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Abstract. Cadherins are a family of cell-cell adhesion 
molecules which play a central role in controlling mor- 
phogenetic movements during development. Cadherin 
function is regulated by its association with the actin 
containing cytoskeleton, an association mediated by a 
complex of cytoplasmic proteins, the catenins: e~, [3, and 
~/. Phosphorylated tyrosine residues on 13-catenin are 
correlated with loss of cadherin function. Consistent 
with this, we find that only nontyrosine phosphorylated 
13-catenin is associated with N-cadherin in El0 chick 
retina tissue. Moreover, we demonstrate that a PTP1B- 
like tyrosine phosphatase associates with N-cadherin 
and may function as a regulatory switch controlling 
cadherin function by dephosphorylating 13-catenin, 
thereby maintaining cells in an adhesion-competent 
state, 

The PTP1B-Iike phosphatase is itself tyrosine phos- 
phorylated. Moreover, both direct binding experiments 
performed with phosphorylated and dephosphorylated 
molecules, and treatment of cells with tyrosine kinase 
inhibitors indicate that the interaction of the PTPIB- 
like phosphatase with N-cadherin depends on its ty- 
rosine phosphorylation. Concomitant with the tyrosine 
kinase inhibitor-induced loss of the PTP1B-Iike phos- 
phatase from its association with N-cadherin, phospho- 
rylated tyrosine residues are retained on 13-catenin, the 
association of N-cadherin with the actin containing cy- 
toskeleton is lost and N-cadherin-mediated cell adhe- 
sion is prevented. Tyrosine phosphatase inhibitors also 
result in the accumulation of phosphorylated tyrosine 
residues on ~-catenin, loss of the association of N-cad- 
herin with the actin-containing cytoskeleton, and pre- 

vent N-cadherin mediated adhesion, presumably by 
directly blocking the function of the PTP1B-Iike phos- 
phatase. 

We previously showed that the binding of two ligands 
to the cell surface N-acetylgalactosaminylphospho- 
transferase (GalNAcPTase), the monoclonal antibody 
1Bll and a proteoglycan with a 250-kD core protein, 
results in the accumulation of phosphorylated ty- 
rosine residues on 13-catenin, uncoupling of N-cadherin 
from its association with the actin containing cytoskele- 
ton, and loss of N-cadherin function. We now report 
that binding of these ligands to the GalNAcPTase re- 
suits in the absence of the PTP1B-Iike phosphatase 
from its association with N-cadherin as well as the loss 
of the tyrosine kinase and tyrosine phosphatase activi- 
ties that otherwise co-precipitate with N-cadherin. Con- 
trol antibodies and proteoglycans have no such effect. 
This effect is similar to that observed with tyrosine ki- 
nase inhibitors, suggesting that the GalNAcPTase/pro- 
teoglycan interaction inhibits a tyrosine kinase, thereby 
preventing the phosphorylation of the PTP1B-like 
phosphatase, and its association with N-cadherin. 

Taken together these data indicate that a PTP1B-like 
tyrosine phosphatase can regulate N-cadherin function 
through its ability to dephosphorylate 13-catenin and 
that the association of the phosphatase with N-cadherin 
is regulated via the interaction of the GalNAcPTase 
with its proteoglycan ligand. In this manner the Gal- 
NAcPTase-proteoglycan interaction may play a major 
role in morphogenetic cell and tissue interactions dur- 
ing development. 

T 
HE cadherin family of calcium-dependent adhesion 
molecules mediate homophilic cell-cell adhesion 
(reviewed in Grunwald, 1993). During normal de- 

Address all correspondence to J. Lilien, Department of Biological Sci- 
ences, Wayne State University, Detroit, MI 48202. Tel.: (313) 577-2876. 
Fax: 313 577-6891. 

velopment they are suggested to play an important causal 
role in the onset and cessation of cell migration (Akitaya 
and Bronner-Fraser, 1992; reviewed in Vallrs et al., 1991) 
and in the separation of tissues (reviewed in Takeichi, 
1991). Three lines of evidence have been marshaled in 
support of this critical role for cadherins in development: 
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first, ectopic or altered expression leads to altered devel- 
opment (Detrick et al., 1990; Dufour et al., 1994; Levine et 
al., 1994; Heasman et al., 1994a,b) and failure of implanta- 
tion (Larue et al., 1994; Riethmacher et al., 1995). Second, 
in vitro analysis of function reveals that N-cadherin plays 
an important role in the outgrowth of nerve fibers (Bixby 
and Zhang, 1990; Gaya Gonzalez et al., 1991; Matsunaga 
et al., 1988; Doherty et al., 1991) and E-cadherin plays a 
crucial role in the formation of epithelia (reviewed in 
Eaton and Simons, 1995). Third, an extensive body of data 
demonstrates that cadherins are temporally and spatially 
regulated in a manner that correlates with key develop- 
mental events (reviewed in Takeichi, 1991; Ranscht, 1991; 
Grunwald, 1993; Dalseg et al., 1994). 

The function of cadherins depends on their association 
with the actin containing cytoskeleton. Deletion or trunca- 
tion of the cytoplasmic domain of cadherin results in loss 
of function, in spite of continued expression at the cell sur- 
face (Nagafuchi and Takeichi, 1988, 1989; Kintner, 1992; 
Fugimori and Takeichi, 1993). The interaction of cad- 
herins with the actin containing cytoskeleton is mediated 
by ec, 13, and ~ catenins (reviewed in Magee and Buxton, 
1991; Kemler, 1993; Gumbiner, 1993). Consistent with a 
role for the catenins in linking cadherins to the cytoskele- 
ton, loss of cadherin function has been correlated with 
alterations in catenins. Loss of ec-catenin has been corre- 
lated with loss of cadherin function in cell lines (Shimoyama 
at al., 1992; Breen et al., 1994; Ochiai et al., 1994a), which 
in one case may be due to a deletion in the et-catenin gene 
(Oda et al., 1993). Mutation of 13-catenin (Kawanishi et al., 
1995), as well as the presence of phosphorylated tyrosine 
residues on 13-catenin are also correlated with a loss of 
cadherin-mediated adhesion. We have shown that the 
interaction of the chick retina N-acetylgalactosaminylphos- 
photransferase (GalNAcPTase) with its proteoglycan ligand 
results in the accumulation of phosphorylated tyrosine 
residues on [3-catenin concomitant with loss of cadherin- 
mediated adhesion and uncoupling of cadherin from its as- 
sociation with the cytoskeleton (Balsamo et al., 1995). Ad- 
ditionally, treatment of human cancer cells with growth 
factors (Shibamoto et al., 1994) or transformation of cells 
with v-src (Behrens et al., 1993; Hamaguchi et al., 1993) or 
Rous sarcoma virus (Matsuyoshi et al., 1992) results in the 
accumulation of phosphorylated tyrosine residues on 13-cat- 
enin concomitant with loss of cadherin-mediated adhe- 
sion. 

Taken together these data suggest that the presence or 
absence of phosphorylated tyrosine residues on 13-catenin 
appears to be a critical parameter in controlling cadherin 
function, possibly by regulating the association of cad- 
herins with the cytoskeleton. In this manuscript we have 
examined the regulation of the tyrosine phosphorylation/ 
dephosphorylation of 13-catenin. In E l0  chick retina tissue 
only [3-catenin molecules lacking phosphorylated tyrosine 
residues are associated with N-cadherin. Moreover, we 
show that a novel PTP1B-like tyrosine phosphatase 
(PTP1B-LP) 1 is associated with N-cadherin and that the ac- 
cumulation of phosphorylated tyrosine residues on 13-cate- 

1. Abbreviations used in this paper: B, bound; F, flowthrough; GaP 
NAcPTase, N-acetylgalactosaminylphosphotransferase; PTP1B-LP, PTP1B- 
like tyrosine phosphatase; PG, proteoglycan. 

nin, uncoupling of cadherin from its association with the 
cytoskeleton, and loss of cadherin-mediated adhesion are 
correlated with inhibition of the function of this phos- 
phatase, or loss of its association with N-cadherin. Fur- 
thermore, the association of the PTPIB-LP with N-cad- 
herin requires its tyrosine phosphorylation as demonstrated 
by both direct binding experiments and by experiments in 
which cells were treated with tyrosine kinase inhibitors. 
We also show that the binding to cells of GalNAcPTase 
ligands results in the loss of tyrosine kinase and tyrosine 
phosphatase activity that co-precipitates with N-cadherin 
and the failure of the PTP1B-LP to associate with N-cad- 
herin. Based on these observations we propose that the 
PTP1B-LP acts as a regulatory switch modulating cad- 
herin-mediated cell--cell adhesion and that GalNAcPTase- 
proteoglycan interactions can alter the state of this switch 
by inhibiting a tyrosine kinase whose activity is necessary 
to keep the phosphatase bound to N-cadherin. 

