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Abstract. Current models propose that in nonpolarized 
cells, transport of plasma membrane proteins to the 
surface occurs by default. In contrast, compelling evi- 
dence indicates that in polarized epithelial cells, plasma 
membrane proteins are sorted in the TGN into at least 
two vectorial routes to apical and basolateral surface 
domains. Since both apical and basolateral proteins are 
also normally expressed by both polarized and nonpo- 
larized cells, we explored here whether recently de- 
scribed basolateral sorting signals in the cytoplasmic 
domain of basolateral proteins are recognized and used 
for post-TGN transport by nonpolarized cells. To this 
end, we compared the inhibitory effect of basolateral 
signal peptides on the cytosol-stimulated release of two 
basolateral and one apical marker in semi-intact fibro- 
blasts (3T3), pituitary (GH3), and epithelial (MDCK) 
cells. A basolateral signal peptide (VSVGp) corre- 

sponding to the 29-amino acid cytoplasmic tail of vesic- 
ular stomatitis virus G protein (VSVG) inhibited with 
identical potency the vesicular release of VSVG from 
the TGN of all three cell lines. On the other hand, the 
VSVG peptide did not inhibit the vesicular release of 
HA in MDCK cells nor of two polypeptide hormones 
(growth hormone and prolactin) in GH3 cells, whereas 
in 3T3 cells (influenza) hemagglutinin was inhibited, al- 
beit with a 3 x lower potency than VSVG. The results 
support the existence of a basolateral-like, signal-medi- 
ated constitutive pathway from TGN to plasma mem- , 
brane in all three cell types, and suggest that an apical- 
like pathway may be present in fibroblasts. The data 
support cargo protein involvement, not bulk flow, in 
the formation of post-TGN vesicles and predict the in- 
volvement of distinct cytosolic factors in the assembly 
of apical and basolateral transport vesicles. 

T 
HE TGN, a tubular trans-Golgi compartment (Grif- 
fiths and Simons, 1986), is the major sorting center 
of the secretory pathway (Griffiths et al., 1988). At 

the TGN, lysosomal hydrolases are sorted into clathrin- 
coated vesicles via mannose-6-phosphate receptors (Lud- 
wig et al., 1995), and secretory proteins are directed into 
distinct populations of constitutive secretory vesicles and 
immature regulated secretory granules by specific sorting 
signals (Griffiths and Simons, 1986; Tooze and Huttner, 
1990; Melancon et al., 1991). Early models postulated that 
plasma membrane proteins do not possess sorting signals 
and therefore enter by bulk flow post-TGN vesicles that 
transport and deliver them to the cell surface (Wieland et 
al., 1987). However, studies with the model viral glycopro- 
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teins influenza hemagglutinin (HA) 1 and vesicular stoma- 
titis virus G (VSVG) proteins in MDCK cells have identi- 
fied two post-TGN routes to the cell surface mediated by 
distinct populations of transport vesicles (Rindler et al., 
1984; Wandinger-Ness et al., 1990; Rodriguez-Boulan and 
Powell, 1992). The existence of two post-TGN routes in 
epithelial cells implies that at least one of them is not a sig- 
nal-blind default pathway and, indeed, transport signals 
have been recently identified in the cytoplasmic domain of 
basolateral proteins (Brewer and Roth, 1991; Hunziker et 
al., 1991; Le Bivic et al., 1991; Matter et al., 1992; Thomas 
et al., 1993). Basolateral sorting signals resemble endocytic 
motifs of plasma membrane receptors; thus, by analogy 
with the assembly of clathrin-coated vesicles, they may in- 
teract with cytosolic coat proteins that mediate the incor- 
poration of basolateral proteins into basolateral transport 
vesicles (Matter and Mellman, 1994). 

1. Abbreviat ions used in this paper: Endo H, Endoglycosidase H; GH, 
growth hormone; HA, (influenza) hemagglutinin; IC-50, half-maximal in- 
hibit0ry concentration; IEF, isoelectric focusing; Prl, prolactin; VSVG, ve- 
sicular stomatitis virus G protein. 
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In neuroendocrine cells, the basolateral protein ~VSVG 
is transported via constitutively secreted vesicles to the cell 
surface (Green and Shields, 1984). Exocytosis studies with 
chimeras of VSVG and regulated secreted proteins have 
shown that information for storage of regulated secretory 
proteins is present in the regulated secreted proteins 
(Moore and Kelly, 1985). It has been suggested that these 
sorting signals mediate packaging of proteins into imma- 
ture granules by interaction with a TGN-sorting receptor 
(Chung et al., 1989), whereas proteins lacking appropriate 
signals are released via constitutive secretion by default 
(Moore and Kelly, 1985; Stoller and Shields, 1989). A 
more recent alternative hypothesis postulates that the 
sorting signals in regulated secretory proteins promote the 
formation of specific protein aggregates that exclude con- 
stitutive proteins (Chanat and Huttner, 1992). The latter 
are actively removed from extensions of the TGN destined 
to become secretory granules and from the immature 
granules themselves (Bauernfeind and Huttner, 1993). Ev- 
idence in support of this model is provided by kinetic stud- 
ies of regulated insulin secretion in isolated pancreatic is- 
lets (Kuliawat and Arvan, 1994), by the high biochemical 
similarity of immature granules, condensing vesicles, and 
the TGN (Arvan and Castle, 1992), and by the observation 
of clathrin coats in immature and condensing granules 
(Tooze and Tooze, 1986; Orci et al., 1987b). As with epi- 
thelial cells, it is basic to determine whether the segrega- 
tion of basolateral membrane proteins in constitutive se- 
creting vesicles occurs by default or requires cytoplasmic 
sorting signals. 

The observations summarized above raise fundamental 
questions regarding the transport of plasma membrane 
proteins to the cell surface of polarized and nonpolarized 
cells. In nonpolarized cells (a) are apical and basolateral 
proteins transported by separate post-TGN transport vesi- 
cles or by bulk flow via a single transport vesicle? (b) do 
basolateral proteins use basolateral signals and mecha- 
nisms, as in polarized MDCK cells? And in polarized cells 
(c) are basolateral signals involved in just the sorting of 
basolateral proteins into nascent vesicles or do they play 
an active role in the assembly of the vesicle? 

To study the assembly of post-TGN vesicles in polarized 
and nonpolarized cells, we developed an in vitro assay that 
measures the cytosol-dependent release of apical, basolat- 
eral, and regulated secretory proteins from the TGN of 
semi-intact cells. The following cell lines were used: (a) 
MDCK, a polarized canine kidney line; (b) GH3, a rat an- 
terior pituitary line synthesizing growth hormone (GH) 
and prolactin (Prl); and (c) 3T3, a mouse fibroblast line. 
To identify the characteristic basolateral route in polar- 
ized and nonpolarized cells, we studied the ability of baso- 
lateral signal peptides to compete with basolateral vesicle 
release. This approach is based on a recent observation by 
Pimplikar (1994), who showed that introduction of the 29- 
amino acid cytoplasmic tail of VSVG protein into perfo- 
rated MDCK cells specifically blocked transport of VSVG 
protein from the TGN to the cell surface but did not affect 
that of apical influenza HA, suggesting that the peptide 
competed with the VSVG protein tail for a basolateral 
transport factor in the cytosol. This result, however, was 
not generalized by using other basolateral signal peptides 
or proteins, raising the possibility that the inhibition might 

have been due to an effect that is specific for the sequence 
of the cytoplasmic domain of VSVG and unrelated to its 
basolateral sorting information. Here, we studied the ef- 
fect of the VSVG peptide and four other basolateral signal 
peptides on the release of VSVG-, HA-, GH-, or Prl-con- 
taining vesicles in the three cell lines mentioned above. 
O,ur data suggest that (a) the constitutive pathway of 
VSVG protein in 3T3 fibroblasts and GH3 cells is identical 
to the basolateral route in MDCK cells; (b) at least two 
post-TGN pathways to the cell surface exist in all three 
cell lines; and (c) the release of post-TGN vesicles requires 
the recognition of signals in cargo molecules by the trans- 
port machinery and, therefore, does not occur by bulk 
flow. 

