immunostained with af- 
finity purified Ab 6228. The [3-galactosidase fusion protein is shown for 
the K380Q mutation. Like wild-type p45 Tc, p45TCR350Q;K351Q;R352Q 
could be detected only in the nucleus. Deletion of the sequence 
RKRKR or the K380Q mutation caused a large increase in the extent 
of cytosolic immunofluorescence. Bar, 10 ~m. 

residues within the region 346-358 must act in concert  to 
target  p48 Tc to the ER.  The hydrophobic  tail l ikely inserts 
into the E R  membrane  serving as an anchor.  Wi thou t  it, 
the phosphatase  becomes  both cytosolic and nuclear  as 
seen with muta t ions  affecting residues 396-415. As  to the 
sequence E S A L R K R I R E D R K  (a.a. 346-358), it may  be 
necessary for retr ieval  of the enzyme from a pos t -ER com- 

par tment .  Fusion prote ins  harbor ing  mutat ions  in this re- 
gion associate with the Golgi  apparatus.  This distr ibution 
is consistent with the  expor t  of these prote ins  and their  
failure to be retr ieved.  A similar immunosta in  is seen with 
calnexin when its E R  re tent ion  signal has been  dele ted  
(Rajagopa lan  et al., 1994). While  the posi t ioning of this se- 
quence is unlike that of the dilysine or  the calnexin E R  re- 
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tention motif, basic residues are integral components of 
each and could perhaps serve an analogous function. 

An alternative possibility is that the sequence ESAL- 
RKRIREDRK prevents recycling of p48 Tc by interacting 
with a binding protein that would facilitate permanent ER 
residency. In this case, the hydrophobic tail may not be 
sufficient to anchor the enzyme in the absence of this up- 
stream motif. Consequently, the phosphatase associates 
with other intracellular membranes, namely those of the 
Golgi and mitochondria. These models are not necessarily 
mutually exclusive; the second model could explain the 
mitochondrial distribution even if residues 346-358 could 
serve as a retention motif. 

The results also highlight important differences in the 
ER targeting mechanisms of p48 Tc and PTPIB. While these 
two enzymes have homologous catalytic domains, their 
carboxyl terminal noncatalytic segments are unrelated. 
The most notable difference is the absence of any COOH- 
terminal basic clusters in PTP1B. Although the last 35 res- 
idues of PTP1B are sufficient for ER localization (Fran- 
gioni et al., 1992), p48 Tc COOH-terminal fragments of up 
to 40 residues were incapable of redirecting the distribu- 
tion of two different fusion proteins. Hence, these two 
phosphatases may localize to distinct subcompartments of 
the ER. 

The identification of two mammalian ER phosphatases 
may point to new cellular roles for tyrosine phosphoryla- 
tion. The ER is a highly dynamic structure that controls a 
multitude of cellular events including the regulation of cy- 
toplasmic calcium and lipid metabolism, the maturation, 
degradation and sorting of proteins, and membrane traf- 
ficking (Rose and Doms, 1988; Klausner and Sitia, 1990; 
Sambrook, 1990). Additionally, the structural integrity of 
the ER, which is highly dependent on microtubules, must 
be maintained except during mitosis when secretion stops 
and the ER network breaks down into small vesicles 
(Warren et al., 1983; Featherstone et al., 1985; Terasaki et 
al., 1986). p48 Tc may be involved in any one of these pro- 
cesses. Since the catalytic domain of p48 rc lies on the cyto- 
plasmic side of the ER (Lorenzen, J. A., unpublished ob- 
servations), the catalytic domain could be accessible to 
various cytosolic substrates and play a more general role 
in the regulation of cellular events. 

Proteins destined for the nucleus typically harbor a 
lysine and/or arginine-rich NLS that is either contiguous, 
as is the case in SV40 large T antigen, or bipartite, as illus- 
trated by nucleoplasmin (Dingwall and Laskey, 1991). Our 
data, obtained with two different expression vectors, indi- 
cate that basic cluster 2 (RKRKR) assists in the nuclear 
translocation of p45 Tc. It is interesting to note that p48 rc 
also contains the NLS; the fact that it does not enter the 
nucleus indicates the hydrophobic tail masks the NLS and 
acts as the dominant targeting signal. It remains undeter- 
mined as to whether the NLS is bipartite. No upstream com- 
ponent of the NLS could be identified as mutations in ba- 
sic cluster 1 had no effect on nuclear distribution. Tillmann 
et al. (1994) reported on the NLS of murine p45 Tc. The 
COOH-termini of the two PTPs are highly related with the 
basic clusters being strictly conserved. The authors con- 
cluded that a 25-residue segment lying immediately up- 
stream of basic cluster 2 contains the NLS and specifically 
implicated the sequence RKR (a.a. 350-352) in basic re- 

gion 1 as being important. This was not the case for the hu- 
man enzyme; removal of this region demonstrated that it 
was not essential. Furthermore, these authors observed 
nucleolar, rather than nuclear, immunofluorescence for 
several of their 13-galactosidase chimeric proteins. No nu- 
cleolar localization could be observed here even when a 
chimeric protein that had an identical portion of the non- 
catalytic segment was stained (data not shown). 

Physiological substrates of p45 rc are presently unknown; 
in fact, few tyrosyl phosphorylated nuclear proteins have 
been identified. These include the mitotic kinase p34 ~dc2 
(Gould and Nurse, 1989; Morla et al., 1989); RNAPII 
(Baskaran et al., 1993); the STAT proteins (Ruff-Jamison 
et al., 1993; Sadowski et al., 1993; Shuai et al., 1993; Silven- 
noinen et al., 1993; Larner et al., 1993) and a few Ser/Thr 
kinases such as MAP kinase (Lenormand et al., 1993), 
p85 s6K (Reinhard et al., 1994), and GSK-3 (Plyte et al., 
1992). Most of these affect transcription either directly or 
indirectly. Thus far, c-abl is the only nuclear tyrosine ki- 
nase reported (Van Etten et al., 1989). Its substrate may 
be RNAPII whose tyrosyl phosphorylation has been im- 
plicated in the control of cell cycle--dependent transcrip- 
tion of specific genes (Welch and Wang, 1993). The above 
possibilities suggest a role for p45 Tc in the regulation of 
gene expression. 
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