Materials and Methods 

Antibodies 

The anti-N-cadherin hybridoma cell line NCD-2 is a rat IgG and was gen- 
erously provided by M. Takeichi (Kyoto University, Kyoto, Japan). The 
anti-13-catenin antibody used in immunoprecipitation experiments is a 
rabbit polyclonal, prepared from a 15-amino acid synthetic peptide de- 
rived from the published sequence (Butz et al., 1992). In experiments 
where immunoblotting was also necessary, a mouse monoclonal IgG anti- 
13-catenin antibody from Transduction Labs (Lexington, KY) was used. 
Anti-phosphotyrosine antibody PY20, horseradish peroxidase-conjugated 
anti-phosphotyrosine antibody RC20H, biotin conjugated anti-phospho- 
tyrosine antibody RC20B, and anti-PTP1B antibody, prepared from a 
166--amino acid fragment corresponding to the carboxy terminus of the 
enzyme, were also mouse IgG's from Transduction Labs. Streptavidin- 
conjugated magnetic beads were from Promega Biotech (Madison, WI). 
The anti-actin antibody was a monoclonal mouse IgG from Chemicon Inc. 
(Temecula, CA). HRP-conjugated goat anti-rat, -rabbit, or -mouse IgG 
or IgM were from Cappel (Organon Teknika Corp., Durham, NC). HRP- 
conjugated Streptavidin was from Amersham Corp. (Chicago, IL). 

The monoclonal anti-GalNAcPTase antibodies, 7A2 and 1Bll, are 
mouse IgMs prepared in our laboratory and partially purified from culture 
medium as described (Scott et al., 1990; Balsamo et al., 1991). Both anti- 
bodies bind equally to the cell surface GalNAcPTase, but only 1Bll trig- 
gers the pathway resulting in inhibition of N-cadherin-mediated adhesion 
(Balsamo et al., 1991). 

Other Reagents 
o-Vanadate, genistein, and protease inhibitors were from Sigma Chemical 
Co. (St. Louis, MO). Phenylarsine oxide was from Eastman Kodak and 
herbimycin from Calbiochem-Behring Corp. (San Diego, CA). Chicken 
brain-derived chondroitin sulfate proteoglycans (PG) with core molecular 
masses of 250 kD (250-kD PG) and 400 kD (400-kD PG) were purified 
and core proteins prepared according to Ernst et al. (1995). We have pre- 
viously demonstrated that the 250-kD core protein, but not the 400-kD 
core protein, binds directly to the GalNAcPTase resulting in inhibition of 
N-cadherin-mediated adhesion (Balsamo et al., 1995). 

Preparation of a Rapidly Sedimenting Fraction from 
Triton X-IO0 Tissue Extracts 
This procedure has been described in previous publications (Balsamo 
et al., 1991, 1995). Briefly, neural retina tissue or cell suspensions were ho- 
mogenized in Triton buffer (five retinas/ml; 1% Triton X-100 in 50 mM 
Tris-HCl, pH 8.0 and 150 mM NaCI) containing protease and phosphatase 
inhibitors and DNase (5 p,g/ml each leupeptin and antipain, 1 mM PMSF, 
10 mM NaF, 4 mM o-vanadate, 100 p,g/ml DNAase). After 30 min on ice, 
the homogenates were clarified by centrifugation at 14,000 g. To prepare 
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the rapidly sedimenting fraction the 14,000 g supernatant solution was lay- 
ered on sucrose (100 ~1 of 50% and 1 ml of 20% sucrose in Triton buffer) 
and centrifuged for 30 rain at 150,000 g. The fraction from the 20/50% in- 
terface down constitutes the rapidly sedimenting fraction, referred to as 
the H fraction, and includes ~80% of the total N-cadherin present. This 
distribution remains unchanged by treatment of cells with phosphatase or 
kinase inhibitors as described below. 

Affinity Purification of N-Cadherin and Analysis of 
Associated Proteins 
IgG prepared from NCD-2 culture media was coupled to CnBr-activated 
Sepharose (Sigma Chemical Co.) according to the manufacturer 's instruc- 
tions. The H fraction from 20 retinas was diluted with an equal volume of 
Triton buffer and applied to the column. The column was washed with 10 
volumes of Triton buffer and eluted with two column volumes of 50 mM 
diethylamine. The eluate was neutralized with 1 M Tris-HC1, pH 8, before 
further use. 

To determine the distribution of tyrosine phosphorylated 13-catenin in 
retina tissue, the bound and flowthrough fractions from the NCD-2 affin- 
ity column were concentrated using a Centricon 30 (Amieon Corp., Dan- 
vers, MA), made 1% in SDS to disrupt protein-protein interactions, di- 
luted with Triton buffer to a final concentration of 0.1% SDS, and then 
immunoprecipitated with anti-13-catenin. The immunoprecipitates were 
fractionated by SDS-PAGE, transferred to PVDF membranes and probed 
with anti-phosphotyrosine or anti-13-catenin antibodies. 

To evaluate whether a PTP1B-Iike phosphatase was associated with 
N-cadherin and whether it contained phosphorylated tyrosine residues, 
the bound and flow-through fractions from an NCD-2 affinity column 
were treated as above and immunoprecipitated with anti-PTPiB or PY20. 
The immunoprecipitates were fractionated by SDS-PAGE, and immuno- 
blotted with anti-phosphotyrosine antibody RC20H or anti-PTPIB. 

lmmunoprecipitations were carried out for 4 h at 4°C. 100 ~.g of mag- 
netic beads (Advanced Magnetics, Cambridge, MA) conjugated with the 
appropriate second antibody were then added and the mixture incubated 
for 1 h at 4°C with end to end rotation. The immunoprecipitates were col- 
lected using a magnetic stand, the beads washed five times with Triton 
buffer, and precipitated material eluted with SDS-PAGE sample buffer. 

Immunoblotting 
SDS-polyacrylamide gels were transferred to PVDF membranes using a 
semi-dry transfer unit (Bio-Rad Laboratories, Cambridge, MA) for 36 
min at 15V. The membranes were blocked for 1 h at 37°C in 5% dry milk 
solids in TBST (50 mM Tris-HCl, 150 mM NaC1, 0.1% Tween 20, pH 8) or 
in 3% BSA-1% gelatin in TBST when reacting with anti-phosphotyrosine 
antibodies. The membranes were incubated with the primary antibody for 
1 to 2 h, washed for 30 min in three changes of TBST, and incubated with 
HRP-conjugated secondary antibody (1:1,000 in TBST) for 45 min. After 
washing the membranes were developed using the ECL system (Amer- 
sham Corp., Arlington Heights, IL). When necessary the membranes were 
stripped of bound antibody by incubating stripping buffer (100 mM 2-mer- 
captoethanol, 2% SDS, 62.5 mM Tris-HCl, pH 6.8) for 30 min at 50°C, 
washed in TBST, blocked, and reused as above. 

Adhesion Assays 
Single cells were prepared from 3H-labeled E9 chick retina by trypsin dis- 
sociation in the presence of calcium (Grunwald et al., 1980; Brackenbury 
et al., 1981; Magnani et al., 1981). Such cells have an intact and functional 
cadherin adhesion system. Labeling of tissues and adhesion of labeled 
cells to immobilized N-cadherin or the anti-N-cadherin antibody NCD-2 
was assayed as described previously (Balsamo et al., 1991). 

To 3H-label cells during a prolonged treatment with tyrosine kinase in- 
hibitors, single cells were incubated in F12 medium containing 10 IxCi 3H- 
leucine, 50 Ixg/ml gentamycin, and 1 p.g/ml herbimycin A, on 30 mm Petri 
dishes (~1 × 107 cells/2 ml), overnight, at 37°C, under an atmosphere of 
10% CO2. Just before assaying, cells were removed from the Petri plate by 
gentle flushing with a Pasteur pipette, collected by centrifugation, washed 
and resuspended in HBSGKCa (20 mM Hepes, pH 7.2, 150 mM NaCl, 2 
mM glucose, 3 mM KCI, and 1 mM Ca). 

To correlate the effects of tyrosine kinase and tyrosine phosphatase in- 
hibitors and GalNAcPTase ligands on adhesion with the phosphorylated 
tyrosine content of 13-catenin and with the association of the PTPIB-LP 
with N-cadherin, single cells were incubated with or without the desired 

inhibitor in HBSGKCa for 45 min at 37°C and 70 rpm (~108 cells/3 ml). 
The ceils were collected, H fractions were prepared and the phosphory- 
lated tyrosine content of 13-catenin or the association of the PTP1B-LP 
with N-cadherin analyzed as described above. 

