Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Aug 2;134(4):873–884. doi: 10.1083/jcb.134.4.873

Transgenic mdx mice expressing dystrophin with a deletion in the actin- binding domain display a "mild Becker" phenotype

PMCID: PMC2120962  PMID: 8769413

Abstract

The functional significance of the actin-binding domain of dystrophin, the protein lacking in patients with Duchenne muscular dystrophy, has remained elusive. Patients with deletions of this domain (domain I) typically express low levels of the truncated protein. Whether the moderate to severe phenotypes associated with such deletions result from loss of an essential function, or from reduced levels of a functional protein, is unclear. To address this question, we have generated transgenic mice that express wild-type levels of a dystrophin deleted for the majority of the actin-binding domain. The transgene derived protein lacks amino acids 45-273, removing 2 of 3 in vitro identified actin interacting sites and part of hinge 1. Examination of the effect of this deletion in mice lacking wild-type dystrophin (mdx) suggests that a functional domain I is not essential for prevention of a dystrophic phenotype. However, in contrast to deletions in the central rod domain and to full-length dystrophin, both of which are functional at only 20% of wild-type levels, proteins with a deletion in domain I must be expressed at high levels to prevent a severe dystrophy. These results are also in contrast to the severe dystrophy resulting from truncation of the COOH-terminal domain that links dystrophin to the extracellular matrix. The mild phenotype observed in mice with domain I-deletions indicates that an intact actin-binding domain is not essential, although it does contribute to an important function of dystrophin. These studies also suggest the link between dystrophin and the subsarcolemmal cytoskeleton involves more than a simple attachment of domain I to actin filaments.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
  2. Baumbach L. L., Chamberlain J. S., Ward P. A., Farwell N. J., Caskey C. T. Molecular and clinical correlations of deletions leading to Duchenne and Becker muscular dystrophies. Neurology. 1989 Apr;39(4):465–474. doi: 10.1212/wnl.39.4.465. [DOI] [PubMed] [Google Scholar]
  3. Beggs A. H., Hoffman E. P., Snyder J. R., Arahata K., Specht L., Shapiro F., Angelini C., Sugita H., Kunkel L. M. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet. 1991 Jul;49(1):54–67. [PMC free article] [PubMed] [Google Scholar]
  4. Belkin A. M., Burridge K. Association of aciculin with dystrophin and utrophin. J Biol Chem. 1995 Mar 17;270(11):6328–6337. doi: 10.1074/jbc.270.11.6328. [DOI] [PubMed] [Google Scholar]
  5. Bonet-Kerrache A., Fabbrizio E., Mornet D. N-terminal domain of dystrophin. FEBS Lett. 1994 Nov 21;355(1):49–53. doi: 10.1016/0014-5793(94)01162-1. [DOI] [PubMed] [Google Scholar]
  6. Bulfield G., Siller W. G., Wight P. A., Moore K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1189–1192. doi: 10.1073/pnas.81.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bushby K. M. Genetic and clinical correlations of Xp21 muscular dystrophy. J Inherit Metab Dis. 1992;15(4):551–564. doi: 10.1007/BF01799614. [DOI] [PubMed] [Google Scholar]
  8. Bönnemann C. G., Modi R., Noguchi S., Mizuno Y., Yoshida M., Gussoni E., McNally E. M., Duggan D. J., Angelini C., Hoffman E. P. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet. 1995 Nov;11(3):266–273. doi: 10.1038/ng1195-266. [DOI] [PubMed] [Google Scholar]
  9. Campbell K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995 Mar 10;80(5):675–679. doi: 10.1016/0092-8674(95)90344-5. [DOI] [PubMed] [Google Scholar]
  10. Chelly J., Gilgenkrantz H., Lambert M., Hamard G., Chafey P., Récan D., Katz P., de la Chapelle A., Koenig M., Ginjaar I. B. Effect of dystrophin gene deletions on mRNA levels and processing in Duchenne and Becker muscular dystrophies. Cell. 1990 Dec 21;63(6):1239–1248. doi: 10.1016/0092-8674(90)90419-f. [DOI] [PubMed] [Google Scholar]