Materials and Methods 

Cells, Viruses 
MDCK II cells, passages 6-20, were grown on 10-cm plastic dishes in 
DME + 5% FCS. 3T3 cells, obtained from th~ American Tissue Culture 
Collection (Rockville, MD), were grown in DME + 10% FCS. 

GH3 cells, a rat anterior pituitary line that secretes GH and PrL were 
grown in Ham's  F-10 containing 2.5% FCS and 12.5% horse serum as pre- 
viously described (Stoller and Shields, 1988). 

Vesicular stomatitis virus, Indiana strain (VSV), and influenza virus A 
(WSN strain), were grown in MDCK cells as described (Rodriguez-Bou- 
lan and Sabatini, 1978). 

Infection and Pulse-Chase Labeling 
For viral infection, GH3 cells were inoculated with 5-10 pfu/cell, MDCK 
and 3T3 cells with 50 pfu/cell of wild-type VSV (Indiana strain, a gift of 
Dr. P. Stanley, Albert Einstein College of Medicine Bronx, NY) for 1 h at 
37°C, the cells were rinsed with PBS, and incubated a further 3.5 h before 
radiolabeling with [aSS]met (New England Nuclear, Boston, MA). Mock- 
infected and VSV-infected cells were pulse labeled with [35S]met for 10 
min at 37°C followed by a chase incubation at 20°C for 2 h in the presence 
of 5-mM methonine and cysteine (MDCK, 3T3, GH3) and 20 l~g/ml cyclo- 
heximide (MDCK, 3T3) (Stoller and Shields, 1989). MDCK and 3T3 cells 
were inoculated with 50 pfu/cell influenza WSN for 1 h at 37°C. Cells were 
then incubated for 4.5-h at 37°C and pulse labeled for 10 min with [35S]cys 
(New England Nuclear). The chase at 20°C resulted in ~60% of the la- 
beled VSVG/HA proteins becoming Endoglycosidase H (Endo H) resis- 
tant (see Table I). The Endo H-resistant population does not appear at 
the cell surface and was tested for accumulation in the TGN as described for 
the vesicle fractions in Fig. 1 IlL 

Vesicle Budding from Semi-Intact Cells 
Permeabilized GH3 cells from control and infected cells were prepared 
and incubated exactly as described (Xu and Shields, 1993). The VSVG 
peptide (see Table II) was added directly to the assay. Pellets and super- 
natants of the budding assay were extracted with Triton X-100 and VSVG 
was immunoprecipitated with a monoclonal antibody (5FctG, kindly pro- 
vided by Dr. John Lewis, SUNY Health Science Center at Brooklyn, New 
York). GH and Prl were precipitated with polyclonal antibodies (Xu and 
Shields, 1993; Austen and Shields, 1996) as described previously (Xu and 
Shields, 1993). 

Semi-intact MDCK cells and 3T3 fibroblasts were prepared according 
to Beckers et al. (1987) and Xu and Shields (1993) after the reporter pro- 
tein was accumulated in the TGN. In standard assays, semi-intact cells (20- 
25-p~g protein) were suspended in a final vol of 100 p.1 transport buffer (Xu 
and Shields, 1993), supplemented with 60 or 120 p~g of gel-filtered brain 
cytosol (cone. 20 mg/ml) (prepared according to Malhotra et al., 1989; ini- 
tially kindly provided by James Rothman, Memorial Sloan Kettering In- 
stitute, New York), and energy-regenerating mix (1 mM ATP, 0.12 mM 
GTP, 5 mM creatine phosphate, 0.2 IU creatine kinase) and incubated for 
30 rain at 37°C. 120 p.g cytosol was used for the initial characterization of 
the vesicular budding of HA and VSVG (see Figs. 1, 2, and 3). After full 
characterization of the cytosol dependence of the budding assay (see Fig. 
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5), 60 ~g cytosol, the maximum concentration within the linear range, was 
chosen for all peptide experiments (except for Fig. 6, see legend). After 
incubation, samples were centrifuged for 1 min at 15,000 g in a microfuge, 
after which nascent vesicles remain in the supernatant (Xu and Shields, 
1993). In the initial experiments in Fig. 1, the sedimentation of the semi- 
intact cells was performed by a 3-min spin at 800 g, conditions that gave 
similar results as the high-speed spin used for all later experiments. In 
standard assays, supernatant and pellet fractions were analyzed directly by 
PAGE, since viral proteins were the only labeled proteins under the infec- 
tion conditions. In initial experiments (Figs. I and 2), VSVG and HA were 
immunoprecipitated after TX-100 solubilization with mAbs against the 
ectodomain (5FetG for VSVG, or H15-C5 hybridoma against HA, kindly 
provided by Dr. W. Gerhard, Wistar Institute, Philadelphia). For experi- 
ments involving immunoisolation of VSVG-containing vesicles on protein 
A-Sepharose beads (Fig. 1, H c and e), the supernatant fraction of a bud- 
ding reaction was first incubated in high salt buffer (0.4 M KCI, 20 mM 
Tris/HC1, pH 8.0, for 30 min on ice) to strip peripheral proteins on the ves- 
icles; then the salt concentration was adjusted to 150 mM KCI and immu- 
noprecipitation of VSVG was carried out with antibodies against the cyto- 
plasmic domain (PD4; Kreis 1986) absorbed on protein A-Sepharose 
(Pbarmacia LKB Biotechnology Inc., Piscataway, N J). 

A chimeric protein (TGG) constituted of the ectodomain of interleukin 
II receptor (Tac) and cytoplasmic and transmembrane domains of the 
TGN38, TGG, was immuneprecipitated from transfected MDCK cells 
(Rajasekaran et al., 1994) with a Tac mAb (7G7; Rubin et al., 1985). 

The sum of marker protein in the supernatant and pellet (S + P) frac- 
tions varied with a standard error of 3.6% (HA), 4.3% (VSVG), and 6.2% 
(TGG) of the total marker protein within a given experiment (see Table I 
for detailed analysis of this variation). 

Mannosidase II was immunoprecipitated from supernatant and pellet 
fractions in the experiment shown in Fig. 2 after Triton X-100 solubiliza- 
tion using an antiserum raised against rat liver Golgi et-mannosidase II 
(Moremen et al., 1991) provided by Kelley Moremen, University of Geor- 
gia (Athens, GA). 

For the experiments in Fig. 3, 4-p~l anti-Gets (provided by Keith Mos- 
tov, University of California at San Francisco) were pre-incubated with 50 
~l cytosol for 1 h on ice. Cholera and Pertussis toxins were incubated ac- 
cording to Bomsel and Mostov (1993). The energy mix contained addi- 
tionally, 0.1 mM GDP. 

Peptide Application 
HPLC-purified (>95% purity) lyophilized peptides were dissolved in water 
immediately before use to prevent aggregation by oxidation or denatur- 
ation. The peptides were added directly to the budding assay; their con- 
centration was measured by UV absorbance at 205 nm after experimental 
determination of their extinction coefficient with the formula E lmg/ml = 27 + 
120 × A280/A205. It should be noted that the pH of the incubation mix- 
ture was not altered by the addition of these peptides. The cytosol concen- 
tration used for all peptide experiments (60 ~g) gave maximal stimulation 
of budding in the linear range. To determine the half-maximal inhibitory 
peptide concentration, the cytosol-dependent vesicle budding (after sub- 
traction of the background budding without cytosol) in the presence of 
five (or four in 3T3 cells) different peptide concentrations was measured 
as released radioactivity in the supernatant fractions and expressed as per- 
cent of the control budding in the absence of peptide. The IC-50 values 
were calculated using a Cricket graph program from the slope of the linear 
plot of the reciprocal values of the budding (expressed as percent values) 
against the five peptide concentrations (Table III). The lowest correlation 
coefficient accepted was R = 0.75; for most graphs the correlation coeffi- 
cient varied between 0.85 and 0.95. The following peptide concentrations 
were tested: VSVGWTp: 10, 20, 50, 100, 150 p~M (for VSVG and TGG in 
MDCK cells); 10, 20, 50, 100, 200 ~,M (for HA in MDCK cells); 10, 20, 50, 
150 p.M (in 3T3 cells) and 10, 20, 30, 100, 150 p~M (in GH3 cells); 
VSVGA19p: 20, 50, 100, 150, 200 ~M (in MDCK cells); 10, 20, 50,150 ~M 
(in 3T3 cells) and 10, 20, 30, 100, 150 pLM (in GH3 cells); all other peptides: 
50, 100, 150, 200, 300 p~M. 