I m m u n o f l u o r e s c e n c e  

E9 neural retina cells prepared as above were plated on eoverslips coated 
with poly-L-lysine (50 i~g/ml in PBS) and incubated overnight in DME 
containing 10% FCS and 1% ITS (insulin, transferrin, selenium; GIBCO 
BRL, Gaithersburg, MD). The cells were fixed in 4% paraformaldehyde 
in PBS and permeabilized with 0.1% Triton X-100 in PBS for 10 min at 
room temperature. The cells were then incubated for 1 h, at room temper- 
ature with the desired antibody diluted in DME containing 5% goat se- 
rum. The cells were washed four times with DME/goat serum and incu- 
bated for another hour with rhodamine-conjugated second antibody. 
After washing another four times in the same buffer, the coverslips were 
mounted and examined under epifluorescence. 

Preparation of Biotinylated N-Cadherin and 
Overlay Assays 
Purified N-cadherin was prepared according to the procedure described 
by Bixby and Zhang (1990) and biotinylated using the ECL protein bioti- 
nylation kit (Amersham, Corp.). The purity of the preparation was as- 
sessed by SDS-PAGE followed by transfer to PVDF membrane and prob- 
ing with HRP-streptavidin or anti-N-cadherin antibody followed by HRP 
goat anti-rat IgG (see Fig. 8). 

To assay direct binding between N-cadherin and the ~I'P1B-LP, H 
preparations were immunoprecipitated with anti-PTP1B antibody, the 
precipitates fractionated by SDS-PAGE and transferred to PVDF mem- 
branes. The membranes were rinsed in 50 mM Tris buffer, pH 9, contain- 
ing 5 mM MgCI2, 2 mM CaC12 and 1 mM PMSF. Parallel lanes were incu- 
bated in the same buffer with 10 U/ml alkaline phosphatase (Promega 
Biotec, Madison, WI) with or without 4 mM o-vanadate for 1 h, at 37°C to 
inhibit phosphatase activity. The membranes were blocked for 30 min in 
3% BSA in 50 mM Tris (pH 8.0) with 150 mM NaC1 and incubated over- 
night with biotinylated N-cadherin in the Tris-NaCl buffer with 2 mM 
CaClz. After extensive washing, the membranes were incubated with 
HRP-streptavidin and developed using enhanced chemiluminescence. 

Determination of Protein Tyrosine Kinase and Protein 
Tyrosine Phosphatase Activity 
Single cells were incubated with the desired perturbing agent in HB- 
SGKCa for 45 min at 37°C and 70 rpm (~  10 ~ cells/3 ml). The N-cadherin 
bound fraction was prepared from an H fraction as above. Aliquots were 
tested for kinase or phosphatase activity using the respective non radioac- 
tive enzyme assay kits (Boehringer-Mannheim Biochemicals, Indianapo- 
lis, IN). Tyrosine phosphatase activity was measured using a stable ty- 
rosine phosphorylated peptide which is biotinylated at the amino 
terminus. This substrate is bound to microtiter wells coated with streptavi- 
din and reacted with the source of tyrosine phosphatase. Phosphotyrosine 
residues are determined immunochemieally with a specific anti-phospho- 
tyrosine antibody covalently bound to peroxidase. Absorbance at 405 nm 
reflects the amount of phosphotyrosine residues remaining: the higher the 
absorbance, the lower the phosphatase activity. 

The protein tyrosine kinase assay measures addition of a phosphate to 
tyrosine residues in a synthetic peptide substrate labeled with biotin. The 
peptide is incubated with the kinase source in suspension, the reaction 
stopped by the specific inhibitor piceatannol and the biotinylated peptide 
attached to streptavidin coated microtiter wells. As in the phosphatase as- 
say, phosphotyrosine residues are determined by a specific anti-phospho- 
tyrosine antibody, and activity determined as absorbance at 405 nm. In 
this case, higher absorbance values correspond to higher kinase activity. 

Results 

Only fl-Catenin Lacking Phosphorylated Tyrosine 
Residues Is Associated with N-Cadherin 

There is a correlation between the presence of phosphory- 
lated tyrosine residues on 13-catenin and loss of cadherin 
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function (Matsuyoshi et al., 1992; Behrens, et al., 1993; 
Hamaguchi  et al., 1993; Shibamoto et al., 1994; Balsamo et 
al., 1995). One possible interpretation of  this correlation is 
that the presence of  phosphorylated tyrosine residues on 
13-catenin prevents its association with N-cadherin and there- 
fore cadherin is unable to form its critical connection to the 
actin containing cytoskeleton. To further test this idea, we 
examined the association of  nontyrosine-phosphorylated 
and tyrosine-phosphorylated [3-catenin with N-cadherin. 
A 14,000-g supernatant from E l 0  retina tissue homoge-  
nized in Triton X-100 was applied to an anti-N-cadherin 
affinity column and separated into bound (B) and un- 
bound or flowthrough (F) fractions. Greater  than 90% of 
the N-cadherin in the extract was recovered in the bound 
fraction (not shown). The bound and unbound fractions 
were then treated with SDS to eliminate protein-protein 
interactions and immunoprecipitated with anti-13-catenin 
antibody. These precipitates were immunoblotted with anti- 
13-catenin and anti-phosphotyrosine antibodies. Although 
similar amounts of  [3-catenin were present in the B and F 
fractions, [3-catenin that had coprecipitated with N-cad- 
herin (B fraction) was not phosphorylated on tyrosine res- 
idues whereas 13-catenin that did not co-precipitate with 
N-cadherin (F fraction) contained phosphorylated ty- 
rosine residues (Fig. 1). 

Inhibition of  Either Tyrosine Kinases or Tyrosine 
Phosphatases Results in fl-Catenin Containing 
Phosphorylated Tvrosine Residues, Uncoupling of  
N-Cadherin from Its Association with Actin and 
Inhibition o f  Cadherin-mediated Adhesion 

To determine the roles of  tyrosine kinases and tyrosine 
phosphatases in regulating the level of phosphorylated ty- 
rosine residues on [3-catenin, E l 0  retina cells were assayed 
for cadherin-mediated adhesion and for phosphorylated 
tyrosine residues on [3-catenin in the presence or absence of 
specific tyrosine kinase and phosphatase inhibitors. Geni- 
stein (Akiyama et al., 1987) or herbimycin A (Uehara and 
Fukazawa, 1991) were used to inhibit tyrosine kinase; per- 

Figure 1. 13-Catenin phos- 
phorylated on tyrosine resi- 
dues is not associated with 
N-cadherin. (Top) Anti-N- 
cadherin bound (B) and 
flowthrough (F) fractions 
from the 14,000 g superna- 
tant of the Triton X-100 ho- 
mogenate were made 1% in 
SDS to disrupt protein-pro- 
tein interactions and immu- 
noprecipitated with anti-13- 
catenin antibody. The precip- 
itates were fractionated by 
SDS-PAGE and immuno- 
blotted with anti-phosphoty- 
rosine antibody PY20. (Bot- 
tom) The same transfer was 
stripped and reprobed with 

anti-13-catenin antibody. The arrowhead at the right labeled 13 
cat. indicates the position of 13-catenin. The migration of stan- 
dard proteins is indicated at the left by their molecular mass 
(xlO-S). 

vanadate (Gordon,  1991; Volberg et al., 1991) or  pheny- 
larsine oxide (Levenson and Blackshear, 1989) were used 
to inhibit tyrosine phosphatase. Both sets of  inhibitors re- 
sult in the inhibition of N-cadherin-mediated adhesion 
(Fig. 2 A). Fig. 2 A represents adhesion to anti-N-cadherin 
antibody NCD-2, however, identical results were obtained 

