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Abstract. Members of the FGF  family of growth fac- 
tors localize to the nuclei in a variety of different cell 
types. To determine whether  FGF  receptors are also 
present within nuclei and if this localization is regulated 
by FGFs, nuclei were prepared from quiescent and 
FGF-2- t rea ted  Swiss 3T3 fibroblasts and examined for 
the presence of F G F  receptors by immunoblotting with 
an antibody produced against the extracellular domain 
of F G F  receptor-1 (FGFR-1).  Little or no FGFR-1 is 
detected in nuclei prepared from quiescent cells. When 
cells are treated with FGF-2, however, there is a time- 
and dose-dependent  increase in the association of 
FGFR-1 immunoreactivity with the nucleus. In con- 
trast, t reatment  with either E G F  or 10% serum does 

not increase the association of FGFR-1 with the nu- 
cleus. When cell surface proteins are labeled with bi- 
otin, a biotinylated FGFR-1 is detected in the nuclear 
fraction prepared from FGF-2-t reated,  but not un- 
treated, cells indicating that the nuclear-associated 
FGFR-1 immunoreactivity derives from the cell sur- 
face. The presence of F G F R - I  in the nuclei of FGF-  
2- t reated cells was confirmed by immunostaining with 
a panel of different FGFR-1 antibodies, including one 
directed against the COOH-terminal  domain of the 
protein. Fractionation of nuclei from FGF-2- t rea ted  
cells indicates that nuclear FGFR-1 is localized to the 
nuclear matrix, suggesting that the receptor  may play a 
role in regulating gene activity. 

T 
HE FGFs are a family of heparin-binding polypep- 
tides that play a role in a wide array of biological 
processes, including cell growth, differentiation, an- 

giogenesis, tissue repair, and transformation (for reviews 
see Baird and Bohlen, 1990; Burgess and Maciag, 1989; 
Wagner, 1991; Fernig and Gallagher, 1994). The FGFs in- 
teract with two classes of FGF receptors: high affinity re- 
ceptors that bind FGFs with picomolar affinity and are 
thought to mediate the cellular responses to FGF, and low 
affinity receptors that bind FGFs with nanomolar affinity 
and are characterized by the presence of heparan sulfate 
moieties. At the present time, the high affinity FGF recep- 
tor family contains four members (for reviews see Johnson 
and Williams, 1993; Givol and Yayon, 1992; Partanen et 
al., 1993). In addition, alternative splicing can generate re- 
ceptor isoforms that vary in their extra- or intracellular do- 
mains. Each of these receptors is capable of binding and 
responding to more than one type of FGF. Similar to other 
growth factor receptors, the FGF receptors possess intrin- 
sic tyrosine kinase activity. Thus, FGF binding to the ex- 
tracellular domain of a receptor rapidly leads to receptor 
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autophosphorylation and substrate tyrosine phosphoryla- 
tion. However, long-term treatment of cells with FGFs is 
necessary for cells to show a mitogenic response (Zhan et 
al., 1993; Presta et al., 1991) suggesting that signals other 
than those provided by direct receptor activation are re- 
quired for cell proliferation. 

Some of the mitogenic signals may be provided by FGFs 
themselves. Unlike other growth factors, internalized 
FGFs are surprisingly stable, persisting in treated cells for 
many hours (Walicke and Baird, 1991; Friesel and Maciag, 
1988; Moenner et al., 1989). A number of studies have 
demonstrated the presence of FGF-1 (aFGF) or FGF-2 
(bFGF) in the nuclei of cells (Florkiewicz et al., 1991; 
Tessler and Neufeld, 1990; Renko et al., 1990). In cells that 
produce FGF-2, the higher molecular mass isoforms (24, 
23, and 22 kD) are found exclusively in the nucleus (Flor- 
kiewicz et al., 1991; Renko et al., 1990). The addition of 18 
kD FGF-2 to target cell cultures results in uptake of a por- 
tion of the growth factor into the nucleus (Baldin et al., 
1990; Walicke and Baird, 1991). In some cell types, the 
translocation of FGF-2 to the nucleus is cell cycle depen- 
dent (Baldin et al., 1990). Similar results are obtained after 
treating cells with FGF-1 (Zhan et al., 1992). Furthermore, 
there is some evidence that this translocation of FGF-2 to 
the nucleus is required for the induction of cell prolifera- 
tion (Wiedlocha et al., 1994). 