Digestion with Glycosidases 
All digestions were performed after immunoprecipitation on protein A 
beads (13-galactosidase, neuraminidase) or after removing the sample 
from the beads by 2% SDS (Endo H) at 37°C in the presenceot  a protease 
inhibitor cocktail. After digestion, the samples were TCA'precipitated 
and prepared for SDS-PAGE (Endo H) or digested protein was removed 

from the protein A-Sepharose beads by boiling in SDS gel sample buffer. 
The following incubation conditions were used for the various en- 

zymes. Endo H: 5 mU endo-13-N-acetylglucosaminidase H (Boehringer 
Mannheim Biochemicals, Indianapolis, IN) in 100 mM citrate buffer, pH 
5.5, 0.1% SDS, for 8 h; [3-Galactosidase: 1 U of jack bean meal 13-galactosi- 
dase (Oxford GlycoSystems, Rosedale, NY) in 50 mM citrate buffer pH 
3.5 3 × for 7 h; Neuraminidase: 5 mU Neuraminidase (Boehringer Mann- 
heim Biochemicals) in 100 mM citrate buffer, pH 5.5, for 8 h. 

Electrophoresis 
SDS-PAGE. All electrophoretic procedures were carried out in 10% poly- 
acrylamide gels according to Laemmli 1970, with the exception of the ex- 
periment shown in Fig. 1, II l  e and f, carried out in 8-12% gradient gels 
with 12% glycerol. Fluorography was carried out after impregnation of 
the gels in 0.1 M sodium salicylate. 

Isoelectric Focusing (IEF). IEF analysis of VSVG was carried out in 
slab gels, 37 cm x 20 cm in size, composi[ion 4.7% T/0.5% C acrylamide/ 
bisacrylamide, 9.2 M urea, 2% NP-40, 1.2% ampholines, pH 5-7, 1.2% 
ampholines, pH 3.5-10, 0.17% ampholines, pH 7-10. The sample buffer 
contained 9.5% urea, 2% NP-40, 2% ampholines pH 3.5-10, 5% 13-mer- 
captoethanol. The running time was 16 h at constant power (3 W) with 
maximal voltage from initial 220 V to 750 V; fluorography was carried out 
after impregnation with DMSO/PPO. 

Quantification of Bands in Fluorograms 
Gels were exposed to x-ray film for doubling time periods and the films 
scanned with a Mirror Scanner 800 Plus (Mirror Technologies, Inc., St. 
Paul, MN). Data were evaluated by measuring the amount of gray in each 
band above the background with the Macintosh Image 1.45 program. For 
the supernatant and pellet fractions, different exposures were used to en- 
sure that the bands were in the linear range of the gray scale which was es- 
timated by coanalyzing a standard gel with doubling amounts of radioac- 
tivity per unit area. 

Electron Microscopy 
Supernatant fractions of a VSVG budding reaction were pelleted in an 
airfuge (A100/18 ° rotor; Beckman Instruments Inc., Fullerton, CA) at 20 
psi; the pellet resuspended and directly applied to nickel grids. Grids were 
contrasted with 1.5% uranyl acetate and examined in an electron micro- 
scope (100 CX; JEOL USA Inc., Peabody, MA). VSVG-containing vesi- 
cles were immunoisolated on protein A-Sepharose beads as described 
above, fixed in 2.5% glutaraldehyde, 0.1% Na cacodylate, pH 7.4, pro- 
cessed for transmission EM as previously described (Rodriguez-Boulan 
and Sabatini, 1978), and examined in a JEOL 100 CX electron micro- 
scope. 

Results 

Release of VSVG- and HA-containing Vesicles from the 
TGN of Permeabilized MDCK Cells 

The strategy of this assay was to accumulate the basolat- 
eral reporter protein VSVG or the apical marker influenza 
HA protein in the TGN of MDCK cells using a reversible 
20°C temperature block (Matlin and Simons, 1984) and 
then permeabilize the cells (Beckers et al., 1987) to study 
and manipulate the process of TGN-derived vesicle bud- 
ding. Cells were pulse labeled for 10 min with [35S]me- 
thionine/cysteine and chased for 2 h at 20°C. Under these 
conditions, an average of 57.5% of the nascent HA and 
60.5 % of VSVG accumulated in the TGN with the balance 
trapped in the ER and no radioactive viral protein was de- 
tectable at the cell surface. After the temperature block, 
permeabilized cells were prepared. We confirmed that the 
TGN remained intact during the preparation of semi- 
intact cells as antibodies against the luminal domain of 
TGG, a chimeric TGN marker (Humphrey et al., 1993), 
only stained the TGN in the presence of saponin (see Fig. 
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Figure 1. Release of VSVG, HA, and TGG from semi-intact MDCK cells. (/) Dependence on cytosol, energy mix, and an incubation 
temperature of 37°C. Semi-intact cells with either VSVG or HA protein accumulated in the TGN or uninfected cells expressing TGG 
were supplemented with gel filtrated brain cytosol and energy mix as indicated, and incubated for 30 min at 37, 20, or 0°C. The ceils were 
sedimented and the protein in the pellet (P) and the supernatant (S) was analyzed by immunoprecipitation and PAGE; 0.6 U/ml apy- 
rase was added to the samples in lane 2 in the VSVG and HA panel and lane 6 in the TGG panel. (I/) The released proteins are con- 
tained in vesicles, a and b: The supernatant fraction was divided into three aliquots and proteinase K (0.5 mg/ml) or trypsin (0.5 mg/ml) 
and Triton X-100 (1%) were added as indicated; protease incubation occured for 30 min on ice and was inactivated by 1 mM PMSF or 
trypsin inhibitor, c: One-half of the supernatant was adjusted to 1% Triton X-100. One-half of both, the Triton-solubilized (lanes 2 and 
4) and the nonsolubilized (lanes I and 3) fraction, was immunoprecipitated with antibodies against the ectodomain of VSVG (AB ecto; 
lanes I and 2); the other half of both fractions was immunoprecipitated with antibodies against the cytoplasmic tail of VSVG (AB tail; 
lanes 3 and 4). d: EM of negatively stained vesicles released in this assay. Bar in detail, 100 nm. e: Transmission EM of vesicles isolated 
with antibodies against the cytoplasmic domain of VSVG on protein A-Sepharose beads. Bar, 100 nm. (111) Vesicular VSVG and HA 
contain carbohydrate modifications of the late Golgi and TGN. The supernatant of a budding assay with VSVG (e and g) or HA (f) was 
immunoprecipitated and subjected to digestion with the glycosidases endo H, 13-glycosidase, or neuraminidase as indicated. Neuramini- 
dase digestion with subsequent 13-galactosidase treatment was performed for sample 2 in e; separation of proteins occured by SDS- 
PAGE (e and/') or IEF (g); lanes I and 3 in fcontain 1/20 of sample that was loaded in lanes 2, 4, and 5; the arrowhead in lane 5 marks 
the position of the ER form of HA in the gel. 