Figure 2. The effect of tyrosine kinase and tyrosine phosphatase 
inhibitors on N-cadherin-mediated adhesion (A), 13-catenin 
phosphorylation (B), and the association of N-cadherin with actin 
(C). (A) Adhesion. all-labeled single cells were preincubated 
with the indicated additive for 45 rain and added to microtiter 
wells coated with anti-cadherin antibody NCD-2. Adhesion was 
calculated as percent of control value. The data represent the re- 
suits of three independent experiments and each point is the av- 
erage of three measurements. Co, no additives; Gen, 150 IxM 
genistein; Herb., 1 Ixg/ml herbimycin; pVn, 2 mM per-vanadate; 
PAO, 10 txg/ml phenylarsine oxide. (B) Phosphorylated tyrosine 
residues on 13-catenin. Single cells were either immediately pro- 
cessed for analysis (0) or incubated for 45 rain in the presence of: 
45, no additives; Gen, 150 ~M genistein; PAO, 10 Ixg/ml pheny- 
larsine oxide. H fractions were prepared, immunoprecipitated 
with anti-13-catenin antibody, the immunoprecipitates fraction- 
ated by SDS-PAGE, and immunoblotted with anti-phosphoty- 
rosine antibody PY20. The arrow labeled 13 cat indicates the posi- 
tion of 13-catenin. The migration of standard proteins is indicated 
at the left by their molecular mass (×10-3). (C) Association of 
N-cadherin with actin. Single cells were treated as in B, the H frac- 
tion isolated and immunoprecipitated with anti-N-cadherin anti- 
body NCD-2. The immunoprecipitates were fractionated by SDS- 
PAGE on a 10% gel and immunoblotted with an anti-actin anti- 
body. As a control, the same gel was stripped and immunoblotted 
with anti-N-cadherin antibody NCD-2 (top). Co, no additions; 
PAO, 10 p~g/ml phenylarsine oxide; Gen, 150 p,M genistein. The 
arrowheads labeled N-Cad and actin indicate the position of 
N-cadherin and actin, respectively. The migration of standard 
proteins is indicated at the left by their molecular mass (× 10-3). 

The Journal of Cell Biology, Volume 134, 1996 804 



using purified N-cadherin as the adhesive substrate (data 
not shown). Fig. 2 B shows the results of kinase and phos- 
phatase inhibitors on phosphorylation of ~-catenin. As 
seen in intact tissue (Fig. 1), immediately following disso- 
ciation of tissue into single cells there is a population of ty- 
rosine phosphorylated [3-catenin. However, after 45 min of 
culture under conditions allowing adhesion, phosphory- 
lated tyrosine residues are no longer detected on 13-cate- 
nin. Consistent with their inhibitory effect on adhesion, 
the presence of tyrosine kinase or tyrosine phosphatase in- 
hibitors prevent the removal of phosphate residues from 
[3-catenin (Fig. 2 B). The amount of total 13-catenin in each 
lane is similar (not shown), indicating that the differences 
represent changes in the degree of tyrosine phosphoryla- 
tion. Thus adhesion competent cells incubated in suspen- 
sion for 45 min have a lower level of phosphorylated ty- 
rosine residues on [3-catenin than cells in vivo, possibly 
because during cell preparation endogenous inhibitors 
(such as the 250-kD PG; Balsamo et al., 1995) are re- 
moved, allowing the removal of tyrosine phosphate from 
13-catenin. 

To determine if these drugs also affect the association of 
N-cadherin with actin, we determined if actin remains as- 
sociated with the N-cadherin--catenin complex in the rap- 
idly sedimenting fraction (H) isolated from the 14,000 g 
supernatant from Triton X-100 homogenates of E l0  retina 
cells. We have previously shown that the H fraction con- 
tains cadherin-[3-catenin-actin complexes in adhesion com- 
petent cells, but not in cells rendered adhesion incompe- 
tent by treatment with monoclonal anti-GalNAcPTase 
antibody 1Bl l  or the GalNAcPTase binding proteoglycan 
with a 250-kD core protein (Balsamo et al., 1991, 1995; 
Bauer et al., 1992). Cells were incubated with tyrosine ki- 
nase and tyrosine phosphatase inhibitors; the H fraction 
prepared, immunoprecipitated with anti-N-cadherin anti- 
body NCD-2 and the precipitates analyzed by immunoblot 
with anti-actin antibody (Fig. 2 C). Indeed, both sets of 
drugs result in a reduction in the amount of actin associ- 
ated with N-cadherin. 

A PTPIB-like Phosphatase Is 
Associated with N-Cadherin and Is Itself 
Tyrosine Phosphorylated 

The fact that incubation in the presence of tyrosine 
phosphatase inhibitors increases the level of phosphate on 
~3-catenin suggests that tyrosine phosphatases are involved 
in the removal of phosphate from 13-catenin. To directly 
test for the association of protein tyrosine phosphatases 
with N-cadherin-catenin complexes, the H fraction was 
passed over an anti-N-cadherin affinity column and the 
bound and flowthrough fractions analyzed for the pres- 
ence of tyrosine phosphatases using commercially avail- 
able antibodies. Strikingly, a ~37-kD polypeptide cross- 
reactive with anti-PTP1B antibody is consistently found 
associated with the N-cadherin bound fraction, but not in 
the flowthrough fraction (Fig. 3). 

Short term incubations in the presence of tyrosine ki- 
nase inhibitors prevent the dephosphorylation of 13-cate- 
nin seen following preparation of single cells (Fig. 2 B). 
This suggests that a tyrosine kinase is involved in one or 
more steps in the removal of phosphate from tyrosine resi- 

Figure 3. Association of a tyrosine phosphatase with the N-cad- 
herin--catenin complex. Flowthrough (F) and bound (B) fractions 
from an H preparation fractionated on an anti-N-cadherin affin- 
ity column were made 1% in SDS to dissociate protein-protein 
interactions. After dilution of the SDS to 0.1%, the F and B frac- 
tions were immunoprecipitated with the indicated antibody (IP), 
the immunoprecipitates fractionated by SDS-PAGE on a 7.5% 
gel and immunoblotted as indicated. PY20 is an anti-phosphoty- 
rosine antibody. The heavily stained bands ~55-kD correspond 
to IgG heavy chain and are absent from the second panel as 
RC20H is an anti-phosphotyrosine antibody conjugated with 
HRP and this serves as primary and secondary antibody. The mi- 
gration of standard proteins is indicated at the left by their molec- 
ular mass (x 10-3). 

dues on 13-catenin, possibly by modulating the effect of the 
phosphatase. To test this possibility we determined if the 
PTP1B-LP itself was tyrosine phosphorylated. The bound 
and flowthrough fractions from the N-cadherin affinity 
column were treated with SDS to dissociate protein com- 
plexes and immunoprecipitated with anti-phosphotyrosine 
antibody. The immunoprecipitated material was fraction- 
ated by SDS-PAGE and immunoblotted with anti-PTP1B 
antibody. The results of this experiment reveal that cad- 
herin-bound PTP1B-LP is indeed tyrosine phosphorylated 
(Fig. 3). When these antibodies are used in the reverse or- 
der (NCD-2 bound and flowthrough fractions precipitated 
with anti-PTP1B antibody then blotted with anti-phospho- 
tyrosine antibody), similar results are obtained, further in- 
dicating that the PTP1B-LP is tyrosine phosphorylated 
(Fig. 3). 

To further reinforce our conclusion that the PTP1B-LP 
is localized to cadherin/catenin complexes we examined 
the distribution of the immunoreactive species immuno- 
histochemically. The PTP1B-LP is distributed at the cell 
periphery (Fig. 4, A and B) and on neurites (Fig. 4 A). This 
pattern is similar to that seen for [3-catenin (Fig. 4 C) and 
N-cadherin (Fig. 4 D). However, the anti-PTP1B antibody 
also reveals some cytoplasmic staining consistent with 
prior reports (Frangioni et al., 1992). 

Inhibition of the Tyrosine Phosphorylation of the 
PTP1B-LP Blocks Its Association with N-Cadherin 

To further clarify the significance of tyrosine phosphoryla- 
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Figure 4. Immunofluorescent localization of the PTP1B-LP, 13-cate- 
nin and N-cadherin. Single cells cultured on coverslips coated 
with poly-L-lysine (50 ixg/ml in PBS) were fixed, perrneabilized, 
and reacted with the indicated primary antibody followed by 
rhodamine-labeled second antibody. Each panel represents a dif- 
ferent field. (A and B) Anti-PTP1B antibody; (C) anti-13-catenin 
antibody; (D) Anti-N-cadherin antibody. Bar, 10 i~m. 

tion of the PTPIB-LP, we assayed the effect of the tyro- 
sine kinase inhibitor genistein and the tyrosine phos- 
phatase inhibitor phenylarsine oxide on the association of the 
PTP1B-LP with N-cadherin. Single ceils were incubated 
with or without these inhibitors prior to homogenization 
and preparation of the H fraction. The N-cadherin-associ- 
ated fraction was then prepared and analyzed by immuno- 
blot for the presence of the PTP1B-LP (Fig. 5). The 
trI 'PIB-LP is co-immunoprecipitated with N-cadherin from 
control (untreated) cells and cells treated with phenylars- 
ine oxide, but does not co-immunoprecipitate with N-cad- 
herin from the cells treated with genistein (see Table I). 
Furthermore, when present the PTP-LP is tyrosine phos- 
phorylated (Fig. 5 A). This suggests that the tyrosine phos- 
phorylation of the phosphatase is essential for its associa- 
tion with the cadherin-catenin complex. 