  11. Comi G. P., Prelle A., Bresolin N., Moggio M., Bardoni A., Gallanti A., Vita G., Toscano A., Ferro M. T., Bordoni A. Clinical variability in Becker muscular dystrophy. Genetic, biochemical and immunohistochemical correlates. Brain. 1994 Feb;117(Pt 1):1–14. doi: 10.1093/brain/117.1.1-a. [DOI] [PubMed] [Google Scholar]
  12. Corrado K., Mills P. L., Chamberlain J. S. Deletion analysis of the dystrophin-actin binding domain. FEBS Lett. 1994 May 16;344(2-3):255–260. doi: 10.1016/0014-5793(94)00397-1. [DOI] [PubMed] [Google Scholar]
  13. Cox G. A., Cole N. M., Matsumura K., Phelps S. F., Hauschka S. D., Campbell K. P., Faulkner J. A., Chamberlain J. S. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature. 1993 Aug 19;364(6439):725–729. doi: 10.1038/364725a0. [DOI] [PubMed] [Google Scholar]
  14. Cox G. A., Sunada Y., Campbell K. P., Chamberlain J. S. Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Nat Genet. 1994 Dec;8(4):333–339. doi: 10.1038/ng1294-333. [DOI] [PubMed] [Google Scholar]
  15. Dickson G., Azad A., Morris G. E., Simon H., Noursadeghi M., Walsh F. S. Co-localization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes. J Cell Sci. 1992 Dec;103(Pt 4):1223–1233. doi: 10.1242/jcs.103.4.1223. [DOI] [PubMed] [Google Scholar]
  16. Dunckley M. G., Wells K. E., Piper T. A., Wells D. J., Dickson G. Independent localization of dystrophin N- and C-terminal regions to the sarcolemma of mdx mouse myofibres in vivo. J Cell Sci. 1994 Jun;107(Pt 6):1469–1475. doi: 10.1242/jcs.107.6.1469. [DOI] [PubMed] [Google Scholar]
  17. Ervasti J. M., Campbell K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993 Aug;122(4):809–823. doi: 10.1083/jcb.122.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ervasti J. M., Campbell K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991 Sep 20;66(6):1121–1131. doi: 10.1016/0092-8674(91)90035-w. [DOI] [PubMed] [Google Scholar]
  19. Fabbrizio E., Bonet-Kerrache A., Leger J. J., Mornet D. Actin-dystrophin interface. Biochemistry. 1993 Oct 5;32(39):10457–10463. doi: 10.1021/bi00090a023. [DOI] [PubMed] [Google Scholar]
  20. Helliwell T. R., Ellis J. M., Mountford R. C., Appleton R. E., Morris G. E. A truncated dystrophin lacking the C-terminal domains is localized at the muscle membrane. Am J Hum Genet. 1992 Mar;50(3):508–514. [PMC free article] [PubMed] [Google Scholar]
  21. Hoffman E. P., Garcia C. A., Chamberlain J. S., Angelini C., Lupski J. R., Fenwick R. Is the carboxyl-terminus of dystrophin required for membrane association? A novel, severe case of Duchenne muscular dystrophy. Ann Neurol. 1991 Oct;30(4):605–610. doi: 10.1002/ana.410300414. [DOI] [PubMed] [Google Scholar]
  22. Hori S., Ohtani S., Nguyen T. M., Morris G. E. The N-terminal half of dystrophin is protected from proteolysis in situ. Biochem Biophys Res Commun. 1995 Apr 26;209(3):1062–1067. doi: 10.1006/bbrc.1995.1605. [DOI] [PubMed] [Google Scholar]
  23. Johnson J. E., Wold B. J., Hauschka S. D. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol Cell Biol. 1989 Aug;9(8):3393–3399. doi: 10.1128/mcb.9.8.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Koenig M., Beggs A. H., Moyer M., Scherpf S., Heindrich K., Bettecken T., Meng G., Müller C. R., Lindlöf M., Kaariainen H. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989 Oct;45(4):498–506. [PMC free article] [PubMed] [Google Scholar]
  25. Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C., Kunkel L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987 Jul 31;50(3):509–517. doi: 10.1016/0092-8674(87)90504-6. [DOI] [PubMed] [Google Scholar]
  26. Koenig M., Kunkel L. M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem. 1990 Mar 15;265(8):4560–4566. [PubMed] [Google Scholar]