5). Furthermore,  VSVG in the TGN of semi-intact cells 
was accessible to antibodies against the cytoplasmic do- 
main of the protein but  inaccessible to antibodies against 
its ectodomain (data not shown). 

The addition of cytosol and an energy-regenerating sys- 
tem to high salt washed semi-intact cells resulted in an av- 
erage of 21% of total VSVG and 27% of total H A  protein 
(see Table I) being released into nascent vesicles, (Fig. 1 I 
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lanes 1 and 3). In agreement with data on the formation of 
secretory vesicles (Xu and Shields, 1993), no VSVG or 
HA release was observed if the budding reaction was per- 
formed at 0 or 20°C (lanes 4 and 5) and the release of both 
was decreased markedly if either cytosol or the energy- 
regenerating system was absent (see Fig. 1 I lanes 2 and 6 
and Table I). The TGG chimera, which recycles efficiently 
between the TGN and the basolateral plasma membrane 
as does its endogenous counterpart TGN38 (Rajasekaran 
et al., 1994), was also released in a cytosol- and tempera- 
ture-dependent fashion (14% in the presence versus 3.5% 
in the absence of cytosol), after accumulation in the TGN 
in the presence of cycloheximide for 2 h at 20°C (see Fig. 1 I 
and Table I). 

Several experiments indicated that VSVG and HA were 
released into nascent vesicles (Fig. 1, H and III). (a) Treat- 
ment with proteinase K removed only the cytoplasmic tail 
of the VSVG, visible as a slight increase in its electro- 
phoretic mobility (Fig. 1, H a lanes I and 2). That this rep- 
resented protection, but not intrinsic protease insensitivity 
of the ectodomain, was shown by the addition of protein- 
ase K together with 1% Triton X-100, which resulted in 
complete digestion of the protein (Fig 1., H a, lane 3); (b) 
antibodies against the cytoplamic tail of VSVG precipi- 
tated the protein both with and without solubilization with 
Triton X-100 (Fig. 1, H c, lanes 3 and 4; the amount in lane 
3 is 70% of that in lane 4), whereas antibodies against the 
ectodomain of VSVG had access to their epitopes only 
when Triton X-100 was present in the immunoprecipita- 
tion reaction (Fig. 1, H c, lanes 1 and 2; the amount of 
VSVG in lane I is only 18% of that in lane 2). Isolation of 
VSVG membrane structures from the supernatant frac- 
tion using protein A-Sepharose beads coated with anti- 
bodies against the cytoplasmic domain of the protein re- 
vealed a population of 60-90-nm vesicles on the surface of 
the beads by EM (Fig. 1, H e). (c) HA has a single trypsin 
cleavage site in its ectodomain, giving raise to the forms 
HA1 (50 kD) and HA2 (25 kD). Addition of trypsin re- 
sulted in the generation of the two forms only in the pres- 
ence of detergent (Fig. 1, H b); (d) the supernatant frac- 
tion of a vesicle budding assay showed a homogenous 
vesicle population, as determined by EM after negative 
staining (Fig. 1 , / /d) .  

To determine the origin of the vesicles carrying VSVG 

and HA, we analyzed the posttranslational modifications 
characteristic of the Golgi or TGN, using specific glycosi- 
dases (Fig. 1 III). VSVG protein (which possesses two 
complex carbohydrate side chains (Etchison et al., 1977), 
released into the supernatant of permeabilized cells was 
completely resistant to Endo H treatment, indicating that 
the bulk of this protein had reached the medial-Golgi 
complex (Fig. 1, III  e, lane 4) (Tarantino et al., 1978). 
Treatment with 13-galactosidase resulted in a visible shift 
of the VSVG upon SDS-PAGE only when a preceding 
neuraminidase digestion removed the terminal sialic acid 
residues and rendered 13-galactose the terminal residue of 
the complex sugars (Fig. 1, III  e, lanes 1, 2, and 3). To- 
gether with the dramatic anodic shift in the isoelectric 
point of VSVG protein upon neuraminidase treatment 
(Fig. 1, III  g, lanes 1 and 2), as a result of sialic acid re- 
moval, we can conclude that most of the VSVG protein 
had reached the TGN, the reported locale of sialyl trans- 
ferases (Roth et al., 1985; Chege and Pfeffer, 1990). The 
mature influenza WSN HA contains, in addition to two 
complex carbohydrate chains, a high mannose side chain 
(Roth et al., 1986), and hence undergoes a large Endo 
H-induced electrophoretic mobility increase when it is in 
the ER, but only a slight mobility increase after arrival at 
the Golgi complex. Only a small fraction of the HA re- 
leased in the supernatant underwent the large electro- 
phoretic shift characteristic of the ER form, whereas most 
of the released HA was reduced only slightly in size after 
Endo H treatment (Fig. 1, l l I f ,  lane 5). Furthermore, HA 
also manifested a slight shift in electrophoretic mobility 
upon treatment with [3-galactosidase (Fig. 1, III  f, lanes 1 
and 2 versus 3 and 4). Because it coexists with viral 
neuraminidase in influenza-infected cells, HA is sensitive 
to 13-galactosidase without pretreatment with neuramini- 
dase (not shown). These data indicated that the majority 
of the HA molecules had left the ER and reached at least 
the trans-Golgi cisternae, the postulated locale of galacto- 
syl transferase (Kornfeld and Kornfeld, 1985). 

The preceding results demonstrate that VSVG and HA 
released in vesicles in the TGN budding assay displayed 
carbohydrate modifications typical for the TGN (VSVG) 
or at least the late Golgi (HA). Interestingly, the popula- 
tion of viral glycoproteins that did not reach the TGN dur- 
ing the 20°C incubation period was not released efficiently 

Table L Quantitation of the Release of VSVG-, HA-, or TGG-containing vesicles from the TGN in Semi-intact MDCK Cells 

HA VSVG TGG 

Mean/No. Mean/No. Mean/No. 
Marker experiments Standard error experiments Standard error experiments Standard error 

Percent of  marker  in the T G N  57.5/10 ___4.1 60.5/12 -+3.1 ND 

Percent budded marker  

( +  cytosol) 27/10 -+4.2 21/12 --_4.6 14/5 -+5.8 
Percent budded marker  

( -  cytosol) 8/10 ---2.4 3.8/12 - 1.2 3.5/5 _+2.1 
Normalized SE of  S + P 3.6/10 4.3/12 6.2/5 

The percentage of Endo H-resistant VSVG or HA protein (percent of marker in the TGN) was determined as described in Materials and Methods, after accumulation of the 
marker protein in the TGN by a 20°C block. The amount of each marker in the supematant (S) fraction (percent budded marker), released in the presence or absence of 60 p,g of 
cytosol, is expressed as a percent of the total (ER + Golgi) marker. To estimate the sample variation within individual experiments, the standard error of the sums P + S (SEI, ÷s) 
(where P is the amount of marker in the pellet and S is the amount of marker in the supematant) was calculated for each experiment (5-12 samples per experiment) and normalized 
as a percent of the total amount of marker in the sample. In this case, mean represents the average of the normalized SEp + s from n experiments. For example, in one of the HA ex- 
periments containing 10 samples, the values of the sums P + S were: 8,500, 8,780, 7,370, 9,010, 8,660, 7,980, 9,270, 8,370, 8,800, 9,330 pixels; therefore the mean was 8,643 pix- 
els; the SE e + s was 186.5; and the normalized SEa + s was 2.15%. 
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Figure 2. VSVG release is not due to fragmentation of the Golgi. 
MDCK cells, labeled with [35S]methionine/[35S]cysteine for 15 h; 
they were then infected with VSV, pulse labeled, and chased at 
20°C as described in Materials and Methods. A standard budding 
assay was performed as described in Materials and Methods. 
One-fifth of the supernatant and pellet fractions was immunopre- 
cipitated with antibodies against VSVG (lanes 1, 2, 4, and 5) and 
four-fifths of each fraction with antibodies against mannosidase 
II (lanes 3 and 6). The mannosidase lanes were exposed twice as 
long to obtain exposures of comparable intensity to VSVG. 