We further assayed for tyrosine kinase and phosphatase 
activates that co-immunoprecipitate with N-cadherin. Cells 
were treated with genistein or phenylarsine oxide, H frac- 
tions prepared, and fractionated on anti-N-cadherin affin- 
ity columns. The bound fraction was then assayed for 
these activities. The tyrosine kinase inhibitor genistein re- 
sults in the loss of both the kinase and phosphatase activi- 
ties associated with N-cadherin. In contrast, the tyrosine 
phosphatase inhibitor phenylarsine oxide results in the 
loss of only phosphatase activity (Fig. 6). Genistein has no 
effect on phosphatase activity when added during the as- 

Figure 5. The effect of inhibitors of tyrosine kinase and tyrosine 
phosphatase on the association of the PTP1B-LP with N-cadherin 
and phosphorylation of the PTP1B-LP. Single cells were incu- 
bated with the indicated additives, H fractions prepared and 
immunoprecipitated with Sepharose-conjugated NCD-2. The im- 
munoprecipitates were fractionated by SDS-PAGE and im- 
munoblotted with anti-PTP1B antibody or anti-phosphotyrosine 
antibody PY20. As a control, the same transfer membrane was 
immunoblotted with NCD-2 (top). Co, control, no additives; 
PAO, 10 txg/ml phenylarsine oxide; Gen, 150 ~M genistein. The 
arrow labeled N-cad indicates the position of N-cadherin. The 
migration of standard proteins is indicated at the left by their mo- 
lecular mass (× 10-3). 

say (not shown). These results are consistent with the idea 
that the phosphorylation of the PTP1B-LP (which is inhib- 
ited by genistein) is essential for its association with the 
N-cadherin-catenin complex. 

The fact that phosphorylation of the PTP1B-LP is re- 
quired for binding to N-cadherin and that genistein leads 
to loss of cadherin-bound PTP1B-LP, suggests that at least 
a component of the soluble or non cadherin-bound 
PTP1B-LP should lack phosphorylated tyrosine residues. 
To determine if this is the case, a cadherin free fraction 
was prepared to insure that no cadherin-bound PTP1B-LP 
was present. To accomplish this, the 14,000 g supernatant 
was fractionated as usual. However, in this case, the mate- 
rial above the 2~0% interface, (i.e., the fraction lacking the 
vast majority of N-cadherin) was collected and further de- 
pleted of N-cadherin by incubation with anti-N-cadherin 
antibody. The unbound fraction was then immunoprecipi- 
tated with anti-phosphotyrosine antibody (RC20B) and 
the bound and unbound fractions separated by SDS- 
PAGE and immunoblotted with anti-PTP1B antibody. Af- 
ter this fractionation, PTP1B-LP was detected only in the 
RC20B unbound fraction (Fig. 7). The RC20B-bound frac- 
tion, but not the unbound fraction, does contain several 
other tyrosine-phosphorylated components indicating that 
the separation of tyrosine-phosphorylated and -nonphos- 
phorylated components by RC20B is effective (not shown). 
Thus, the PTP1B-LP not associated with N-cadherin is not 
tyrosine phosphorylated. Treatment with genistein, which 
releases the PTP1B-LP from its association with cadherin, 
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Figure 6. Inhibition of protein tyrosine kinase and tyrosine phos- 
phatase activities in N-cadherin-catenin complexes. Single cells 
were incubated with the indicated additive, H fractions prepared, 
fractionated on immobilized anti-N-cadherin antibody NCD-2, 
and enzyme activity assayed in the bound fraction. The results 
are presented as percent activity based on 100% for control cells 
with no additives and 0% for assays carried out in the presence of 
the appropriate inhibitor (4 mM vanadate for the phosphatase as- 
say and 60 ixM piceatannol for the kinase assay). Each point rep- 
resents the mean of duplicate measurements and bars represent 
deviations from the mean. Gen, 150 txM genistein; PAO, 10 ixg/ml 
phenylarsine oxide. (Left) Tyrosine phosphatase activity. (Right) 
Tyrosine kinase activity. 

does cause an apparent increase in the amount of nonty- 
rosine-phosphorylated PTP1B-LP; however, this increase 
is small which may reflect the fact that the nontyrosine- 
phosphorylated pool of PTP1B-LP is far larger than the 
tyrosine-phosphorylated, cadherin-bound pool. 

N-Cadherin Binds to 
Tyrosine-phosphorylated PTP1B-LP 

The association of the PTP1B-LP with N-cadherin sug- 
gests a direct interaction between the two molecules. To 
determine if the PTPIB-LP interacts directly with N-cad- 
herin, N-cadherin was purified and labeled with biotin to 
use as a probe (Fig. 8, top). The rapidly sedimenting frac- 
tion (H) was immunoprecipitated with anti-PTP1B-LP, 
the precipitate fractionated by SDS-PAGE and Western 
transfers prepared as the target. Biotin-labeled N-cadherin 
binds specifically to the same polypeptide recognized by 
the anti-PTPIB antibody (Fig. 8, bottom). Furthermore, 
cadherin fails to bind to PTPIB-LP which has been de- 
phosphorylated. Whether the PTPIB-LP sample is treated 
with alkaline phosphatase after separation by SDS-PAGE 
and transfer (Fig. 8, bottom left) or before separation by 
SDS-PAGE (not shown), N-cadherin fails to bind to im- 
mobilized PTPIB-LP. Taken together these data demon- 
strate that N-cadherin binds directly to the PTPIB-LP, but 
only when the PTPIB-LP is tyrosine phosphorylated. Ta- 
ble I summarizes the data linking phosphorylation of the 

Figure 7. PTP1B-LP that is not associated with N-cadherin is not 
tyrosine phosphorylated. Single cells were incubated in the pres- 
ence (Gen) or absence (Co) of genistein, the 14,000 g supernatant 
prepared and fractionated as described for the preparation of the 
H fraction. The material above the 20/50% sucrose interface was 
incubated with NCD-2 and the precipitates harvested using goat 
anti-rat IgG conjugated to magnetic beads. The supernatant from 
the NCD-2 fractionation was further incubated with anti-phos- 
photyrosine antibody conjugated to biotin (RC20B) and the 
bound fractions collected using streptavidin conjugated magnetic 
beads. The bound and unbound (Flow) fractions were then re- 
solved by SDS-PAGE and immunoblotted with anti-PTP1B anti- 
body. SKN refers to the cell lysate provided by the vendor as a 
PTP1B standard. The migration of standard proteins is indicated 
at the left by their molecular mass (×10-3). The identity of the 
crossreactive band present in each lane at approximately 60-kD is 
unknown. 

PTP1B-LP, its association with N-cadherin and N-cad- 
herin function. 

Binding o f  GalNAcPTase Ligands to Cells 
Results in Inhibition o f  Tyrosine Kinase and Absence 
of  PTP1B-LP from the CadherinlCatenin Complex 

We have previously demonstrated that interaction of the 
retina cell surface GalNAcPTase with a proteoglycan with 
a 250-kD core protein (apparently neurocan) triggers a 
signaling pathway which results in tyrosine-phosphory- 
lated 13-catenin, uncoupling of cadherin from its associa- 
tion with actin, and loss of cadherin function (Balsamo et al., 
1995). This effect is similar to that shown above for ty- 
rosine kinase and phosphatase inhibitors and suggests that 
inhibition of cadherin-mediated adhesion after interaction 
of the GalNAcPTase with the 250-kD PG ligand might in- 
volve alteration of the activity of one or both of these en- 
zymes. To test this hypothesis, cells were incubated with 
GalNAcPTase ligands, H fractions prepared, and purified 
on an N-cadherin affinity column. Bound material was as- 
sayed for tyrosine kinase and phosphatase activities. Bind- 
ing of the 250-kD core protein as well as anti-GalNAc 
PTase antibody 1Bll  to cells bearing the GalNAcPTase 
results in inhibition of protein tyrosine phosphatase activ- 
ity (Fig. 9, top) and protein tyrosine kinase activity (Fig. 9, 
bottom). In contrast, anti-GalNAcPTase antibody 7A2, 
which binds equally well to the cell surface GalNAcPTase, 
is without effect, as is a mixture of 400-kD proteoglycan 
core proteins including versican, aggrecan, and phos- 
phacan. 

This is identical to the effects observed with tyrosine ki- 
nase inhibitors, suggesting that the binding of the 250-kD 
PG to the GalNAcPTase results in inhibition of a tyrosine 
kinase which prevents phosphorylation of the PTP1B-LP 
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Figure 8. Binding of purified 
N-cadherin to immobilized 
PTPIB-LP. (Top) Biotin la- 
beled purified N-cadherin 
was fractionated by SDS- 
PAGE, transferred to PVDF 
membrane and probed with 
HRP-streptavidin (a) or 
NCD-2 (b). The arrow indi- 
cates the position of N-cad- 
herin. (Bottom) The PTP1B- 
LP was immunoprecipitated 
from an H preparation with 
anti-PTP1B antibody, frac- 
tionated by SDS-PAGE and 
transferred to PVDF. The 
membranes were incubated 
with 10 U/ml alkaline phos- 
phatase in the presence (Co) 
or absence of (E) the phos- 

phatase inhibitor 4 mM o-vanadate (Co). The membranes were 
then reacted with purified, biotin-labeled N-cadherin (biotin/N- 
cad), followed by HRP-streptavidin. The same membranes were 
stripped and reacted with anti-PTP1B antibody (anti-PTP1B). 
The arrow labeled PTP indicates the position of the PTP1B-LP. 
The migration of standard proteins is indicated at the left by 
their molecular mass (× 10-3).  

and therefore prevents association of the PTP1B-LP with 
N-cadherin. Indeed, in cells treated with anti-GalNAc 
PTase antibody 1Bl l  or the 250-kD core protein prepara- 
tion, but not anti-GalNAcPTase antibody 7A2 or the 400- 
kD core protein, the PTP1B-LP is not associated with 
N-cadherin (Fig. 10). 

Blocking the Tyrosine Phosphorylation 
o f  fl-Catenin Eliminates the Ability o f  C, alNAcPTase 
Ligands and Phosphatase Inhibitors to Inhibit 
Cadherin-mediated Adhesion 

Taken together the results described above indicate that 
binding of the 250-kD PG to the GalNAcPTase inhibits 

Table L Cadherin-mediated Adhesion Requires Bound, 
Functional PTPIB-LP* 

PTP1B-LP Phosphatase 
Cadherin associated PTP1B-LP is associated 

Cell mediated with tyrosine with 
Treatment adhesion N-cadherin phosphorylated N-cadherin 

None 
(control) ~ Yes Yes Yes Yes 

Phenylarsine No Yes Yes No 
oxide ~ 
Genistein I No No No No 

*For a full explanation of the results summarized here see the data in Fig. 5, 6, and 7. 
~Among control cells cadherin is fully functional. The PTP1B-LP is tyrosine phos- 
phorylated and bound to the cytoplasmic domain of N-cadherin. 
~Treatment of cells with the phosphatase inhibitor, phenylarsine oxide, inactivates 
cadherin. The drug directly inhibits N-cadherin-associated phosphatase activity, but 
has no effect on the tyrosine phosphorylation of the PTP1B-LP or its association with 
N-cadherin. 
ITreatment of cells with the tyrosine kinase inhibitor, genistein, aslo inactivates cad- 
herin. This drug results in a loss ot N-cadherin-associated phosphatase activity as a 
consequence of the fact that it inhibits the tyrosine phosphorylation of the PTP1B-LP, 
and thus its assocition with N-cadherin. 
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Figure 9. Inhibition of protein tyrosine kinase and tyrosine phos- 
phatase activities in N-cadherin--catenin complexes in response to 
binding of GalNAcPTase ligands. Single cells were incubated 
with the indicated additive, H fractions prepared, fractionated on 
immobilized anti-N-cadherin antibody NCD-2, and enzyme ac- 
tivity assayed in bound fraction. The results are presented as per- 
cent activity based on 100% for control cells with no additives 
and 0% for assays carried out in the presence of the appropriate 
inhibitor (4 mM vanadate for the phosphatase assay and 60 ~M 
piceatannol for the kinase assay). Each point represents the mean 
of duplicate measurements and bars represent deviations from 
the mean. 7A2, 10 v~g/ml anti-GalNAcPTase mAb 7A2; 1Bll, 10 
Ixg/ml anti-GalNAcPTase mAb 1Bll; 250, 10 ixg/ml 250-kD core 
proteoglycan; 400, 10 txg/m1400-kD core proteoglycan. (Left) Ty- 
rosine phosphatase activity; (right) tyrosine kinase activity. 

cadherin-mediated adhesion by inhibiting a tyrosine ki- 
nase. This results in lack of phosphorylation of the PTP1B- 
LP, preventing its association with N-cadherin and its abil- 
ity to dephosphorylate 13-catenin. This hypothesis suggests 
that cells lacking phosphorylated 13-catenin will form cad- 
herin-mediated adhesions in the presence of GalNAc 
PTase ligands or inhibitors of tyrosine phosphatase. To 
test this hypothesis we prepared cells with reduced levels 
of phosphotyrosine residues by overnight incubation in 
culture medium containing herbimycin A. The cells were 
then assayed for the presence of phosphorylated [3-catenin 
and N-cadherin-mediated adhesion in the presence or ab- 
sence of GalNAcPTase ligands or tyrosine phosphatase in- 
hibitors. To ensure that the preincubation resulted in cells 
lacking phosphorylated [3-catenin, the rapidly sedimenting 
fraction (H) was immunoprecipitated with anti-13-catenin 
antibody and analyzed by immunoblot with anti-phospho- 
tyrosine antibody. While the amount of [3-catenin is unaf- 
fected by prolonged herbimycin treatment (Fig. 11, top 
left), the herbimycin-treated cells have a significantly 
lower level of phosphorylated tyrosine residues on 13-cate- 
nin than do control cells (Fig. 11, top right). 

While phosphorylated tyrosine residues are presumably 
absent from many cellular proteins following herbimycin 
treatment, the ability of cells to adhere via an N-cadherin- 
mediated mechanism is not compromised as evidenced by 
the ability of anti-N-cadherin to inhibit adhesion. Further- 
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Figure I0. Effect of Gal- 
NacPTase ligands on the as- 
sociation of the PTPIB-LP 
with N-cadherin. Single cells 
were incubated for 45 rain at 
37°C in the presence of the 
GalNAcPTase mAbs 7A2 or 
1Bll, or in the presence of 
the 250- or 400-kD pro- 
teoglycans (see Fig. 6 for 
concentrations). H fractions 
were prepared and fraction- 
ated using anti-N-cadherin 

antibody. The immunoprecipitated material was fractionated by 
SDS-PAGE, transferred to PVDF membrane, and immunoblot- 
ted with anti-PTPiB antibody. The arrow indicates the position 
of the PTP1B-LP. The heavy band at ~55 kD is immunoglobulin 
heavy chain. The migration of standard proteins is indicated at 
the left by their molecular mass (× 10-3). 

more, ~80% of the cells are competent to form N-cad- 
herin-mediated adhesions after incubation in the presence 
or absence of herbimycin. However, after prolonged her- 
bimycin treatment, cadherin-mediated adhesion is no 
longer inhibited by the 250-kD PG (not shown) or anti- 
GalNAcPTase antibody 1Bl l  (Fig. 11, bottom). Further- 
more,  the tyrosine phosphatase inhibitor phenylarsine 
oxide is also without effect (Fig. 1I, bottom). These obser- 
vations suggest that prolonged herbimycin treatment 
blocks the constitutive phosphorylation of 13-catenin and 
thereby eliminates the need for an N-cadherin-associated 
tyrosine phosphatase to dephosphorylate ~-catenin in or- 
der to maintain the adhesion competence of ceils. 

Discussion 

Our data indicate that in embryonic chick retina tissue and 
cells the presence of phosphorylated tyrosine residues on 
l~-catenin is inversely related to the association of N-cad- 
herin with the actin containing cytoskeleton and the ability 
of cells to adhere via N-cadherin. Furthermore, the level 
of phosphorylated tyrosine residues on 13-catenin depends 
on the function of a PTP1B-Iike phosphatase associated 
with N-cadherin, an association dependent on tyrosine 
phosphorylation of the PTP1B-LP. Agents which inhibit 
the activity of the PTP1B-LP (i.e., tyrosine phosphatase 
inhibitors) or its binding to N-cadherin (i.e., tyrosine kinase 
inhibitors or binding of the 250-kD PG to the cell surface 
GalNAcPTase; Balsamo et al., 1995), result in the accumu- 
lation of phosphorylated tyrosine residues on ~-catenin, 
uncoupling of cadherin from its association with the cy- 
toskeleton and loss of N-cadherin function. 

Phosphorylated Tyrosine Residues on fl-Catenin Are an 
Indicator o f  the Integrity o f  the Cadherin/Actin Linkage 

The correlation between the presence of phosphorylated 
tyrosine residues on [~-catenin and loss of cadherin-medi- 
ated adhesion is consistent with reports from other labora- 
tories. Transformation of cells bearing E-cadherin with v-src 
leads to an invasive phenotype, with a concomitant loss of 
cadherin function and the presence of phosphorylated ty- 

Figure 11. Effect of long term treatment of cells with herbimycin 
A on phosphorylated tyrosine residues on ~-catenin and on 
N-cadherin-mediated adhesion. Single cells were incubated over- 
night in medium with or without 1 ~g/ml herbimycin A and as- 
sayed for phosphorylated tyrosine residues on 13-catenin and cad- 
herin-mediated adhesion. (Top) Phosphorylated tyrosine residues 
on 13-catenin. The H fraction was incubated with anti-13-catenin 
antibody and the immunoprecipitated material was fractionated 
by SDS-PAGE and immunoblotted with anti-13-catenin antibody 
or anti-phosphotyrosine antibody. Co, no additives;/, cells incu- 
bated overnight with herbimycin A. The arrowhead labeled B-cat 
marks the position of 13-catenin. (Bottom) N-cadherin-mediated 
adhesion. Single cells were allowed to adhere to microtiter wells 
coated with purified N-cadherin in the presence of the indicated 
additives. CO, control, no additives; 1Bll, 10 Ixg/ml anti-Gal- 
NAcPTase mAb 1Bll; NCD, 10 ixg/ml NCD-2; PAO, 10 Ixg/ml 
phenylarsine oxide. Results are presented as percent of control 
values and represent the average of three measurements. Error 
bars indicate the standard deviation. 

rosine residues on ~-catenin (Matsuyoshi et al., 1992; Beh- 
rens et al., 1993). Similarly, suppression of N-cadherin- 
mediated adhesion after transformation of chick embryo 
fibroblasts with Rous sarcoma virus correlates with the 
presence of phosphorylated tyrosine residues on 13-catenin 
(and et-catenin) (Hamaguchi et al., 1993). Treatment of 
human carcinoma cells with hepatocyte growth factor or 
epidermal growth factor enhances dispersal of cells, con- 
comitant with the appearance of phosphorylated tyrosine 
residues on 13-catenin (Shibamoto et al., 1994). 

In contrast to other reports (Matsuyoshi et al., 1992; Beh- 
rens et al., 1993, Hamaguchi et al., 1993, Shibamoto et al., 
1994) we do not find tyrosine phosphorylated B-catenin to 

Balsamo et al. Tyrosine Phosphatase Control of Cadherin Function 809 



be associated with cadherin, even though the 14,000 g su- 
pernatant analyzed here includes the Triton X-100 high 
speed supernatant analyzed in these other studies. These 
observations may be reconciled if the presence of phos- 
phorylated tyrosine residues on ~3-catenin does not com- 
pletely eliminate the ability of [3-catenin to interact with cad- 
herin, but rather reduces its affinity for cadherin. Thus 
there may be a small amount of tyrosine-phosphorylated 
13-catenin that remains associated with cadherin, but this 
comprises a very small proportion when compared to ty- 
rosine-phosphorylated 13-catenin not associated with N-cad- 
herin. Furthermore, the ability to detect this residual pop- 
ulation of tyrosine-phosphorylated 13-catenin associated with 
cadherin may depend on the cells being examined and the 
specific techniques being used. 

We have previously shown that loss of cadherin function 
is correlated with loss of the association of cadherin with 
actin in both epithelial (Bauer et al., 1992) and neural cells 
(Balsamo et al., 1991, 1995). In this manuscript we extend 
these observations, showing that tyrosine kinase and phos- 
phatase inhibitors also result in loss of cadherin-mediated 
adhesion and loss of the integrity of the cadherin-actin 
connection. A recent study of adherens junctions also sug- 
gests that the behavior of a rapidly sedimenting fraction, 
similar to our H fraction, reflects the function of E-cad- 
herin. After ras transformation, the integrity of the adher- 
ens junction and the function of E-cadherin are compro- 
mised. This is correlated with displacement of 13-catenin 
from a rapidly sedimenting pool into a soluble pool and 
the detection of tyrosine-phosphorylated 13-catenin prima- 
rily in the soluble pool. Furthermore, after herbimycin 
treatment of ras-transformed cells, which decreases phos- 
phorylation of many proteins and restores the integrity of 
the adherens junction, 13-catenin is found in a rapidly sedi- 
menting fraction in association with E-cadherin (Kinch 
et al., 1995). 

A PTPIB-LP Is Associated with N-Cadherin 

Our data strongly suggest that the dephosphorylation of 
tyrosine residues in 13-catenin is essential for cells to form 
cadherin-mediated adhesions and that this depends on a 
PTP1B-LP associated with N-cadherin and the N-cad- 
herin-catenin complex. Conditions which prevent associa- 
tion of the PTP1B-LP with N-cadherin (inhibition of ty- 
rosine kinase activity), or which result in loss of PTP1B-LP 
activity (inhibition of tyrosine phosphatase activity), in- 
variably lead to the accumulation of phosphorylated ty- 
rosine residues on 13-catenin and loss of cadherin-medi- 
ated adhesion. 

The association of the PTP1B-LP with N-cadherin is ev- 
idenced by their co-isolation. The significance of this inter- 
action is most effectively illustrated by the lack of associa- 
tion of the PTP1B-LP with cadherin under conditions 
which result in loss of cadherin function (the presence of 
tyrosine kinase inhihitors or GalNAcPTase ligands). More- 
over we have shown that purified N-cadherin interacts di- 
rectly with the PTP1B-LP on Western transfers. 

The association of the PTP1B-LP with cadherin de- 
pends on the phosphorylation state of tyrosine residues on 
the PTPIB-LP; only tyrosine phosphorylated PTP1B-LP is 
associated with cadherin. This association is blocked by 

drugs that prevent tyrosine phosphorylation. Further- 
more, removal of phosphate from the PTP1B-LP prevents 
its association with N-cadherin as assayed by Western 
overlays. The transmembrane phosphatase PTPIx has also 
been reported to associate with the intracellular domain of 
cadherin (Brady-Kalnay et al., 1995); however, it is not yet 
possible to determine if the two phosphatases interact 
through the same or an overlapping domain. A key differ- 
ence may be the requirement for tyrosine phosphorylation 
of the PTP1B-LP in order for it to interact with N-cad- 
herin. 

The requirement for tyrosine phosphorylation of the 
PTP1B-LP to bind to N-cadherin implicates a tyrosine ki- 
nase as a critical component of the signaling pathway con- 
trolling the level of phosphorylated tyrosine residues on 
[3-catenin and therefore cadherin function. Whether this 
kinase is the same one that is required for tyrosine phos- 
phorylation of [3-catenin (see discussion below) remains to 
be determined. 

Analysis of recombinant PTP's has revealed several dis- 
tinct sequences which target them to specific cellular loca- 
tions (Mauro and Dixon, 1994). However, more relevant 
to our studies, tyrosine phosphorylation of PTP's has been 
demonstrated to produce a consensus site for interaction 
with SH2 domains (Sun and Tonks, 1994). We searched 
the carboxy terminal cytoplasmic domain of N-cadherin 
for SH2 (see Margolis, 1992) domains and as well as PID 
domains which also are recognized by peptides containing 
phosphorylated tyrosine residues (Kavanaugh and Will- 
iams, 1994). We were unable to identify unequivocally any 
such sequence motifs in N-cadherin. This suggests that ty- 
rosine phosphorylated PTP1B-LP interacts with a se- 
quence motif present in N-cadherin not (yet) recognized 
as a site for interaction with phosphorylated tyrosine resi- 
dues or that phosphorylated tyrosine residues are not di- 
rectly involved in this interaction. 

We have referred to the PTPIB immunoreactive species 
as a PTP1B-Iike phosphatase because of its immunological 
cross reactivity with characterized antibodies and the simi- 
larity of its apparent molecular mass to the human placen- 
tal enzyme (Tonks et al., 1988). The monoclonal antibody 
used in these studies was prepared against a protein frag- 
ment corresponding to amino acids 269 through 435 of the 
human enzyme. This sequence encompasses a portion of 
the conserved phosphatase domain and the COOH-termi- 
nal 35-amino acid targeting domain and could well cross- 
react with other related PTP's. PTP1B has been reported 
to be primarily localized to the endoplasmic reticulum by 
virtue of the COOH-terminal targeting domain (Frangioni 
et al., 1992). However, it has been stated that PTP1B is 
also present at focal adhesions (Mauro and Dixon, 1994), a 
locale more in keeping with the localization of the tyrosine 
phosphatase identified in this study. While these similari- 
ties suggest that the tyrosine phosphatase identified here is 
closely related to PTP1B, definitive identification will 
have to await molecular characterization. 

PhosphorylationlDephosphorylation of [3-Catenin: a 
Dynamic Equilibrium 

Our data suggest the hypothesis that there is an equilib- 
rium between phosphorylation and dephosphorylation of 
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13-catenin which controls the integrity of the cadherin cy- 
toskeletal linkage (Fig. 12). This equilibrium may be per- 
turbed by a variety of transmembrane signals altering cell 
behavior during development. For example, binding of a 
250-kD PG to the GalNAcPTase results in inhibition of 
cadherin-mediated adhesion concomitant with the accu- 
mulation of phosphorylated tyrosine residues on 13-catenin 
and uncoupling of cadherin from its association with the 
actin containing cytoskeleton (Balsamo et al., 1995). 

Here we show that the increased levels of phosphory- 
lated tyrosine residues on [3-catenin after binding of the 
250-kD PG appear to be due to inhibition of a tyrosine 
kinase activity essential for the phosphorylation of the 
PTP1B-LP, binding of the PTP1B-LP to N-cadherin and 
dephosphorylation of [3-catenin. Lack of PTPIB-LP bound 
to N-cadherin is correlated with the accumulation of phos- 
phorylated tyrosine residues on 13-catenin. As one test of 
this proposed chain of events, we incubated cells overnight 
in the presence of a protein tyrosine kinase inhibitor in or- 
der to prepare cells which lack phosphorylated tyrosine 
residues on [3-catenin. Cadherin-mediated adhesion among 
these cells occurs at a normal level; however, this adhesion 
is no longer inhibited by the 250-kD PG or by inhibitors of 
tyrosine kinase or phosphatase. Thus, inhibition of cad- 
herin-mediated adhesion through the interaction of the 
250-kD PG with the GalNAcPTase or by inhibitors of 
tyrosine kinase and phosphatase requires that cells are ca- 
pable of phosphorylating 13-catenin and further reinforces 
our conclusion that regulated removal of phosphate from 
13-catenin is a critical event controlling cadherin function. 
Together these data suggest that, under normal conditions, 
there is a dynamic equilibrium between phosphorylation 
and dephosphorylation of tyrosine residues on [3-catenin 
(see Fig. 12). 

Binding of ligand to two transmembrane tyrosine kinase 
receptors, the epidermal growth factor and the scatter fac- 
tor/hepatocyte growth factor receptors, has also been 
shown to result in accumulation of phosphorylated ty- 
rosine residues on 13-catenin and the loss of cadherin-me- 
diated adhesion (Shibamoto, 1995). The cytoplasmic do- 
main of the EGF receptor tyrosine kinase has been 
reported to associate directly with [3-catenin and to phos- 
phorylate 13-catenin on activation by EGF (Hoschuetzky 
et al., 1994). The closely related transmembrane tyrosine 

kinase c-erbB-2 (Yamamoto et al., 1986) has also been re- 
ported to associate directly with 13-catenin (Ochiai et al., 
1994b; Kanai et al., 1995) and is thus positioned appropri- 
ately to directly phosphorylate 13-catenin and therefore 
downregulate cadherin function. Consistent with this pos- 
sibility, amplification or overexpression of c-erbB-2 has 
been correlated with highly malignant tumors and poor 
prognosis (Slamon et al., 1987). The SF/HGF-receptor, c-met, 
may act similarly. As the name implies, interaction of SF/ 
HGF with its receptor does appear to be one trigger for 
cells to assume a migratory phenotype (i.e., lose their char- 
acteristic cell-cell adhesion). Indeed, the interaction of SF/ 
HGF with c-met is essential for the migration of myogenic 
precursors into the limb (Bladt et al., 1995). In each case, 
the increased tyrosine phosphorylation of [3-catenin may 
overwhelm the ability of the PTP1B-LP or other phos- 
phatases to dephosphorylate [3-catenin, resulting in loss of 
cadherin-mediated adhesion. 

While the 250-kD PG/GalNAcPTase interaction, as well 
as interaction of transmembrane receptor tyrosine kinases 
with their receptors, have the potential to downregulate 
cadherin function, the transmembrane phosphatase PTPp~ 
has the potential to upregulate cadherin function in much 
the same manner as we are proposing for the PTP1B-LP. 
PTPIx interacts directly with N-cadherin (Brady-Kalnay 
et al., 1995) and may be specifically activated through ho- 
mophilic interaction (Brady-Kalnay et al., 1993) creating 
opportunities for temporal or spatial control of cadherin 
function. We have not yet determined if the PTP1B-LP 
and the PTP~ are both present in the same complex. The 
presence of two distinct phosphatases in the same complex 
might add to the potential for precise control of N-cad- 
herin function through the interaction of other cell surface 
proteins with their ligands. One set of signals may cause 
inactivation or loss of the PTPIB-LP, increasing the accu- 
mulation of phosphorylated tyrosine residues on 13-cate- 
nin; another set of signals may activate the transmembrane 
phosphatase, thereby reducing the level of phosphorylated 
tyrosine residues on 13-catenin. 

Our hypothesis is also consistent with the effect of ki- 
nase and phosphatase inhibitors on the integrity of adher- 
ens junctions which depend on E-cadherin. We propose 
that junctional integrity is lost after treatment with phos- 
phatase inhibitors due to the inability of cells to dephos- 

Figure 12. Diagram depict- 
ing the effect of the phospho- 
rylation or dephosphoryla- 
tion of the PTP1B-LP on its 
association with N-cadherin 
and the concomitant alter- 
ation in the state of tyrosine 
phosphorylation of [3-cate- 
nin and the integrity of the 
N-cadherin-actin connec- 
tion. Our data suggest that 
tyrosine phosphorylation of 
the PTP1B-LP results in its 
association with N-cadherin, 

dephosphorylation of 13-catenin, and association of N-cadherin with the actin containing cytoskeleton (via a- and [3-catenin), resulting in 
adhesion competent cells. In contrast, dephosphorylation of the PTP1B-LP results in its inability to associate with N-cadherin, accumu- 
lation of phosphorylated tyrosine residues on 13-catenin, dissociation of the cadherin-actin connection, and loss of adhesive competence. 
The illustrated changes in intermolecular association involving a-catenin are speculation. 
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phorylate 13-catenin. Furthermore, restoration of junc- 
tional integrity by tyrosine kinase inhibitors, after 
transformation of cells with src, may be due to a reduction 
in the rate or level of tyrosine phosphorylation of 13-cate- 
nin (Volberg et al., 1992; see also Kinch et al., 1995). It 
should be emphasized that these effects are seen following 
long term incubations and are analogous to the results 
seen in our system after long term incubation with tyrosine 
kinase inhibitors. While src  is present at adherens junc- 
tions (Tsukita et al., 1991) and could directly phosphory- 
late 13-catenin, it is not yet clear whether 13-catenin is in 
fact phosphorylated directly by src  or by a more complex 
pathway involving other kinases. 

In summary, [3-catenin appears to play a central role in 
the translation of extracellular information into altered 
cadherin function. One class of external ligands: e.g., the 
250-kD PG, hepatic growth factor and epidermal growth 
factor, bind to specific cell surface receptors, decreasing 
the stability of cadherin-mediated adhesion by maintain- 
ing a high level of phosphorylated tyrosine residues on 
13-catenin. At least two distinct pathways are possible: loss 
of the ability to remove phosphorylated tyrosine residues 
from 13-catenin due to loss of the PTP1B-LP from the cad- 
herin-catenin complex, as demonstrated for binding of the 
250-kD PG; and enhanced phosphorylation of [3-catenin, 
through direct activation of associated tyrosine kinases, 
the likely explanation for the effects of EGF and HGF. A 
second class of ligands, e.g., the Wnt  gene product, also 
probably bind to specific cell surface receptors, resulting in 
an increase in the amount of 13-catenin associated with 
cadherin and increasing the stability of cadherin-mediated 
adhesion (Hinck et al., 1994a; Bradely et al., 1994). Thus, 
cadherin function may be controlled through the activa- 
tion of at least two distinct types of signaling pathways, 
both ramifying on the stability and/or extent of linkage of 
cadherins with the cytoskeleton (see also Hinck et al., 
1994b). We are just beginning to appreciate the diversity 
of molecular interactions impinging on control of cadherin 
function. It is already clear that the temporal and spatial 
control of cadherin function through ligand receptor inter- 
actions, which themselves are temporally and spatially 
controlled, has the potential to profoundly affect the 
course of development. 

Received for publication 15 December 1995 and in revised form 23 April 
1996. 
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