  27. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods. 1984 Dec;10(3-4):203–209. doi: 10.1016/0165-022x(84)90040-x. [DOI] [PubMed] [Google Scholar]
  28. Le T. T., Nguyen T. M., Love D. R., Helliwell T. R., Davies K. E., Morris G. E. Monoclonal antibodies against the muscle-specific N-terminus of dystrophin: characterization of dystrophin in a muscular dystrophy patient with a frameshift deletion of exons 3-7. Am J Hum Genet. 1993 Jul;53(1):131–139. [PMC free article] [PubMed] [Google Scholar]
  29. Lee C. C., Pearlman J. A., Chamberlain J. S., Caskey C. T. Expression of recombinant dystrophin and its localization to the cell membrane. Nature. 1991 Jan 24;349(6307):334–336. doi: 10.1038/349334a0. [DOI] [PubMed] [Google Scholar]
  30. Levine B. A., Moir A. J., Patchell V. B., Perry S. V. The interaction of actin with dystrophin. FEBS Lett. 1990 Apr 9;263(1):159–162. doi: 10.1016/0014-5793(90)80728-2. [DOI] [PubMed] [Google Scholar]
  31. Lim L. E., Duclos F., Broux O., Bourg N., Sunada Y., Allamand V., Meyer J., Richard I., Moomaw C., Slaughter C. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1995 Nov;11(3):257–265. doi: 10.1038/ng1195-257. [DOI] [PubMed] [Google Scholar]
  32. Madhavan R., Jarrett H. W. Calmodulin-activated phosphorylation of dystrophin. Biochemistry. 1994 May 17;33(19):5797–5804. doi: 10.1021/bi00185a018. [DOI] [PubMed] [Google Scholar]
  33. Malhotra S. B., Hart K. A., Klamut H. J., Thomas N. S., Bodrug S. E., Burghes A. H., Bobrow M., Harper P. S., Thompson M. W., Ray P. N. Frame-shift deletions in patients with Duchenne and Becker muscular dystrophy. Science. 1988 Nov 4;242(4879):755–759. doi: 10.1126/science.3055295. [DOI] [PubMed] [Google Scholar]
  34. Masuda T., Fujimaki N., Ozawa E., Ishikawa H. Confocal laser microscopy of dystrophin localization in guinea pig skeletal muscle fibers. J Cell Biol. 1992 Nov;119(3):543–548. doi: 10.1083/jcb.119.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Matsumura K., Tomé F. M., Ionasescu V., Ervasti J. M., Anderson R. D., Romero N. B., Simon D., Récan D., Kaplan J. C., Fardeau M. Deficiency of dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin. J Clin Invest. 1993 Aug;92(2):866–871. doi: 10.1172/JCI116661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McCully K. K., Faulkner J. A. Length-tension relationship of mammalian diaphragm muscles. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jun;54(6):1681–1686. doi: 10.1152/jappl.1983.54.6.1681. [DOI] [PubMed] [Google Scholar]
  37. Milot E., Fraser P., Grosveld F. Position effects and genetic disease. Trends Genet. 1996 Apr;12(4):123–126. doi: 10.1016/0168-9525(96)30019-x. [DOI] [PubMed] [Google Scholar]
  38. Minetti C., Beltrame F., Marcenaro G., Bonilla E. Dystrophin at the plasma membrane of human muscle fibers shows a costameric localization. Neuromuscul Disord. 1992;2(2):99–109. doi: 10.1016/0960-8966(92)90041-4. [DOI] [PubMed] [Google Scholar]
  39. Monaco A. P., Bertelson C. J., Liechti-Gallati S., Moser H., Kunkel L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988 Jan;2(1):90–95. doi: 10.1016/0888-7543(88)90113-9. [DOI] [PubMed] [Google Scholar]
  40. Noguchi S., McNally E. M., Ben Othmane K., Hagiwara Y., Mizuno Y., Yoshida M., Yamamoto H., Bönnemann C. G., Gussoni E., Denton P. H. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. Science. 1995 Nov 3;270(5237):819–822. doi: 10.1126/science.270.5237.819. [DOI] [PubMed] [Google Scholar]
  41. Phelps S. F., Hauser M. A., Cole N. M., Rafael J. A., Hinkle R. T., Faulkner J. A., Chamberlain J. S. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet. 1995 Aug;4(8):1251–1258. doi: 10.1093/hmg/4.8.1251. [DOI] [PubMed] [Google Scholar]