during the 37°C incubation in vitro, indicating that these 
molecules were trapped in the ER. Since an average of 
21% of VSVG or 27% of HA, expressed as percent of to- 
tal viral glycoprotein, was released in vesicles (Table I), 
and 60.5% of VSVG, or 57.5% of HA, were in the TGN 
(see Table I), the average vesicular release from the TGN 
in our standard budding assay was 35% for VSVG and 
45% for HA. Although no radiolabeled protein reached 
the surface under the pulse-chase conditions, we excluded 
the possibility that VSVG-containing vesicles contained 
surface biotinylated plasma membrane markers (data not 
shown). This indicated that neither VSVG itself nor other 
vesicle components were derived from vesiculated plasma 
membrane fragments. We also excluded the possibility 
that VSVG was released into the supernatant fraction by 
artefactual fragmentation of the Golgi apparatus (Fig. 2). 
Immunoprecipitation of the Golgi marker mannosidase II 
(labeled overnight with [35S]methionine/cysteine) from 
pellet and supernatant fractions obtained from a standard 
assay for VSVG release revealed undetectable levels of 
the enzyme under conditions where no new enzyme was 
produced due to host protein synthesis suppression by the 
virus. 

Since our assay did not allow us to determine directly if 
HA and VSVG protein were released into distinct apical 
and basolateral vesicles distinguished by their ability to 
fuse with the appropriate surface domains, we investigated 
pharmacologic features of TGN vesicle budding that may 
discriminate between HA- and VSVG-containing vesicles. 

Figure 3. The budding of VSVG and HA are differentially ef- 
fected by stimulators or inhibitors of trimeric G proteins. Bud- 
ding assays for VSVG and HA (as in Fig. 1/) were performed in 
the presence of 10 IxM Mastoparan, 100 p,g/ml Cholera or Pertus- 
sis toxins or anti-Gas serum or normal serum as described in Ma- 
terials and Methods; budding as percentage of control samples was 
determined in three or four experiments. *, a significant differ- 
ence for HA and VSVG (P ~< 0.05), determined by a paired t test. 

Pimplikar and Simons (1993) have suggested that different 
trimeric G proteins regulate transport of apical and baso- 
lateral proteins from the TGN to the cell surface with Gai 
being a negative regulator for basolateral transport and 
Gas a positive regulator of apical transport. We therefore 
determined if this regulation could occur at the level of 
vesicle release from the TGN. Cholera toxin, an activator 
of Gas, stimulated HA protein budding almost two-fold, 
whereas pertussis toxin, an inhibitor of Gai  stimulated 
VSVG protein budding and slightly inhibited that of HA 
(Fig. 3). Consistent with this observation, antibodies 
against Gas inhibited predominantly the release of the 
apical marker, and mastoparan, which is known to mimic 
receptors for Gai, inhibited release of the basolateral pro- 
tein from the TGN (Fig. 3). When expressed as percentage 
of controls, vesicular budding of VSVG and HA were sig- 
nificantly different from each other in the presence of 
mastoparan, cholera toxin, and Gas antibodies, suggesting 
that VSVG and HA are released into different vesicle 
types. The data further indicate that the regulation of 
TGN to surface transport of VSVG and HA by trimeric G 
proteins occurs at the level of vesicle release from the 
TGN, suggesting that Gai and Gas may interact with 
membrane proteins that are part of the basolateral and 
apical vesicle transport machinery at the TGN. 

Effect of Peptides Possessing Basolateral Targeting 
Domains on the Budding of Basolateral and Apical 
Proteins from the TGN 

If the cytoplasmic tails of basolaterally targeted proteins 
interact with cytosolic factors, it should be possible to in- 
terfere with this process by adding appropriate peptides to 
the in vitro budding assay. The peptides tested (VSVGp, 

Figure 4. The effect of VSVG and VAVGA19 peptides on the budding of VSVG and HA protein in MDCK and 3T3 cells. (A) A pep- 
tide representing the 29-aa long cytoplasmic domain of VSVG protein (VSVG) or a control peptide where Alanine was exchanged for 
Tyrl9 (VSVGA19) were incubated at the indicated concentrations with 3 I~1 (60 Ixg) cytosol in the VSVG or HA protein budding reac- 
tion in MDCK (top) or 3T3 cells (bottom). TGG protein release in the presence of VSVGp and VSVGA19p was studied in uninfected 
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MDCK cells expressing the TGG marker. The gels show vesicular VSVG, HA, or TGG protein in the supernatant fractions. For assays 
in 3T3 cells, cytosol and energy dependence of vesicle release is shown(-cytosol, -energy). The HA-budding assay was supplemented with 
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HAYp, TGN 38p, LEP100p, pIgRp) and the evidence for 
their basolateral sorting information is shown in Table II. 
Three arbitrarily chosen peptides (R1, R2, R3) and three 
peptides representing the entire cytoplasmic tail of api- 
cally targeted proteins (HAC, lgpl20C8, LDLCT12) served 
as controls for these experiments. The most potent inhibi- 
tor of VSVG vesicle budding was VSVGp, a peptide cor- 
responding to the 29 cytoplasmic amino acids of VSVG, 
which contains a well-established basolateral signal (Tho- 
mas et al., 1993). VSVGp inhibited budding of VSVG-con- 
taining vesicles at 25 I~M and caused almost complete inhi- 
bition at ,-~50 ~M (Fig. 4 A). In contrast, a mutant peptide 
that fails to act as a basolateral signal in vivo (Thomas et 
al., 1993), VSVGA19p, was approximately six times less 
efficient as an inhibitor in the in vitro assay (IC50 = 24 ~M 
vs. 143 ~M, respectively, Table III). Furthermore, VSVGp 
was approximately six times less efficient in inhibiting the 
budding of influenza HA from the TGN of MDCK cells, 
indicating a strong preference for the basolateral mecha- 
nism (Fig. 4 A, VSVG vs. HA, top). 

Since the mutant VSVGp had little effect on vesicle 
budding and the wild-type peptide had dramatically differ- 
ent effects on VSVG and HA release, this attested to the 
specificity of the budding of VSVG-containing vesicles 
from the TGN. To exclude further the posssibility that 
VSVGp did not cause disruption of the Golgi, we demon- 
strated that TGG remained inaccessible to antibodies in 
the presence of 50 ~.M VSVGp in semi-intact cells and 
that at the EM level, the appearance of Golgi stacks was 
not altered (Fig. 5). 

We considered the possibility that the inhibitory effect 
of VSVG peptide on the release of VSVG protein was due 
to identity between the peptide and the protein being 
transported. To exclude this possibility, we studied the ef- 
fect of VSVGp on a second basolateral marker, TGG. 
VSVGp inhibited the budding of vesicles carrying TGG 
with an IC-50 ,,~43 IxM, even lower than the IC-50 of the 
homologous peptide TGN38p (see Table III and Fig. 4 A, 
TGG panel). Our data therefore demonstrate that the po- 
tent inhibitory effect of VSVGp on the release of basolat- 
eral vesicles in general reflects a functional property of the 
basolateral vesicle budding system. 

Two other peptides, HAYp and TGN38p, inhibited the 
budding of VSVG vesicles at higher concentrations (IC-50 
,'~115 and -,~83 ~M) than VSVGp. The control peptides 
(HAC, LDLCT12, R1, R2, R3), however, were ineffective 
at these concentrations (Tables II and III). HACp, repre- 
senting the cytoplasmic domain of wild-type HA, had a 
considerably reduced inhibitory potency compared with 
HAYp from which it differs only in a single amino acid. 
The inhibitory effect of the HAY peptide was dependent 
on the same tyrosine residues that are critical for basolat- 
eral targeting in vivo (Brewer and Roth, 1991; Thomas et 
al., 1993). Therefore, HACp provides a strong argument 
for the validity of our assay as tool to characterize the ba- 
solateral sorting mechanism. Our results generalize previ- 
ous observations by Pimplikar et al. (1994) showing that 
the VSVG peptide inhibits specifically not only the exit of 
VSVG protein from the TGN but also, and with high po- 
tency, the release of a second basolateral marker, TGG, 
and by demonstrating that other basolateral signal pep- 
tides (HAYp, TGN38p) inhibit the release of VSVG pro- 
tein. As with VSVGp, the inhibitory effect of HAY was 
highly specific since the release of the basolateral marker 
was dependent on a crucial tyrosine residue necessary for 
basolateral targeting in vivo. 

The inhibitory effect of the basolateral signal peptides may 
be due to their competition with a cytosolic factor for the 
binding to VSVG. If this were the case it should be possi- 
ble to overcome the inhibitory effect of the peptides by in- 
creasing the amount of cytosol in the budding assay. Fig. 6 
shows that this is the case for the VSVGp. Fig. 7 (left) indi- 
cates that the inhibitory effect of TGN38p and HAYp 
could also be overcome by increasing amounts of cytosol. 

As mentioned above, VSVGp did not interfere with the 
budding of vesicles carrying HA at concentrations that 
completely blocked the budding of VSVG vesicles (Fig. 4 
A). This result favors our interpretation that VSVGp spe- 
cifically interferes with the release of basolateral transport 
vesicles in polarized MDCK cells. On the other hand, the 
three peptides VSVGp, HAYp, and TGN38p inhibited the 
vesicular release of HA with IC-50's of N150 ~M. In con- 
trast, the control peptide HAC had an effect on the vesicu- 
lar release of HA only at a concentration of 300 IxM (Ta- 

Table III. Peptide Concentrations that Cause Half-Maximal Inhibition of the Release of VSVG-, TGG-, or HA-containing Vesicles 
from the TGN in MDCK and 3T3 Cells 

MDCK cells 3T3 cells 

Peptide/protein VSVG TGG HA VSVG HA 

LEP100 330 I~M -+ 100 (3) 
plgR > 300 I~M (3) 
HAY 115 I~M + 35 (3) 
TGN38 83 ~M -4- 10 (3) 
VSVG 24 ~M --+ 4 (3) 
VSVGA19 143 0,M -4- 5 (3) 
HAC > 300 ~M (3) 
LDLCT12 >300 ~M (3) 
Igpl20C8 > 300 o~M (3) 
R1 > 300 IzM (2) 
R2 > 300 ooM (2) 
R3 > 300 ~M (2) 

150 o,M -+ 15 (3) 
120 ~M (2) 160 ~M -+ 22 (3) 
43 ~M (2) 145 ~M -+ 22 (3) 20 IxM --- 4 (3) 

140 trM (1) 160 ~M -+ 45 (3) 134 IxM -+ 9 (3) 
320 IzM --- 37 (3) 

60 IxM --- 10 (3) 

Vesicle budding assays for VSG, TC~, or HA protein were performed in the absence or presence of the fisted pepfides. Vesicle budding in the presence of peptides was expressed 
as percentage of control budding in the assay without peptide and its reciprocal values were plotted against the peptide concentrations. The 50% inhibitory concentration and the 
standard deviation were calculated from the number of experiments indicated in brackets for each peptide as described in Materials and Methods. 
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Figure 5. The VSVG peptide does not disrupt Golgi structure. A standard budding assay was carried out with semi-intact MDCK cells 
permanently transfected with TGG in the presence or absence of 50 I~M VSVGp. Aliquots of the pellet fractions were fixed with 2% 
paraformaldehyde and processed for immunofluorescence with antibodies against the ectodomain of the TGN marker TGG (Tac) in the 
presence or absence of 0.075% saponin. The labeled semi-intact cells were spread on coverslips, mounted on glass slides, and analyzed 
by confocal microscopy. Another aliquot of the pellet was fixed in 2% glutaraldehyde, 0.1 M cacodylate buffer, pH 7.4, and processed 
for transmission EM. Note that the addition of the peptide did not increase the accessibility of the luminal Tac epitopes to antibodies 
nor abolished the stacked organization of the Golgi. 

ble III). The inhibitory effect of the three signal peptides 
was reduced in the presence of higher cytosol concentra- 
tions in the assay (Fig. 7, right), suggesting that the effect of 
the peptides on the H A  vesicle budding was due to a com- 
petition with soluble factors that are similar or identical 
with basolateral transport factors. Note that whereas 3 p~g/ml 
cytosol partially overcame the inhibition of H A  release by 
150 IxM VSVGp, it did not overcome the inhibition of 
VSVG release by 50 ~M VSVGp, a result that further un- 
derlines the differential inhibitory effect of VSVGp on ba- 
solateral vs. apical vesicle release. 

Effect of  VSVGp on the Budding of  VSVG or HA 
Vesicles from the TGN in 3T3 Cells 

Since the VSVG peptide allowed us to discriminate be- 
tween the pathways for apical and basolateral vesicle re- 
lease from the TGN in MDCK cells, this peptide was used 
to study whether VSVG protein and H A  are released in a 
single vesicle type or in different vesicles from the TGN of 
nonpolarized fibroblasts. Permeabilized 3T3 cells with ei- 
ther VSVG or H A  protein accumulated at the TGN were 
prepared. Omission of cytosol or the energy mix reduced 
the vesicular marker protein in the supernatant to 20% 
(Fig. 4 A, 3T3 panel, see lanes I and 2). VSVGp and 
VSVGA19p inhibited the budding of VSVG-containing 
vesicles with IC-50 ~20 and 134 ~M, respectively (Table 
III, Fig. 4 A), identical to those in MDCK cells, indicating 
that a pathway corresponding to the basolateral route in 
MDCK cells exists in 3T3 fibroblasts and has a similar 
transport capacity as in the epithelial cell line. The release 

of H A  from the TGN of 3T3 cells was inhibited by the 
VSVG peptide with a IC-50 of 60 p~M (Fig. 4, Table III). 
This represents an inhibitory potency 3 x lower than for 
VSVG, suggesting that a population of H A  molecules is 
transported via a peptide-insensitive pathway. Fig. 4, how- 
ever, also shows that the peptide inhibited the release of 
H A  protein in 3T3 ceils with a 2.5 x higher inhibitory po- 
tency than in MDCK cells. Furthermore, whereas 50 ~M 
VSVGp caused no inhibition of H A  budding in the pres- 
ence of 3 txl cytosol, the same peptide concentration re- 
duced H A  budding in 3T3 cells by N50%, even in the 
presence of 6 ~1 cytosol in the budding assay. Higher cyto- 
sol concentrations, however, were effective in overcoming 
the effect of 50 ~M peptide in this cell line as expected for 
an interaction between the peptide and a cytosolic factor 
(data not shown). The observation that the inhibitory po- 
tency of the VSVG peptide on the release of H A  protein 
in 3T3 ceils was intermediate between its poor inhibitory 
potency on HA protein budding in MDCK cells and its 
powerful effect on VSVG protein release in both cell lines 
suggests that an apical-like pathway exists in 3T3 fibro- 
blasts, albeit with a lower capacity than in MDCK cells. 

Budding of  VSVG-containing Vesicles and Nascent 
Secretory Granules in Permeabilized GH3 Cells 

Earlier work (Green and Shields, 1984) suggested that G H  
and VSVG protein are sorted into different vesicle popu- 
lations in VSV-infected GH3 cells. This sorting step was 
presumed to occur late in the secretory pathway because 
inhibition of G H  secretion had no effect on the appear- 
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Figure 6. The inhibitory ef- 
fect of VSVGp is dependent 
on the cytosol concentration 
in the budding assay. VSVG 
vesicle budding assays were 
performed in the presence or 
absence of 10, 25, or 50 ixM 
VSVGp supplemented with 
0, 20, 60, or 120 txg cytosol. 
Supernatant and pellet frac- 
tions were analyzed as de- 
scribed in Materials and 
Methods and the percentage 
of total VSVG released into 
the vesicle fraction was plot- 
ted against the cytosol con- 
centrations. Lanes 1-16 are 
supernatant fractions; lanes 
17-20 are the pellet fractions 
corresponding to control 
samples (no peptide added; 
lanes 1, 5, 9, and 13, respec- 
tively). 

ance of VSVG protein at the plasma membrane or on vi- 
rus assembly. Based on the preceding data and these ear- 
lier observations, we hypothesized that the VSVG peptide 
would interfere with VSVG protein vesicle budding, but 
would have little effect on the formation of GH- or Prl- 
containing secretory vesicles. To test this idea, we pre- 
pared permeabilized cells from VSV-infected GH3 cells 
(Xu and Shields, 1993) and added either VSVG peptide or 
the VSVGA19 control peptide to the in vitro budding sys- 
tem (Fig. 8). Consistent with our earlier observations, vesi- 
cle budding from the TGN was energy and cytosol depen- 
dent (Fig. 8 A, compare lanes 12 and 13 with 25 and 26). 
Addition of the VSVG peptide to the permeabilized cells 
inhibited vesicle budding fourfold at a concentration of 
20-30 txM (Fig. 5 A, lanes 3, 4,16 and 17; D). In agreement 
with the preceding data on MDCK cells, the mutant 
VSVG A19 peptide had no effect on vesicle formation 
even up 150 /zM (Fig. 8 A, lanes 7-12 and 20-24; D). In 
contrast, addition of the VSVG peptide had no effect on 
the budding of either GH- or Prl-containing nascent vesi- 
cles (Fig. 8 B and C, respectively, Fig. 6 E). It should be 
noted that in B and C, the permeabilized cell system was 
prepared from uninfected cells because VSV infection 
completely inhibits endogenous G H  and Prl synthesis and 
in this case vesicle budding did not require addition of cy- 
tosol. 

In agreement with our earlier observations, these results 
strongly suggest that VSVG protein is packaged into a dif- 
ferent population of vesicles from those containing either 
G H  or Prl. Most significantly, the current data imply that 

the host cell "target" molecules that interact with the cyto- 
plasmic tail of VSVG protein to effect its packaging into 
vesicles, can be inhibited without affecting formation of 
nascent secretory granules. 

Discuss ion  

A main goal of this work was to study the requirement of 
basolateral sorting signals in the constitutive transport of 
VSVG protein to the surface of polarized and nonpolar- 
ized cells. Basolateral sorting signals have been identified 
unequivocally in the cytoplasmic domain of a variety of 
basolateral proteins (Matter and Mellman, 1994), but their 
role in anterograde transport is not well understood. We 
wished to determine whether (a) nonpolarized cells re- 
quire signals to transport basolateral proteins from the 
TGN to the cell surface or, alternatively, use a default 
mechanism, as widely believed (Alberts et al., 1994); (b) 
basolateral signals act by concentrating and sorting baso- 
lateral proteins into nascent basolateral vesicles or by pro- 
moting the assembly of the basolateral vesicles them- 
selves; (c) cytoplasmic signals are required to segregate 
VSVG protein from regulated secretory proteins. To this 
end we used different permeabilized cells, incubated in the 
presence and absence of basolateral signal peptides, and 
compared the release of the VSVG protein from the TGN 
with that of several proteins whose intracellular transport 
is diagnostic for different vesicle populations (Figs. 4 and 
8, Table III). 
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Figure 7. VSVGp inhibits differentially the release of VSVG protein over HA whereas HAYp and TGN 38p inhibit HA and VSVG re- 
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concentration of semi-intact cell protein of 0.6 mg/ml. Values for vesicle budding are expressed as percentage of the highest amount of 
vesicular VSVG or HA protein released into the supernatant. Data points are the average of two experiments. 

Transport of VSVG Protein Requires a Cytoplasmic 
Signal in Nonpolarized Cells 

The requirement for signals in anterograde transport from 
the TGN might have evolved in epithelial cells as a conse- 
quence of their need to target proteins to two different 
surface domains. If so, it might be expected that a basolat- 
eral signal peptide would not inhibit transport of a basolat- 
eral protein in nonpolarized cells, where proteins would 
follow a bulk flow pathway to the cell surface. However, 
the VSVG peptide inhibited the release of VSVG with the 
same potency in 3T3 cells as in MDCK cells (IC-50 N20- 
25 IxM), indicating that VSVG, a prototype marker for 
bulk flow studies (Moore and Kelly, 1985; Orci et al., 1986; 
Wieland et al., 1987) requires cytoplasmic signals to exit 
the TGN of nonpolarized and polarized cells (Fig. 4). The 
strict signal dependence of VSVG tranport in nonpolar- 
ized cells suggests that proteins not possessing these sig- 
nals, e.g., apical proteins, might use a separate transport 
mechanism, equivalent to the apical transport pathway of 
epithelial cells. Since the release of influenza H A  from the 
TGN of MDCK cells could be distinguished by its 6 × 
lower sensitivity to VSVGp (IC-50 ~145 ~M) we tested 
the effect of VSVGp on the release of influenza H A  in 
3T3 fibroblasts. We found that VSVGp inhibited release 
of the apical marker H A  in 3T3 fibroblasts with an inter- 
mediate potency (apparent IC-50 ~60 txM) between 
VSVG (20 I~M) and H A  (IC-50 ~145 ixM) in MDCK cells. 
Because the budding of H A  vesicles is more sensitive to 
VSVG peptide in 3T3 cells than in MDCK cells, we sug- 
gest that the machinery to generate apical vesicles may be 
present but not fully developed in these nonpolarized fl- 

broblasts. In fact, the capacity of the apical transport path- 
way appears to be highly variable even in epithelial cells; in 
intestinal cells it appears to be underdeveloped, whereas it 
is absent in hepatocytes (for reviews see Rodriguez-Bou- 
lan and Powell, 1992; Matter and Mellman, 1994). 

Role of Basolateral Signals in the Assembly 
of Basolateral Vesicles 

Our in vitro data do not support the bulk flow model of 
protein transport to the plasma membrane, which suggests 
that Golgi-derived transport vesicles are constantly formed 
independently of the presence or absence of signals in the 
cargo protein. In our experiments, the VSVG protein is 
the major cargo protein in the TGN because host cell pro- 
tein synthesis was inhibited by viral infection. The com- 
plete inhibition of VSVG release by VSVGp suggests that 
VSVG cannot be transported by an alternative apical 
route in the absence of apical cargo proteins. This con- 
trasts starkly with the in vivo observation in transfected 
cells, that VSVG protein is missorted but not blocked by 
the inactivation of its basolateral signal by mutagenesis 
(Rose and Bergmann, 1983; Gonzalez et al., 1987; Thomas 
et al., 1993). In fact, the observation that VSVGp is two- 
fold less efficient in inhibiting the release of TGG-contain- 
ing vesicles in noninfected cells could be also explained by 
the existence of an apical transport pathway in these cells. 
Our results lead us to conclude that (a) the release of ba- 
solateral proteins in transport vesicles requires the interac- 
tion of cargo protein sorting signals in the TGN with a 
component of the transport machinery in the TGN and 
hence does not occur by bulk flow, and (b) apical vesicles 
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Figure 8. Effect of VSVG and VSVGA19 peptides on the budding of VSVG and growth hormone or prolactin in GH3 cells. VSV- (A) 
or mock-infected (B and C) permeabilized GH3 cells were incubated with cytosol and energy mix to release TGN-derived vesicles. 
VSVG peptide or the control peptide VSVGA19 was incubated at the indicated concentrations with the cytosol in budding reaction; 
both, the vesicle fraction (SUPERNATANT) and the semi-intact cells (PELLET) were immunoprecipitated with anti-VSVG (A), anti- 
GH (B), or anti-Prl (C) antibodies; -CYTOSOL and -ENERGY indicate that either cytosol or the energy-regenerating system was 
omitted in the assay. (D and E) The intensities of each band were quantitated using a computing densitometer (300A; Molecular Dy- 
namics Inc., Sunnyvale, CA). Budding efficiency (percent budding) = (sum of the band intensities from the supernatant [vesicle frac- 
tion]) - (sum of the band intensities from the pellet and supernatant) × I00. 

are not released by bulk flow, since a basolateral protein 
can be missorted into apical vesicles only when apical 
cargo proteins are present in the TGN but not in their ab- 
sence. A corollary is that basolateral proteins can use an 
existing apical pathway but cannot create one. 

Our experimental conditions did not allow us to test di- 
rectly whether the cytoplasmic domain of VSVG protein is 
necessary just to concentrate VSVG into post-TGN trans- 
port vesicles or, alternatively, is necessary for the assembly 
of the vesicles. In the first scenario, addition of VSVG 
peptide would result in the production of "empty" trans- 
port vesicles, whereas in the second scenario no post-TGN 
basolateral vesicles would be formed in the presence of 
VSVGp. We favor the second possibility based on the in 
vivo data described above. 50-67% VSVG protein carry- 
ing an inactivated basolateral sorting signal is transported 
efficiently to the basolateral surface of transfected MDCK 
cells (Gonzalez et al., 1987; Thomas et al., 1993), where 
other basolateral proteins are synthesized and delivered to 
the cell surface, suggesting that VSVG protein is included in 

basolateral transport vesicles as long as other basolateral 
proteins promote the assembly of these vesicles. Hence, 
lack of sorting can not result in complete inhibition of trans- 
port. Rather, the complete inhibition of transport ob- 
served in infected cells exposed to VSVG peptide (Pim- 
plikar and Simons, 1994; and this paper) most likely reflects 
the complete inhibition of vesicle release from the TGN. 

A surprising outcome of our study was the similar inhib- 
itory potency of the basolateral sorting peptides HAYp 
and TGN38p on the release of basolateral and apical vesi- 
cles in MDCK cells. We suggest that this effect is due to 
the basolateral signal content in both peptides for two rea- 
sons: (a) the control HAC peptide (the normal cytoplas- 
mic domain of influenza H A  which has no activity as a ba- 
solateral signal), did not inhibit the budding of either 
marker; (b) none of the other tested nonsignal peptides in- 
hibited the release of either marker at similar concentra- 
tions. Recent evidence indicates that signals for coated pit, 
TGN, and lysosomal localization share structural features 
with basolateral signals (Thomas and Roth, 1994). The 
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short peptides HAYp and TGN38p could represent de- 
generate signals sufficient to be recognized by both apical 
and basolateral soluble binding factors; only the VSVG 
peptide, with 29 amino acids by far the longest peptide 
tested, could meet the requirements for a basolateral sort- 
ing sequence strictly, resulting in a six times higher inhibi- 
tory potency for basolateral vesicles (IC50 ,-~24 IxM) than 
for apical vesicles (IC50 ,-~145 ~M). These results further 
suggest that the exit of apical proteins from the TGN of 
MDCK cells also requires specific cytoplasmic factors. Since 
apical membrane proteins do not seem to contain cyto- 
plasmic targeting information, or simply lack cytoplasmic 
domains, the signal for assembly of apical vesicles would 
be contained in a transmembrane apical sorting receptor. 
This receptor could function as an adaptor by interacting 
with apical markers via its luminal domain and with the 
vesicle assembly machinery via its cytoplasmic domain. 
Alternatively, HAYp and TGN38p could bind a different 
soluble budding factor than VSVGp, one that is involved 
in the production of both apical and basolateral vesicles. 

An unexpected observation was that two basolateral signal 
peptides, LEP100p and pIgRp, did not inhibit the release 
of the basolateral marker VSVG. Two possible scenarios 
can be envisioned that would explain this observation. An 
interesting possibility is that their failure to inhibit the re- 
lease of VSVG-containing vesicles from the TGN may re- 
flect the use of alternate basolateral targeting mechanisms 
by plgA-R and LEP-100. In fact, in contrast to VSVG, 
plgA-R is rapidly endocytosed and undergoes a second 
sorting event in basolateral endosomes (Aroeti and Mos- 
tov, 1994). Furthermore, pharmacological studies using 
brefeldin A have suggested that plgA-R might use a path- 
way to the plasma membrane different from other basolat- 
eral proteins (Apodaca et al., 1993). An alternative trivial 
explanation of the data is that the plgA-R and LEP-100 
peptides fail to adopt the competent secondary structure 

they have in the context of the protein from which they are 
derived. However, the plgA-R peptide functions as a ba- 
solateral sorting signal when transferred to other proteins 
(Casanova et al., 1991) and alters its secondary structure in 
solution when signal-disabling mutations are introduced, 
as determined by NMR analysis (Aroeti et al., 1993), sug- 
gesting that it may preserve basolateral signal activity in 
solution. 

Cytoplasmic Signals Are Required to Segregate VSVG 
Protein from Regulated Secretory Proteins 

Experiments with VSV-infected GH3 pituitary cells 
showed that, in regulated secretory cells, constitutive re- 
lease of VSVG protein from the TGN does not occur by 
default, but is strictly dependent on signal information in 
the cytoplasmic domain. The release of VSVG protein was 
inhibited by VSVG peptide with the same potency as in 
MDCK cells and 3T3 fibroblasts. In contrast, the release 
of GH and Prl was not affected by VSVGp. This latter re- 
sult was surprising since in vivo experiments indicate that 
70-80% of these two regulated secretory proteins are re- 
leased constitutively in GH3 cells (Stoller and Shields, 
1988). Two different scenarios may account for this obser- 
vation. In the first scenario, the block of the major consti- 
tutive route by the VSVG peptide leads to more efficient 
packaging of the constitutively secreted fraction of GH 
and Prl into immature secretory granules (Fig. 9). In the 
second scenario, GH and Prl are transported via a second- 
ary constitutive pathway to the cell surface that is insensi- 
tive to VSVGp, perhaps the equivalent of the apical path- 
way of epithelial cells. In fact, Orci et al. (1987a) have 
shown that HA is transported through a pathway distinct 
from the regulated secretory route in neuroendocrine 
cells. 

In summary, the results presented in this report support 
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Figure 9. Models for the effect of VSVG peptide on the release of VSVG, HA, GH, and PL proteins in MDCK, 3T3, and GH3 cells. 
VSVG peptide competes in all three cell lines with the same soluble factor of the transport machinery that recognizes a signal in the cy- 
toplasmic domain of VSVG protein resulting in the inhibition of the release of VSVG-containing vesicles. HA protein is excluded com- 
pletely from VSVG-eontaining vesicles in MDCK cells and hence its transport is not affected. In nonpolarized 3T3 cells at least part of 
the HA molecules are transported via the same type of vesicles as the VSVG protein. In GH3 cells, Prolactin (PL) and growth hormone 
(GH) are chased efficiently into immature granules or into a different class of constitutive secreted vesicles than VSVG when the baso- 
lateral type of pathway is blocked. 
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a model in which VSVG protein is transported by the 
same signal-mediated mechanism in polarized and nonpo- 
larized cells (Fig. 9). The requirement for signals excludes 
bulk flow as a mechanism for constitutive transport of pro- 
teins between the TGN and the cell surface in all cells. It 
also predicts the existence of cytosolic factors that interact 
with the basolateral-like signals in the cytoplasmic domain 
of the transported proteins. Our data also suggest the ex- 
istence of an alternative apical-like pathway in 3T3 fibro- 
blasts that is, however, considerably less developed than in 
MDCK cells and the existence of a basolateral signal inde- 
pendent pathway to the plasma membrane of GH3 cells. 
Thus, the existence of more than one pathway to the cell 
surface appears to be a widely distributed property of 
mammalian cells. 
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