Since the pathways whereby FGFs travel from the cell 
surface to the nucleus have not been described, the studies 
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reported here were undertaken to determine if high affin- 
ity FGF receptors could play a role in this translocation. 
For these experiments, we used mouse Swiss 3T3 fibro- 
blasts, which express relatively high levels (Maher, 1993) 
of FGF receptors and respond to treatment with FGF-2 by 
an increase in DNA synthesis (Pasquale et al., 1988). The 
nuclei of these cells were isolated and examined for the 
presence of FGF receptors. Quiescent fibroblasts have 
very low levels of nuclear receptors. After stimulation with 
FGF-2, however, we found a dose and time dependent in- 
crease in nuclear FGF receptors. At least some of these re- 
ceptors appear to come from the cell surface. Within the 
nuclei, the receptors are found in the nuclear matrix, a re- 
gion of the nucleus implicated in tissue- and cell type-spe- 
cific gene expression (Dworetsky et al., 1990). 

Materials and Methods 

Cell Culture 
Swiss 3T3 fibroblasts (No. CCL-92; American Type Culture Collection, 
Rockville, MD) were grown in DME containing 10% FCS and antibiotics. 
To prepare quiescent cells, Swiss 3T3 cells were grown to confluence and 
then incubated in 0.5% FCS for 48 h. 

Antibodies 
A rabbit polyclonal antibody to the carboxyl terminus of FGF receptor-1 
(FGFR-1) was produced using a peptide containing the COOH-terminal 
17 amino acids of human FGFR-1 coupled to keyhole limpet hemocyanin. 
The antibody was affinity purified by passage over a column of the pep- 
tide coupled to Affigel 102. A second rabbit polyclonal antibody to the 
COOH-terminal 15 amino acids of human FGFR-1 was obtained from 
Santa Cruz Biotechnology (Santa Cruz, CA) and was used for the immu- 
noprecipitation studies. A mouse mAb against the baculovirus-expressed 
extracellular domain of FGFR-1 produced in insect cells (Kiefer et al., 
1991) was generated using standard techniques and has been described 
elsewhere (Hanneken et al., 1995). 

Isolation of Nuclei 
Nuclei were isolated from Swiss 3T3 flbroblasts by several different tech- 
niques. In all cases, the integrity and quality of the nuclei were evaluated 
by light microscopy. In most cases, the purity of the nuclear fractions was 
also assessed by immunoblotting with an anti-EGF receptor antibody and 
assaying 5' nucleotidase activity (Sigma Diagnostics, St. Louis, MO) as 
markers for plasma membrane contamination and by assaying acid phos- 
phatase activity (Sigma Diagnostics) as a marker for lysosomal contami- 
nation. Neither EGF receptors (see Fig. 1) nor 5' nucleotidase activity 
were detected in the nuclear fraction, and <5% of the total acid phos- 
phatase activity was associated with the nuclear fraction. For most experi- 
ments, we used a rapid method that allows isolation of nuclei from small 
numbers of cells (Schreiber et al., 1989). Briefly, cells in 35-mm culture 
dishes were rinsed twice with TBS and suspended in 200 Ixl cold homoge- 
nization buffer (t0 mM Hepes, pH 7.9, 10 mM KCI, 0.1 mM EDTA, 0.1 
mM EGTA, 1 mM DTT, 0.5 mM PMSF) by gentle scraping with a rubber 
policeman. The cells were allowed to swell on ice for 15 min, at which 
time, 12.5 ixl of a 10% solution of NP-40 was added and the tube was vor- 
texed vigorously for 10 s. Nuclei were pelleted by centrifugation for 30 s in 
a microfuge, washed twice with homogenization buffer containing NP-40, 
and resuspended in 200 p,1 homogenization buffer containing NP-40. 
Equal volumes of the nuclear and nonnuclear fractions were solubilized in 
2.5X Laemmli sample buffer and were analyzed by SDS-PAGE and im- 
munoblotting with the monoclonal anti-FGFR antibody (see below). For 
nuclear fractionation, membrane-depleted nuclei were isolated as de- 
scribed (Fey et al., 1986). Briefly, cells in 60-mm culture dishes were 
washed twice with PBS, suspended in CSK 100 buffer (100 mM NaC1, 300 
mM sucrose, 3 mM MgCI2, 1% Triton X-100, 0.5 mM CaCI2, 10 mM Pipes, 
1.2 mM PMSF, pH 6.8), incubated 7 min on ice, and nuclei were collected 
by centrifugation at 650 g for 5 min at 4°C. Nuclear matrices were isolated 
from membrane-depleted nuclei as described (Dworetsky et al., 1990). 

The nuclei were treated first with a double detergent buffer (0.5% deoxy- 
cholate/1% Tween 40 in 10 mM Tris-HCl, 10 mM NaCI, 3 mM MgCI2, pH 
7.4) to remove cytoskeletal elements and polyribosomes, then resus- 
pended in CSK 50 buffer (50 mM NaC1, 300 mM sucrose, 3 mM MgCI2, 
1% Triton X-100, 0.5 mM CaC12, 10 mM Pipes, 1.2 mM PMSF, pH 6.8) 
containing 100 p~g/ml DNase I and 50 Ixg/ml RNase A, incubated for 20 
min at 37°C, and then ammonium sulfate was added to a final concentra- 
tion of 0.25 M. After 15 min on ice, nuclear matrices were collected by 
centrifugation. In some experiments, the peripheral nuclear matrix was 
prepared by extracting intact matrices with 0.25 M ammonium sulfate and 
40 mM DTT in CSK 50 buffer for 20 min at 37°C and collecting by centrif- 
ugation (Payrastre et al., 1992). Equal amounts of protein from all the 
fractions were solubilized in 2.5 x Laemmli sample buffer and analyzed by 
SDS-PAGE and immunoblotting with the monoclonal anti-FGFR-1 anti- 
body. For immunoblotting, the transfers were stained with amido black to 
confirm the presence of equal amounts of protein in each lane and then 
blocked with 5% nonfat milk in TBS overnight before incubation with an- 
tibodies. The transfers were incubated overnight with the antibody (3 Isg/ 
ml), washed, and then incubated with rabbit anti-mouse IgG (1 ixg/ml) for 
2 h before the addition of 125I-protein A (0.2 ixCi/ml) for 2 h. The transfers 
were autoradiographed overnight at -70°C. 

Biotinylation of Cell-surface Proteins 
Quiescent Swiss 3T3 cells in 60-mm dishes were labeled for 30 min at 4°C 
with 0.5 mg/ml NHS-sulfo biotin (Vector Laboratories, Burlingame, CA) 
(Cole et al., 1987; Hurley et al., 1985), rinsed with ice-cold PBS, and then 
incubated for 60 min in DME with 0.5% FCS at either 4°C or 37°C in the 
absence or presence of FGF-2. The cells were rinsed in ice-cold TBS, and 
the nuclei were prepared as described above. The nuclei were solubilized 
by sonication in RIPA buffer (150 mM NaCI, 20 mM Na2HPO4, pH 7.4, 
1% deoxycholate, 1% Triton X-100, 0.1% SDS, 1 mM Na3VO4), and in- 
soluble material was removed by centrifugation. Biotin-tagged proteins 
were precipitated from the nuclear and nonnuclear fractions overnight 
with avidin-agarose (Vector Laboratories) and then eluted from the beads 
by boiling for 5 min in 2.5x Laemmli sample buffer. Samples were ana- 
lyzed by SDS-PAGE and immunoblotting with the monoclonal anti- 
FGFR antibody, as described above. 

Immunofluorescence Microscopy 
Cells were treated as described in Results, rinsed in PBS, fixed for 5 rain 
with 3% formaldehyde in PBS, and permeabilized for 5 min with 0.5% 
Triton X-100. Permeabilized cells were treated with either a rabbit anti- 
FGFR-1 antibody (10 ~g/ml) in PBS/3% BSA or the monoclonal anti- 
FGFR-1 antibody (50 p~g/ml) in PBS/3% BSA for 30 min, rinsed in PBS, 
labeled with either a mixture of rhodamine-conjugated, affinity-purified 
F(ab)2 fragment of goat anti-rabbit IgG (8 p,g/ml) and nitrobenzoxadia- 
zole (NBD)-phaUacidin (20 U/ml) in PBS/3% BSA (for the polyclonal an- 
tibody), or fluorescein-conjugated donkey anti-mouse IgG (for the mAb) 
for 10 min and mounted in 90% glycerol. In some cases, the polyclonal 
anti-FGFR-1 antibody was preincubated with the peptide antigen (100 
~g/ml) before labeling of the cells. Labeled cells were examined with ei- 
ther a microscope (Carl Zeiss, Inc., Thornwood, NY) using a ×63, numer- 
ical aperture 1.4 planapochromat oil objective for standard immunofluo- 
rescence microscopy, or with a laser scanning confocal microscope (model 
MRC600; Bio Rad Laboratories, Hercules, CA) equipped with an argon/ 
krypton mixed gas laser. Optical sections were taken in 400-nm steps in 
the z axis. Dual images were collected at 480 nm (NBD-phallacidin) and 
560 nm (rhodamine) and photographed. 

FGF Receptor Immunoprecipitation and In Vitro 
Kinase Assays 
Nuclear proteins were solubilized by sonication of isolated nuclei in Tri- 
ton X-100 buffer (1% Triton X-100 in 50 mM Hepes, pH 7.5, 50 mM NaCl, 
5 mM EDTA, 1 mM Na3VO4). FGFR-1 was immunoprecipitated at 4°C 
overnight with the commercial anti-FGFR-1 antibody (0.5 p.g/500 I~l nu- 
clear extract) or an equal amount of normal rabbit IgG, and the immuno- 
precipitates were collected on protein A-Sepharose and then washed 3× 
with 0.1% Triton X-100 in 20 mM Hepes, pH 7.5, 150 mM NaCl. In some 
experiments, 5 tLg of the cognate peptide was included during the immu- 
noprecipitation step. The immune complexes were resuspended in 50 I~l in 
vitro phosphorylation buffer (150 mM NaC1, 20 mM Hepes, pH 7.5, 0.1% 
Triton X-100) containing 10 mM MnC12, 50 mM MgC12, 50 nM ATP, and 1 
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~Ci [~/32p]ATP. The reaction was carried out for 20 min at room tempera- 
ture with continuous rotation and then terminated by the addition of an 
equal volume of 5× SDS sample buffer. The samples were separated on 
SDS-7.5% polyacrylamide gels, and the gels were fixed overnight in 25% 
methanol, 10% acetic acid, dried, and autoradiographed for 12-18 h. 

Protein Tyrosine Kinase Assays 
Protein tyrosine kinase activity in nuclei and nuclear matrices was assayed 
as described (Maher, 1991) using poly Glu/Tyr (4:1) as a substrate. The re- 
actions were analyzed by SDS-PAGE and autoradiography, after which 
the substrate bands were cut from the gel and the incorporation of 32p was 
quantified by Cerenkov counting. 

Results 

To determine if the treatment of cells with FGF-2 causes a 
redistribution of high affinity FGF receptors to the nu- 
cleus, quiescent Swiss 3T3 fibroblasts were treated for 60 
min with FGF-2, and the cells separated into nuclear and 
nonnuclear fractions using a protocol for the rapid prepa- 
ration of membrane-depleted nuclei (Schreiber et al., 
1989). Inspection of isolated nuclei by light microscopy 
showed they were intact and free of membrane contami- 
nation (not shown). In addition, no 5' nucleotidase activity 
or EGF receptors were associated with the nuclei (Fig. 1 
B), although similar numbers of EGF and FGF receptors 
are found on Swiss 3T3 cells (unpublished data). Equal 
volumes from each fraction were analyzed for the pres- 
ence of FGF receptors by immunoblotting with an mAb 
prepared against a baculovirus-expressed extracellular do- 
main of FGFR-1 that is produced in insect cells. As shown 
in Fig. 1 A, little or no receptor is detectable in nuclei iso- 
lated from quiescent cells, whereas receptor is readily visu- 
alized in the nuclear fraction prepared from FGF-2- 
treated cells. In both cases, the majority of receptor is 

Figure 1. Presence of FGF receptors in nuclei of FGF-treated 
Swiss 3T3 fibroblasts. (A) Quiescent cells were untreated (ct) or 
treated with 15 ng/ml FGF-2, 15 ng/ml EGF, or 10% FCS for 60 
min at 37°C. The cells were separated into nuclear (N) and non- 
nuclear (C) fractions as described (Schreiber et al., 1989), and 
equal volumes from each fraction were analyzed for the presence 
of FGF receptors by SDS-PAGE and immunoblotting with a 
mAb against the extracellular domain of FGFR-1. (B) Quiescent 
cells were untreated (ct) or treated with 15 ng/ml FGF-2 for 60 
min at 37°C. The cells were separated into nuclear (N) and non- 
nuclear (C) fractions as described above, and equal volumes from 
each fraction were analyzed for the presence of EGF receptors by 
SDS-PAGE and immunoblotting with a mAb against the extra- 
cellular domain of EGFR. Arrowhead indicates position of EGFR. 
Similar results were obtained in three independent experiments 
of identical design. Molecular mass markers (in kilodaltons) are 
on the right. 

found in the soluble fraction that contains both solubilized 
plasma membranes and cytoplasm. The two bands de- 
tected with the antibody correspond to the two and three 
Ig loop forms of FGFR-1 (unpublished data). It is not 
clear why the amounts of the two forms of FGFR-1 differ 
slightly between experiments, but it may result from the 
use of different batches of Swiss 3T3 cells. Since these cells 
fairly rapidly lose their strong mitogenic response to FGFs 
because of a greatly increased basal growth rate, new 
batches of cells must be thawed quite frequently. The 
translocation of FGF receptor to the nucleus was specific: 
treatment with either EGF or 10% serum, two agents that 
also induce proliferation of the Swiss 3T3 cells, does not 
increase the levels of FGF receptor in the nucleus. Treat- 
ment of cells with FGF-1 in the presence of heparin also 
causes a similar increase in nuclear FGF receptors (not 
shown). The presence of FGF receptors in the isolated nu- 
clei is unlikely to be an artifact of the technique used for 
nuclear isolation, since similar results were obtained using 
several different methods to prepare membrane-depleted 
nuclei (e.g., Fig. 6), and the biochemical results were con- 
firmed by immunofluorescence microscopy (see Figs. 4 
and 5). 

The appearance of FGF receptors in the nucleus after 
treatment with FGF-2 was time and dose dependent (Fig. 
2). Receptor is detected in the nucleus within 10 min of 
FGF-2 treatment, and maximal levels are reached within 1 h 
(Fig. 2 A). Extended treatment with FGF-2 (up to 10 h) 
does not result in a further increase in the level of nuclear 
FGFR-1 (not shown). Only a slight increase in nuclear 
FGF receptors is detected after a treatment with 1-5 ng/ml 
FGF-2, whereas a strong nuclear signal is observed after 
stimulation with 15 or 50 ng/ml FGF-2 (Fig. 2 B). Under 
the conditions used for these experiments, 15 ng/ml of 
FGF-2 is the optimal mitogenic dose for Swiss 3T3 fibro- 
blasts (Pasquale et al., 1988). 

To determine if the nuclear FGF receptor immunoreac- 
tivity derives from the cell surface, FGF receptors on the 
surface of quiescent 3T3 cells were labeled with an imper- 
meable biotin analogue (Cole et al., 1987; Hurley et al., 
1985) before treatment with FGF-2. Biotin-labeled, un- 
treated, and FGF-2-treated cells were separated into nu- 
clear and nonnuclear fractions, and the biotin-tagged pro- 
teins in each fraction were collected on avidin-agarose. 
The fractions were analyzed for the presence of FGF re- 
ceptors by immunoblotting. As shown in Fig. 3, little or no 
biotin-tagged receptor is detected in the nuclei of quies- 
cent cells. However, a biotin-tagged receptor is clearly de- 
tectable in nuclei isolated from FGF-2-treated cells. These 
experiments also demonstrate that a significant percent- 
age (~30 %) of the cell-surface FGFR-1 migrates to the 
nucleus. No receptor is detectable in avidin-agarose pre- 
cipitates that were prepared from cells not labeled with bi- 
otin. In addition, little or no biotin-tagged receptor is de- 
tectable in the nuclei of cells treated with FGF-2 at a low 
temperature (4°C). 

Standard and confocal immunofluorescence micros- 
copy were used to provide further evidence that FGF-2 
stimulates the accumulation of FGF receptors in target 
cell nuclei. Quiescent Swiss 3T3 cells show a diffuse label- 
ing for FGFR-1 (Fig. 4 A). The low level of plasma mem- 
brane staining is a result of the technique used to perme- 
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Figure 2. (,4) Time-dependent accumulation of 
FGF receptors in the nuclei of Swiss 3T3 fibro- 
blasts. Quiescent cells were untreated (ct) or 
treated with 15 ng/ml FGF-2 for 10 min, 60 min, 2 
h, and 4 h before fractionation and analysis of 
equal volumes from each fraction for the pres- 
ence of FGF receptors. (B) Dose-dependent ac- 
cumulation of FGF receptor in the nuclei of 
Swiss 3T3 fibroblasts. Quiescent cells were un- 
treated (ct) or treated for 60 min with 5, 15, or 50 
ng/ml FGF-2 before fractionation and analysis of 
equal volumes from each fraction for the pres- 
ence of FGF receptors. Similar results were ob- 
tained in three independent experiments of identi- 
cal design. Molecular mass markers (in kilodaltons) 
are on the right. 

abilize the cells. After  treatment with FGF-2 for 10 min, 
some cells show an increase in perinuclear labeling (Fig. 4 
B). After  60 min, most cells show strong nuclear labeling 
for FGFR-1 (Fig. 4 C). Little or no labeling is seen in cells 
labeled with blocked antibody (Fig. 4 D), providing fur- 
ther evidence for the specificity of  the nuclear labeling. To 
provide additional confirmation for the localization of 
FGFR-1 within the nuclei of FGF-2- t rea ted  cells, the cells 
were optically sectioned using a confocal microscope. As 
shown in Fig. 5, the majority of the labeling for FGFR-1 is 
found within the nucleus. Some perinuclear staining is also 
observed. Qualitatively similar results were obtained with 
the monoclonal  FGFR-1 antibody, although the intensity 
of labeling was weaker (not shown). 

Since theses studies clearly establish the presence of 
FGF receptors within the nuclei of  fibroblasts after treat- 
ment with FGF-2, it was of  interest to determine the sub- 
nuclear localization of the receptor. Membrane-depleted 
nuclei were isolated from untreated and FGF-treated cells 
and then fractionated further, as described in Materials 
and Methods. Using this approach, the majority of FGF 
receptor immunoreactivity is detected in the nuclear ma- 
trix (Fig. 6). Further fractionation of the nuclear matrix 
into peripheral matrix and internal matrix (Payrastre et 
al., 1992) demonstrates the presence of FGFR-1 immu- 
noreactivity exclusively in the peripheral matrix (Fig. 6), a 
fraction that represents < 5 %  of the total cellular protein. 
The membrane-depleted nuclei (Fig. 6, lanes I and 5) iso- 
lated by this technique (Fey et al., 1986) are not as clean as 
those prepared by hypotonic lysis (Schreiber et al., 1989) 

and shown in Figs. 1-3. Thus, a low level of FGF  receptor 
is detected in the unfractionated nuclei isolated from un- 
treated cells. 

To determine if nuclear FGFR-1 retains tyrosine kinase 
activity, nuclei were solubilized by sonication in a deter- 
gent-containing buffer, FGFR-1 was immunoprecipitated 
with an antibody directed against the C O O H  terminus of 
FGFR-1,  and the immunoprecipitate was assayed for auto- 
phosphorylation activity. As shown in Fig. 7, two high mo- 
lecular weight phosphorylated bands, similar in size to the 
two FGFR-1 bands detected by immunoblott ing (Figs. 1-  
3), are seen in receptor immunoprecipitates prepared with 
nuclei isolated from FGF-2- t rea ted  cells. These bands are 
greatly reduced or absent in receptor immunoprecipitates 
prepared with nuclei isolated from quiescent Swiss 3T3 
cells. The additional protein bands that immunoprecipi- 
tate with FGFR-1 may represent nuclear substrates of the 
receptor. Only lower molecular weight phosphorylated 
bands are seen in control immunoprecipitates using nor- 
mal rabbit IgG, and few or no phosphorylated bands are 
seen in control immunoprecipitates formed in the pres- 
ence of the cognate peptide. 

These results suggested that the translocation of FGF 
receptor to the nucleus might result in a general increase 
in tyrosine kinase activity in the nuclear fractions. To test 
this idea, nuclei, nuclear matrix, and peripheral nuclear 
matrix isolated from untreated and FGF-2- t rea ted  cells 
were assayed for tyrosine kinase activity using poly Glu/ 
Tyr (4:1) as an exogenous substrate. Tyrosine kinase activ- 
ity is increased in both the nuclei and nuclear matrix iso- 

Figure 3. Translocation of FGF receptors from 
the cell surface to the nucleus. Quiescent Swiss 
3T3 cells were unlabeled (lanes 1, 3, 5, and 7) 
or labeled (lanes 2, 4, 6, and 8) with NHS-sulfo 
biotin at 4°C, and then incubated for 60 min at 
either 37°C (A) or 4°C (B) in the absence (lanes 
1-4) or presence (lanes 5-8) of 50 ng/ml FGF-2. 
Cells were fractionated, and biotin-labeled pro- 
teins in both the nuclear (lanes 3, 4, 7, and 8) 
and nonnuclear (lanes 1, 2, 5, and 6) fractions 
were precipitated with avidin-agarose. The pre- 
cipitates were analyzed for the presence of 
FGF receptors by SDS-PAGE and immuno- 

blotting with the mAb against the extracellular domain of FGFR-1. Similar results were obtained in three independent experiments of 
identical design. Molecular mass markers (in kilodaltons) are on the right. 
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Figure 4. Indirect immunofluorescence labeling of Swiss 3T3 fibroblasts for FGF receptors. Quiescent cells were untreated (A) or 
treated for 10 min (B) or 60 min (C and D) with 50 ng/ml FGF-2, and then labeled with the rabbit polyclonal FGFR-1 antibody in the ab- 
sence (A-C) or presence (D) of the cognate peptide. Similar results were obtained in three independent experiments of identical design. 

lated from FGF-treated cells, and is highest relative to un- 
treated cells in the peripheral nuclear matrix fraction 
(Table I). The increase in tyrosine kinase activity is consis- 
tent with the presence of FGFR-1 in these fractions (Fig. 
6). The marginal increase in tyrosine kinase activity seen 
in whole nuclei isolated from FGF-2-treated cells proba- 
bly reflects the presence of multiple tyrosine kinases in 
whole nuclei, as well as the presence of low levels of FGF 
receptor in nuclei isolated from untreated cells by this 
technique. 

Discussion 

The results presented here provide strong evidence for an 
FGF-2-dependent  translocation of high affinity FGF re- 
ceptors to the nuclei of fibroblasts. Their subnuclear asso- 
ciation with the nuclear matrix suggests that FGF recep- 
tors may play a direct role in regulating gene transcription. 
In addition, these findings may help explain a number of 
paradoxes regarding the effects of FGF on cells (e.g., Zhan 
et al., 1993; Wiedlocha et al., 1994). 

Several lines of evidence indicate that the FGF-2-  
dependent association of FGF receptors with nuclei is un- 
likely to be an artifact. First, several different methods for 
preparation of nuclei give similar results. In addition, frac- 
tionation of the nuclei indicates that the vast majority of 

nuclear FGF receptor is located in the nuclear matrix. 
Since preparation of this nuclear fraction removes >95% 
of the cellular proteins, any protein that is nonspecifically 
associated with the nucleus would be unlikely to persist 
throughout this fractionation. Furthermore, nuclear FGF 
receptors can be detected both by biochemical analysis of 
the nuclei by either immunoblotting or immunoprecipita- 
tion and in vitro phosphorylation, and by immunocy- 
tochemistry with two distinct FGF receptor antibodies. Fi- 
nally, the presence of FGF receptors in the nuclei is ligand 
dependent, with little or no receptor detected in the nuclei 
of quiescent cells. 

The FGF-2-dependent translocation of FGF receptors 
observed in this study is distinct from the FGF-1--depen- 
dent association of FGF receptors with the perinuclear re- 
gion of NIH 3T3 cells (Prudovsky et al., 1994). For exam- 
ple, the time course of FGF-2--dependent FGF receptor 
translocation to the nucleus is faster than that reported for 
FGF-1 stimulation of receptor translocation in NIH 3T3 
cells (Prudovsky et al., 1994). Maximal translocation is ob- 
served by 1 h after the addition of FGF-2 with no further 
increase with longer treatment times, whereas at least a 9 h 
treatment with FGF-1 is required for maximal association 
of FGF receptors with the nuclei of NIH 3T3 cells. A more 
significant difference between the two studies is the ulti- 
mate location of translocated receptor. Using immunocy- 
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Figure 5. Confocal immunofluorescence mi- 
croscopy of FGF receptors in FGF-2-treated 
Swiss 3T3 cells. Cells treated for 60 rain with 50 
ng/ml FGF-2 were labeled with the rabbit poly- 
clonal FGFR-1 antibody (B and D) and NBD- 
phallacidin (A and C), and were examined with 
a Bio Rad MRC600 laser scanning confocal mi- 
croscope. Median nuclear optical sections are 
shown. 

tochemistry, enzymology, and biochemistry, I detect FGF 
receptors within the nucleus associated with the nuclear 
matrix. In response to FGF-1, receptors are translocated 
to a perinuclear region (Prudovsky et al., 1994). Although 
this difference could be caused by different receptor anti- 
bodies, I obtain the same immunocytochemical results 
with two different antibodies. It is unlikely the difference 
is caused by differences in the FGF receptors on the two 
cell types, since Swiss 3T3 fibroblasts express predomi- 
nantly FGFR-1 (unpublished results), similar to the NIH 
3T3 cells. The nuclear FGFR-1 seen in the Swiss 3T3 cells 
also appears to be distinct from the nuclear FGFR-3 ob- 
served in breast epithelial cells (Johnston et al., 1995). In 
the latter case, the receptor in the nucleus is a smaller, 
novel, intracellular form of FGFR-3 whereas, in the Swiss 
3T3 cells, nuclear FGFR-1 is caused by ligand-dependent 
translocation of the receptor from the cell surface to the 
nucleus. 

Although this is the first report of the FGF-2-dependent 
translocation of FGF receptors into the nuclei of cells, 
other growth factor receptors have been reported to be 
translocated to the nucleus in a ligand-dependent manner 

(Hopkins, 1994). Insulin receptors (Podlecki et al., 1987; 
Marti et al., 1991), EGF receptors (Jiang and Schindler, 
1990; Rakowicz-Szulczynska et al., 1989; Holt et al., 1994), 
HER2/neu (Xie and Hung, 1994), IL-1 receptors (Curtis et 
al., 1990), and growth hormone receptors (Lobie et al., 
1994) have been shown to associate with the nucleus using 
a variety of techniques. In general, the time course for 
translocation of these receptors is similar to that observed 
in this study. Maximal levels are reached within 1-2 h after 
the addition of the ligand to the cells. In the case of EGF 
receptors, a specific interaction with chromatin (Rako- 
wicz-Szulczynska et al., 1989) has been proposed. 

Our results indicate that the majority of FGF receptor in 
the nucleus of FGF-2-treated cells arises from the cell sur- 
face. Furthermore, several pieces of evidence indicate that 
this receptor is full length. First, the size of the receptor as 
detected by immunoblotting is consistent with full-length 
receptor. Second, nuclear receptor can be detected using 
either an antibody to the extracellular domain or an anti- 
body to the COOH-terminal domain of the receptor. 
These data imply that a specific nuclear transport mecha- 
nism for the FGF receptor must exist. Specific nuclear 
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Figure 6. Fractionation of Swiss 3T3 fibroblast nuclei. Quiescent 
cells were untreated (lanes 1-4) or treated for 60 min with 50 ng/ 
ml FGF-2 (lanes 5--8). Membrane-depleted nuclei (lanes I and 5), 
double detergent-treated nuclei (lanes 2 and 6), nuclear matrix 
(lanes 3 and 7), and peripheral nuclear matrix (lanes 4 and 8) 
were isolated as described (Fey et al., 1986; Dworetsky et al., 
1990; Payrastre et al., 1992), and equal amounts of protein from 
each fraction were analyzed for the presence of FGF receptors by 
SDS-PAGE and immunoblotting with the mAb against the extra- 
cellular domain of FGFR-1. Similar results were obtained in five 
independent experiments of identical design. Molecular mass 
markers (in kilodaltons) are on the right. 

transport is generally thought to occur via nuclear localiza- 
tion sequences (NLS) (Silver, 1991; Dingwall and Laskey, 
1991). Al though a close examination of  the primary se- 
quence of  FGFR-1 does not reveal the presence of  any ob- 
vious NLS, there are two sequences in the receptor that 
have weak homology to well-characterized NLS (Dingwall 

Figure 7. Tyrosine kinase activity of nuclear FGFR-1. (A) Quies- 
cent cells were untreated (CT) or treated for 60 rain with 50 ng/ 
ml FGF-2 (FGF). Nuclei were isolated as described (Schreiber et 
al., 1989), and nuclear proteins were solubilized by sonication in 
Triton X-100 buffer. Immunoprecipitates were prepared using ei- 
ther an antibody specific for the COOH terminus of FGFR-1 (+) 
or normal rabbit IgG ( - ) ,  and the immune complexes were phos- 
phorylated with ['y32p]ATP and analyzed by SDS-PAGE and au- 
toradiography. (B) Quiescent cells were treated with 50 ng/ml 
FGF-2 for 60 min, and nuclear proteins were solubilized as de- 
scribed in (A). Immunoprecipitates were prepared using an anti- 
body specific for the COOH terminus of FGFR-1 in the presence 
(1) or absence (2) of the cognate peptide. The immune complexes 
were phosphorylated and analyzed as described in A. Arrow- 
heads indicate phosphorylated bands corresponding to FGFR-1. 
Similar results were obtained in three independent experiments 
of identical design. Molecular mass markers (in kilodaltons) are 
on the right. 

Table I. Nuclear Tyrosine Kinase Activity 

Control +FGF-2 

Nuclei  1.0 1.14 __ 0.31 

Nuclear  matrix 1.0 2.14 _+ 0.32 

Peripheral nuclear 1.0 2.22 --- 0.22 
matrix 

Protein tyrosine kinase activity in nuclei and subnuclear fractions was assayed in un- 
treated cells (control), and cells that were treated with 50 ng/ml FGF-2 for 60 min 
(+ FGF-2) as described in Materials and Methods. The results for FGF-2-treated cells 
are presented relative to the activity in the equivalent fraction from untreated cells. 
The data are the average from three independent experiments -+SD. 

and Laskey, 1991). The first potential NLS is located be- 
tween the first and second Ig loops of  FGFR-1 and con- 
sists of  a pair of basic amino acids separated from a basic 
cluster, in which three out of  the next six amino acids are 
basic, by a stretch of seven amino acids. The second poten- 
tial NLS is located in the cytoplasmic juxtamembrane do- 
main of FGFR-1 and consists of two pairs of basic amino 
acids separated by a stretch of 18 amino acids. Alterna- 
tively, since proteins that have had their nuclear targeting 
sequences deleted can still be transported to the nucleus as 
part of a protein complex (Dingwall and Laskey, 1991), a 
similar process could apply to the F G F  receptor. It is not 
known how the internalized receptor is shuttled through a 
vesicular pathway, eventually arriving at the nuclear mem- 
brane. There is no precedent for this type of trafficking 
pathway, except in the reports of  other nuclear-associated 
growth factor receptors (see above). Consistent with inter- 
nalization, the cell surface to nucleus pathway does not 
function at low temperatures (Fig. 3). 

On a final note, the observation that translocated FGF  
receptors concentrate in the nuclear matrix is particularly 
intriguing. This matrix is thought to be instrumental in the 
regulation and coordination of gene expression (Fey and 
Penman, 1988; Dworetsky et al., 1990; Stuurman et al., 
1990). Its composition is distinct in different tissues and in 
different cell types, and can change dramatically as a func- 
tion of differentiation (Fey and Penman, 1988; Dworetsky 
et al., 1990; Stuurman et al., 1990). The presence of FGF  
receptors in this particular nuclear fraction suggests that 
they could be playing a role in regulating the expression of 
a set of FGF-2-dependent  genes. If  so, the identification 
of specific nuclear substrates for different FGF  receptor 
isoforms may help explain the specificity of the mitogenic 
and differentiation response of cells to similar signaling 
pathways. 
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