  42. Porter G. A., Dmytrenko G. M., Winkelmann J. C., Bloch R. J. Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J Cell Biol. 1992 Jun;117(5):997–1005. doi: 10.1083/jcb.117.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rafael J. A., Cox G. A., Corrado K., Jung D., Campbell K. P., Chamberlain J. S. Forced expression of dystrophin deletion constructs reveals structure-function correlations. J Cell Biol. 1996 Jul;134(1):93–102. doi: 10.1083/jcb.134.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rafael J. A., Sunada Y., Cole N. M., Campbell K. P., Faulkner J. A., Chamberlain J. S. Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet. 1994 Oct;3(10):1725–1733. doi: 10.1093/hmg/3.10.1725. [DOI] [PubMed] [Google Scholar]
  45. Roberds S. L., Leturcq F., Allamand V., Piccolo F., Jeanpierre M., Anderson R. D., Lim L. E., Lee J. C., Tomé F. M., Romero N. B. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell. 1994 Aug 26;78(4):625–633. doi: 10.1016/0092-8674(94)90527-4. [DOI] [PubMed] [Google Scholar]
  46. Senter L., Ceoldo S., Petrusa M. M., Salviati G. Phosphorylation of dystrophin:effects on actin binding. Biochem Biophys Res Commun. 1995 Jan 5;206(1):57–63. doi: 10.1006/bbrc.1995.1009. [DOI] [PubMed] [Google Scholar]
  47. Senter L., Luise M., Presotto C., Betto R., Teresi A., Ceoldo S., Salviati G. Interaction of dystrophin with cytoskeletal proteins: binding to talin and actin. Biochem Biophys Res Commun. 1993 Apr 30;192(2):899–904. doi: 10.1006/bbrc.1993.1500. [DOI] [PubMed] [Google Scholar]
  48. Stedman H. H., Sweeney H. L., Shrager J. B., Maguire H. C., Panettieri R. A., Petrof B., Narusawa M., Leferovich J. M., Sladky J. T., Kelly A. M. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature. 1991 Aug 8;352(6335):536–539. doi: 10.1038/352536a0. [DOI] [PubMed] [Google Scholar]
  49. Straub V., Bittner R. E., Léger J. J., Voit T. Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol. 1992 Dec;119(5):1183–1191. doi: 10.1083/jcb.119.5.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tomé F. M., Evangelista T., Leclerc A., Sunada Y., Manole E., Estournet B., Barois A., Campbell K. P., Fardeau M. Congenital muscular dystrophy with merosin deficiency. C R Acad Sci III. 1994 Apr;317(4):351–357. [PubMed] [Google Scholar]
  51. Torres L. F., Duchen L. W. The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain. 1987 Apr;110(Pt 2):269–299. doi: 10.1093/brain/110.2.269. [DOI] [PubMed] [Google Scholar]
  52. Way M., Pope B., Cross R. A., Kendrick-Jones J., Weeds A. G. Expression of the N-terminal domain of dystrophin in E. coli and demonstration of binding to F-actin. FEBS Lett. 1992 Apr 27;301(3):243–245. doi: 10.1016/0014-5793(92)80249-g. [DOI] [PubMed] [Google Scholar]
  53. Wells D. J., Wells K. E., Asante E. A., Turner G., Sunada Y., Campbell K. P., Walsh F. S., Dickson G. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet. 1995 Aug;4(8):1245–1250. doi: 10.1093/hmg/4.8.1245. [DOI] [PubMed] [Google Scholar]
  54. Winder S. J., Kendrick-Jones J. Calcium/calmodulin-dependent regulation of the NH2-terminal F-actin binding domain of utrophin. FEBS Lett. 1995 Jan 3;357(2):125–128. doi: 10.1016/0014-5793(94)01347-4. [DOI] [PubMed] [Google Scholar]
  55. Winnard A. V., Klein C. J., Coovert D. D., Prior T., Papp A., Snyder P., Bulman D. E., Ray P. N., McAndrew P., King W. Characterization of translational frame exception patients in Duchenne/Becker muscular dystrophy. Hum Mol Genet. 1993 Jun;2(6):737–744. doi: 10.1093/hmg/2.6.737. [DOI] [PubMed] [Google Scholar]
  56. Winnard A. V., Mendell J. R., Prior T. W., Florence J., Burghes A. H. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am J Hum Genet. 1995 Jan;56(1):158–166. [PMC free article] [PubMed] [Google Scholar]
  57. Zubrzycka-Gaarn E. E., Bulman D. E., Karpati G., Burghes A. H., Belfall B., Klamut H. J., Talbot J., Hodges R. S., Ray P. N., Worton R. G. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature. 1988 Jun 2;333(6172):466–469. doi: 10.1038/333466a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES