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Abstract. Induction of the urokinase type plasminogen 
activator receptor (uPAR) promotes cell adhesion 
through its interaction with vitronectin (VN) in the ex- 
tracellular matrix, and facilitates cell migration and in- 
vasion by localizing uPA to the cell surface. We provide 
evidence that this balance between cell adhesion and 
cell detachment is governed by PA inhibitor-1 (PAl-l).  
First, we demonstrate that uPAR and PAL1 bind to the 
same site in VN (i.e., the amino-terminal somatomedin 
B domain; SMB), and that PAI-1 competes with uPAR 
for binding to SMB. Domain swapping and mutagene- 
sis studies indicate that the uPAR-binding sequence is 

located within the central region of the SMB domain, a 
region previously shown to contain the PAl- l -binding 
motif. Second, we show that PAI-1 dissociates bound 
VN from uPAR and detaches U937 cells from their VN 
substratum. This PAL1 mediated release of cells from 
VN appears to occur independently of its ability to 
function as a protease inhibitor, and may help to ex- 
plain why high PAI-1 levels indicate a poor prognosis 
for many cancers. Finally, we show that uPA can rap- 
idly reverse this effect of PAI-1. Taken together, these 
results suggest a dynamic regulatory role for PAI-1 and 
uPA in uPAR-mediated cell adhesion and release. 

T 
UMOR invasion and metastasis depend upon the co- 
ordinated expression and temporal regulation of a 
series of proteolytic (Chen, 1992; Dano et al., 1985; 

Mignatti and Rifkin, 1993) and adhesive (Nesbit and Her- 
lyn, 1994) events. Urokinase-type plasminogen activator 
(uPA) 1 is one of the proteases frequently implicated in 
these processes (Dano et al., 1985; Mignatti and Rifkin, 
1993; Cohen et al., 1991; Vassalli et al., 1991). It is a serine 
protease that catalyzes the conversion of plasminogen into 
plasmin. Plasmin itself is a broadly acting trypsin-like en- 
zyme that not only degrades fibrin and a variety of extra- 
cellular matrix (ECM) proteins, but also may activate met- 
alloproteinases (Mignatti and Rifkin, 1993; He et al., 
1989). Plasminogen (Plow et al., 1995) and uPA (Huarte et 
al., 1985; Roldan et al., 1990) bind to specific receptors, lo- 
calizing plasmin activity to the cell surface where it can be 
employed by migrating cells to degrade and/or modify tis- 
sue barriers during a variety of normal and pathologic pro- 
cesses (Mignatti and Rifkin, 1993). It is not surprising that 
many tumors express increased uPA and uPA receptor 
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(uPAR) (Del Vecchio et al., 1993; Delbaldo et al., 1995) 
since these molecules may provide the tumor cells with the 
necessary proteolytic activity for invasion (Heiss et al., 1995). 

It is difficult to reconcile this simple paradigm of sur- 
face-associated proteolytic activity and invasiveness, with 
two recent observations. First, uPA actually promotes the 
adhesion of U937 tumor cells to the adhesive glycoprotein 
vitronectin (VN) (Waltz et al., 1993; Waltz and Chapman, 
1994) rather than releasing them from their attachment to 
this ECM substratum. This activity depends on the binding 
of uPA, its amino-terminal fragment (ATF; residues 1-143), 
or its epidermal growth factor domain (EGF; residues 
1-48), to uPAR (Waltz and Chapman, 1994), and occurs in 
the presence of RGD peptides and/or EDTA (i.e., in an 
integrin-independent manner) (Waltz and Chapman, 
1994). uPA alters the conformation of uPAR (Ploug et al., 
1994), increasing its affinity for VN (Waltz et al., 1993). 
Second, many tumor cells express increased levels of PA 
inhibitor-1 (PAl-l) (Heiss et al., 1995; Sier et al., 1994) the 
primary endogenous inhibitor of uPA. Unexpectedly, this 
potent inhibitor of plasminogen activation is necessary for 
optimal invasiveness of cultured lung cancer cells (Liu et 
al., 1995), and an increasing number of studies demon- 
strate that high PAI-1 levels indicate a poor prognosis for 
survival of patients with breast (Grondahl-Hansen et al., 
1993), lung (Pedersen et al., 1994), gastric (Nekarda et al., 
1994), ovarian (Kuhn et al., 1994), and cervical (Kobayashi 
et al., 1994) cancer. These observations suggest that PAL1 
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may play a critical role in tumor cell invasion. The mecha- 
nisms by which uPA promotes cell adhesion and PAI-1 fa- 
cilitates tumor cell invasion, remain to be delineated. 

Cells employ a variety of adhesion receptors to attach to 
the ECM, including proteoglycans (i.e., syndecans; Bern- 
field et al., 1993), integrins (Hynes and Lander, 1992), and 
uPAR. Under most circumstances, the integrins appear to 
be the more important of the ECM adhesion receptors 
(Gumbiner, 1996). They consist of a large family of het- 
erodimeric transmembrane proteins composed of differ- 
ent combinations of e~ and 13 subunits which largely deter- 
mine their ligand specificity (Hynes and Lander, 1992). In 
this context, the exact role and biological significance of 
uPAR, a glycosylphosphatidylinositol (GPI)-anchored mem- 
brane protein (Behrendt et al., 1995; PIoug et aI., 1991), in 
controlling cell adhesion remain to be determined. This al- 
ternative adhesion pathway may assume importance in 
some pathological situations. For example, recent studies 
show that the expression of various integrins is downregu- 
lated in many tumor cells (Howlett et al., 1995; Haupt- 
mann et al., 1995; Roussel et al., 1994; Boukerche et al., 
1994), and tumor cells frequently fail to deposit a fibronectin 
matrix around themselves (Rouslahti, 1994). The fact that 
the uPAR system may be upregulated in migrating tumor 
cells (Behrendt et al., 1995; Gladson et al., 1995; Sier et al., 
1994; Mignatti and Rifkin, 1993) suggests that these cells 
may use this alternative adhesion pathway as a response to 
the disturbed expression of normal cell adhesion proteins. 

The above observations indicate that the plasminogen 
activating system may provide both surface-associated 
protease activity and a novel adhesion mechanism for 
cells. However, in spite of the critical importance of uPAR 
in controlling these processes, the nature of the molecular 
"switch" that determines which response will dominate re- 
mains to be defined. The possibility that PAL1 itself is in- 
volved in these processes is suggested by the observations 
that this inhibitor binds to both uPA and VN but does so 
by quite distinct mechanisms. For example, PAI-1 binds to 
and inhibits uPA, but is inactivated in the process (Kruithof, 
1988; Loskutoff, 1991; Van Meijer and Pannekoek, 1995). 
Although PAI-1 also binds to VN with high affinity, it re- 
tains its activity and is, in fact, stabilized by this interac- 
tion. PAI-1 complexed with VN can still bind to and in- 
hibit uPA (Knudsen et al., 1987) and tissue-type PA (tPA) 
(Declerck et al., 1988; Mimuro and Loskutoff, 1989). In- 
terestingly, the resulting PA/PAI-1 complexes have little 
affinity for VN, and are rapidly released from it. 

In this report we demonstrate that the binding site for 
uPAR on VN is contained within residues 1-41 at the 
amino terminus of the molecule, the somatomedin B (SMB) 
domain (Deng et al., 1995; Jenne and Stanley, 1985; Van 
Meijer and Pannekoek, 1995). The SMB domain is also 
the high affinity binding site for active PAI-1 in VN (Seif- 
fert and Loskutoff, 1991a). We also show that PAL1 effec- 
tively competes with uPAR for VN binding, that the inter- 
action between PAI-1 and SMB prevents the adhesion of 
U937 cells to VN, and that low concentrations of PAI-1 
rapidly release U937 cells from their attachment to VN. 
These observations are incorporated into a model in which 
PAI-1 is suggested to play a central regulatory role in 
uPAR mediated cell adhesion and release. This model 
may explain why high PAI-1 levels correlate with a poor 
prognosis for many cancers. 

Materials and Methods 

Materials 

Recombinant human PAI-1 was purified from Escherichia coil strain 
JM105 transformed with the PAl-1 expression plasmid pMBLl l  as de- 
scribed previously (Seiffert et al., 1994). Latent PAI-1 was generated by 
incubating active recombinant PAI-1 for 24 h at 37°C (Deng et al., 1996). 
Human high molecular weight two-chain uPA was from CalBiochem (La 
Jolla, CA). VN was purified from human plasma by heparin affinity chro- 
matography in the presence of urea (Yatohgo et al., 1988), and iodinated 
to a specific activity of 8.9 x 107 cpm/l~g by using the IODO-GEN system 
(Pierce, Rockford, 1L). The expression and purification of recombinanl 
SMB and SMB mutants have been described previously (Deng et al., 
1996). The EGF-like domain of human uPA (residues 1-48) was expressed 
and purified from recombinant yeast as described (Stratton-Thomas et al., 
1995). Biotinylated uPAR was labeled according to Kaufman et al. (1993) 
using soluble recombinant human uPAR expressed and secreted from 
baculovirus-infected Sf9 insect cells as described (Goodson et al., 1994). 
ATF (residues 1-143 of uPA) and unlabeled soluble recombinant human 
uPAR were the kind gifts of Dr. Jieyi Wang (Abbott Laboratories, Ab- 
bott Park, IL). The anti-VN mAbs (1244 and 153) were developed and pu- 
rified as described (Seiffert et al., 1994). GRGDSP peptide was from Pen- 
insula Laboratories (Belmont, CA). 

Binding Assays 

The binding of uPAR to immobilized VN was investigated by using a 
uPAR microtiter plate assay. Briefly, microtiter wells were coated with 
VN by incubating them in 100 pA of a solution containing 1 I~g/ml of VN in 
PBS at 4°C overnight. The wells were washed and then blocked by incuba- 
tion with 5% casein in PBS for 1 h. Biotinylated uPAR (10 nM), uPA (10 
nM) or the EGF domain of uPA (10 nM), and various competitors were 
added to the wells and the plate was incubated at 37°C for 1 h. The 
amount of bound uPAR was determined by employing streptavidin-alka- 
line phosphatase (Zymed Labs., So. San Francisco, CA) and the ELISA 
amplification system (GIBCO BRL, Gaithersburg, MD). The change of 
color was determined at 495 nM, and the O.D. reading from duplicate 
wells was corrected by subtracting values for the wells incubated in the ab- 
sence of biotinylated uPAR. 

The binding of iodinated VN to U937 cells was quantified as follows. 
U937 cells at 106 cells/ml were incubated for 16 h in RPMI 1640 (BioWhit- 
taker, Walkersville, MD) containing 10% FBS (GIBCO BRL), human 
transforming growth factor 13 (TGF-131) (Sigma Chem. Co., St. Louis. MO; 
1 ng/ml) and la,25-dihydroxy-vitamin D3 (CalBiochem; 50 nM) (Waltz 
and Chapman, 1994). The cells were then washed twice with serum-free 
RPMI containing 0.02% BSA (Sigma) and resuspended at 5 x 10 ~ cells/ml 
in the same media. The cells (0.2 ml) were then incubated with iodinated 
VN at 4°C in the presence or absence of various competitors, and after 90 
min, aliquots (50 ~1) were removed, layered on 0.3 ml of 20% sucrose, and 
centrifuged for 3 min at 12,000 rpm. The amount of iodinated VN associ- 
ated with the cell pellet was determined in a ~/counter. Triplicate determi- 
nations were made for each condition, and data are expressed as mean - S.D. 

Cell Adhesion Assay 

U937 cells previously activated by culturing them in the presence of hu- 
man TGF-131 and vitamin D3 (as above), were washed twice, resuspended 
in serum-free media containing 0.02% BSA, and plated at 2.5 x 105 cells/ 
well in 96-well tissue culture plates precoated with 100 txl VN (2 ~g/ml), 
and blocked with 5% BSA. The cells were incubated in the VN-coated 
wells for 3 h at 37°C in 5% CO2, and then the plates were washed three 
times to remove nonadherent ceils. Each step of the washing procedure 
included gentle agitation for 1-2 min in fresh media using a microtiter 
plate mixer. Triplicate wells were then photographed at both low (40x) 
and high (200x) magnification. 

Results 

Active PAI-I Inhibits the Binding of uPAR to VN 

Recent studies suggest that PAL1 inhibits the adhesion of 
U937 cells to VN by binding to uPA and promoting the re- 
moval of both uPA and uPAR from the cell surface (Waltz 
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et al., 1993). However, PAI-1 also binds to VN with high 
affinity (Deng et al., 1995; Salonen et al., 1989; Seiffert and 
Loskutoff, 1991b; Van Meijer and Pannekoek, 1995), rais- 
ing the possibility that it may inhibit cell adhesion through 
its interaction with VN rather than through its interaction 
with uPA. A series of experiments was performed to dis- 
tinguish between these possibilities. Fig. 1 shows that puri- 
fied recombinant PAI-1 does indeed inhibit the binding of 
VN to U937 cells, that it does so in a dose-dependent man- 
ner, and that 20 nM of active PAI-1 completely inhibited 
this interaction. Interestingly, preincubation of the cells 
with PAI-1 to presaturate the uPA did not inhibit the sub- 
sequent binding of iodinated VN to the cells (Fig. 1, 
shaded bar). In fact, essentially all of the VN-binding sites 
were still available after this treatment. In contrast, prein- 
cubation of VN with purified PAI-1 prevented it from sub- 
sequently binding to purified uPA/uPAR complexes (Fig. 
2, open triangle). Moreover, active PAI-1 directly inhibited 
the binding of purified uPAR to VN immobilized onto mi- 
crotiter wells, with an IC50 of ~10 riM. In these experi- 
ments, the E G F  domain of uPA (i.e., residues 1-48) was 
employed instead of uPA itself. The EGF domain of uPA 
cannot bind to PAl- l ,  but still binds to uPAR and en- 
hances its interaction with VN (Waltz and Chapman, 
1994). Inactive latent PAl- l ,  which does not bind to uPA 
or VN (Declerck et al., 1988; Wiman et al., 1988; Mimuro 
and Loskutoff, 1989), showed no inhibition in this assay. 
The demonstration that both purified VN and purified 
uPAR inhibit the interaction (Fig. 2), indicates that these 
molecules specifically interact in this assay system. In sep- 
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Figure 1. PAI-1 inhibits the binding of VN to U937 cells. U937 
cells were stimulated overnight with TGF-131/vitamin D3, washed 
extensively, and then incubated on ice for 90 min in the presence 
of 125I-labeled VN and increasing amounts of purified PAI-1 
(open bars). The cells were then centrifuged through 20% su- 
crose, and cell-associated VN was determined in a ~/counter.  In 
one experiment,  the cells were preincubated with PAI-1 (20 nM) 
for 30 min, washed, and then the 125I-labeled VN was added for 
90 min (shaded bar). The latter data were not adjusted for cell 
loss due to the extra washing step. In these experiments,  100% of 
bound VN represented 5,900 cpm. 
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Figure 2. PAI-1 inhibits uPAR binding to VN. Biotin-labeled 
uPAR (10 nM) and the EGF domain of uPA (10 nM) were added 
to VN-coated microtiter wells in the presence of increasing con- 
centrations of various competitors. The amount of bound uPAR 
was then determined by the uPAR microtiter plate assay (see 
Materials and Methods). Competitors used in the assay include 
active PAI-1 (0), VN (O), uPAR (11), and latent PAI-1 ([]). In one 
experiment, the VN-coated wells were preincubated with PAL1 
(200 nM) for 1 h, the wells were washed, and then biotin-labeled 
uPAR and the EGF domain of uPA were added as above (A). 

arate experiments we demonstrated that 125I-labeled VN 
binds to both uPA/uPAR and uPA/uPAR/PAI-1 com- 
plexes immobilized on microtiter wells (data not shown). 
Taken together, these results indicate that PAI-1 inhibits 
the binding of uPAR to VN by a mechanism that depends 
upon its interaction with VN, and not with uPA. 

The Balance between uPA and PAI-1 Governs the 
uPAR/VN Interaction and Cell Adhesion 

The kD for the VN/PAI-1 interaction is ~0.3 nM (Seiffert 
and Loskutoff, 1991b), while the VN/uPAR interaction is 
10 nM (Waltz and Chapman, 1994). The 30-fold higher af- 
finity of PAI-1 over uPAR for VN suggests that the inhibi- 
tor may be able to detach cells from their VN substratum. 
Cell adhesion assays were performed in order to test this 
hypothesis (Fig. 3). U937 cells were incubated in VN- 
coated wells in serum-free media for 3 h, and then PAI-1 
(40 nM) was added. After another 1 h of incubation, the 
wells were washed three times to remove nonadherent 
cells, and then photographed. Fig. 3 shows that the pres- 
ence of excess PAI-1 caused the vast majority of cells to 
become nonadherent and to be released from their VN 
substratum. This effect occurs in a PAI-1 dose-dependent 
manner (data not shown), in agreement with the results 
shown in Fig. 1. PAI-1 also caused the release of non- 
treated or PMA-treated U937 cells from VN. Incubation 
of these cells in media containing 0.5 mM GRG D SP pep- 
tide or 10 mM E D T A  did not release the cells from VN 
(not shown). 

It is well established that PAI-1 inhibits uPA (Vassalli et 
al., 1991; Van Meijer and Pannekoek, 1995) and that the 
PAI-1 in the resulting uPA/PAI-1 complexes no longer 
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Figure 3. PAI-1 detaches U937 cells from VN coated wells. U937 cells were stimulated with TGF-131/vitamin D3 overnight, and then 
seeded onto VN-coated cell culture wells in triplicate in serum-free media containing 0.02% BSA. 3 h later, media alone (left panels), 
media containing PAL1 (middle panels), or media containing PAI-1 and uPA (right panels) was added. The final concentration of PAI-1 
and uPA in the wells was 40 nM and 100 nM, respectively. The wells were incubated for an additional 60 min and then agitated and 
washed three times to remove nonadherent cells as described in Materials and Methods. Representative wells from each set were then 
photographed at low and high magnification (top panels and bottom panels). 

binds to VN (Knudsen et al., 1987). In fact, the addition of 
uPA or tPA to VN, specifically releases any PAI-1 previ- 
ously bound to it. Therefore, similar experiments were 
performed to investigate the effect of uPA on cell adhe- 
sion and release. Fig. 3 (right panels) graphically demon- 
strates that uPA prevents the PAl- l -media ted  release of 
U937 cells from VN. This effect is uPA dose-dependent 
(data not shown), and excess uPA (i.e., 2-5-fold) is able to 
completely prevent the cell release by PAI-1. Similar ex- 
cesses of uPA and tPA completely inhibit and/or reverse 
the binding of PAI-1 to VN (Knudsen et al., 1987; Mimuro 
and Loskutoff, 1989). Interestingly, the uPAR binding 
fragment of uPA (i.e., ATF) did not prevent this PAI-1-  
mediated release of cells from VN (not shown). Although 
ATF binds to uPAR and enhances uPAR/VN binding 
(Waltz and Chapman, t994), it cannot bind to PAL1 (Cu- 
bellis et al., 1989). In separate experiments, U937 cells 
were allowed to bind to 125I-labeled VN in the absence or 
presence of PAI-1 and/or uPA (Fig. 4 A). In these experi- 
ments, uPA (lane 2) and ATF (lane 3) slightly increased 
the binding of 125I-labeled VN to the cells (compare to 
lane 1), while 2 nM PAI-1 inhibited it by ~50% (lane 4). 
The subsequent addition of uPA reversed this effect of 
PAI-1 (compare lanes 4 and 6), but ATF did not (compare 

lanes 4 and 5). Fig. 4 B demonstrates that tPA can also re- 
verse the anti-adhesive effects of PAI-1. This observation 
is significant because tPA does not bind to uPAR (Roldan 
et al., 1990; Vassalli et al., 1991; Behrendt et al., 1995). 
Moreover, the PAI-1 in tPA/PAI-1 complexes, like that in 
uPA/PAI-1 complexes, no longer binds to VN (Declerck 
et al., 1988; Mimuro and Loskutoff, 1989). 

Evidence that uPAR/uPA Complexes Bind to the SMB 
Domain of  VN 

The fact that PAI-1 binds to the SMB domain of VN (Seif- 
fert and Loskutoff, 1991a) and simultaneously blocks VN 
binding to uPAR (Fig. 2), suggests that uPAR may also 
bind to the SMB domain. If this hypothesis is true, then 
purified SMB itself should competitively inhibit VN bind- 
ing to uPAR. To test this possibility, we compared the 
ability of wild-type recombinant SMB and a non-PAI-1 
binding mutant of SMB (i.e., SMBy2sA; Deng et al., 1996) 
to compete with VN for uPAR binding in the microtiter 
plate assay (Fig. 5 A). The recombinant SMBs employed 
in these experiments contain residues 1 through 41 of VN, 
and therefore do not include the RGD sequence (Jenne 
and Stanley, 1985). As shown in Fig. 5 A, active wild-type 
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Figure 4. Evidence that it is the balance between uPA and PAl-1 
that governs the binding of uPAR to VN. (A) ~25I-labeled VN was 
incubated with U937 cells for 90 min on ice as in Fig. 1 in the 
presence of serum-free media containing 0.02% BSA alone (lane 
I),  or supplemented with 10 nM uPA (lane 2), 10 nM ATF (lane 
3), 2 nM PAl-1 (lane 4), 2 nM PAI-1 and 100 nM ATF (lane 5), 
and 2nM PAI-1 and 10 nM uPA (lane 6). (B) lzSI-labeled VN was 
incubated with U937 cells in media alone (lane 1), or media con- 
taining 2 nM P A I d  (lane 2), 2 nM PAI-1 and 10 nM tPA (lane 3), 
or 2 nM PAI-I  and 100 nM tPA (lane 4). 

SMB inhibited the binding of uPAR to VN, but the inac- 
tive SMB mutant did not. We previously showed that 
monoclonal antibody (mAb) 153 blocks the binding of 
PAI-1 to VN (Seiffert et al., 1994) and this mAb also 
blocked the binding of VN to uPA/uPAR/PAI-1 com- 
plexes immobilized on plastic surfaces (Fig. 5 B). In con- 
trast, a second anti-VN mAb which did not inhibit PAI-1 
binding (i.e., mAb 1244; Seiffert et al., 1994), had no effect 
on this interaction. These results indicate that the uPAR 
binding site in VN, like the high affinity PAI-1 binding site 
(Seiffert and Loskutoff, 1991a), is located in the SMB do- 
main. 
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Figure 5. Evidence that uPAR binds to the SMB domain of VN. 
(A) Increasing concentrations of recombinant SMB (0)  or of re- 
combinant SMBy28A (O) were added to VN-coated microtiter 
wells in the presence of uPA and biotinylated uPAR, and the 
amount of bound uPAR was determined as in Fig. 2. (B) Equal 
concentrations of uPAR, 2 chain uPA, and PAI-1 (40 nM each) 
were mixed together and coated onto the wells of a microtiter 
plate by incubation at 4°C overnight. The wells were blocked, 
washed, and 125I-labeled VN was added in the presence of in- 
creasing concentrations of an mAb specific for the SMB domain 
(i.e., mAb153; @), or an mAb whose epitope is located outside of 
this domain in the connector region of VN (i.e., mAb1244; O). 
The amount of bound VN was determined in a 3, counter. In 
these experiments, 100% binding corresponds to 7,200 cpm. 

uPAR on U937 Cells Also Binds to the SMB 
Domain of VN 

Experiments were performed to test the possibility that 
the binding of VN to U937 cells also occurs through the 
SMB domain. Fig. 6 demonstrates that purified recombi- 
nant SMB decreases the binding of VN to U937 cells in a 
dose-dependent manner, while the inactive Y28A SMB 
mutant had no effect. Moreover, inhibitory mAb 153 
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Figure 6. Evidence that uPAR on U937 cells binds to the SMB 
domain of VN. i25I-labeled VN was incubated with U937 cells for 
90 min at 4°C in the presence of serum-free media alone (lane 1), 
or media containing 2 t~M SMB (lane 2), 8 IxM SMB (lane 3), 3 txM 
SMB mutant Y28A (lane 4), 10 ixg/ml of mAb 153 (lane 5), or 10 
ixg/ml of mAb 1244 (lane 6). In all instances, the amount of cell- 
associated, 12SI-labeled VN was determined as in Fig. 1. 

blocked the binding of VN to U937 cells, but inactive m A b  
1244 did not. Thus, the interaction between VN and U937 
cells, like the interaction between VN and purified uPAR,  
is mediated by the binding of SMB to uPAR. 

Identification of  Critical Residues in the SMB Domain 
for uPAR Binding 

Domain  swapping and mutagenesis studies were per- 
formed to more  precisely identify the u P A R  binding se- 
quence within the SMB domain. The SMB domain of VN 
is a cysteine-rich peptide (Fig. 7 A, top), and we previously 
showed that all eight cysteines are critical for maintaining 
the functional (i.e., PAI-1 binding) tertiary structure of the 
peptide (Deng et al., 1996). These cysteines appear  to be 
organized into disulfide bonds, and substitution of any one 
of them with alanine resulted in the formation of inactive 
peptides that no longer bind to PAL1 (Deng et al., 1996). 
Based on these observations, mutagenesis experiments 
were per formed under conditions that did not change the 
cysteines. We initially tested the hybrid molecules created 
to define the PAI-1 binding region in SMB (Deng et al., 
1996), and demonst ra ted  that the u P A R  binding motif, 
like the PAI-1 binding motif  (Deng et al., 1996), is located 
in the central region of the molecule (data not shown). 
This region is indicated by the overline in the sequence 
shown in Fig. 7. We then converted the charged amino ac- 
ids in this region into alanines and tested the resulting pep- 
tides for uPAR binding activity in an assay similar to that 
used in Fig. 2. When either of  the negatively charged resi- 
dues, Asp22 or Glu23, were converted into alanine, the re- 
suiting peptides no longer bound uPAR. However ,  when 
positively charged residues within this region (i.e., Lysl7  
and Lys18) were changed into alanines, the resulting mu- 
tant peptides still bound to u P A R  (Fig. 7 A). 
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Figure 7. Mutational analysis of the uPAR binding site in SMB. 
Alanine scanning mutagenesis was employed to determine the 
role of charged residues (A) and polar/hydrophobic residues (B) 
within SMB for uPAR binding. The uPAR binding activity of the 
following mutants was tested. (A) Wild-type SMB (0); D22A 
(O); E23A (11); K6A,RSA (rq); and K17A,K18A (&). The amino 
acid sequence of wild-type SMB is shown across the top of this 
figure. The PAL1 binding region is overlined and critical residues 
for uPAR binding are underlined. (B) Wild-type SMB (0); L24A 
(D); Y27A (11); Y28A (O); and Y35A (&). All assays were per- 
formed in the uPAR microtiter plate assay as described in Mate- 
rials and Methods. 

In addition to the cysteines and the negatively charged 
residues, several polar  and hydrophobic amino acids also 
were shown to be important  in PAI-1 binding (Deng et al., 
1996). These residues, along with a number  of others in 
the central region of SMB, also were individually con- 
verted into alanines and then assayed for u P A R  binding 
(Fig. 7 B). Among  these residues, Leu24, Tyr27, and Tyr28 
were found to be essential for u P A R  binding. 
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Discussion 

Although the specificity of cell adhesion to components of 
the extracellular matrix is largely determined by the inte- 
grin composition of the individual cell (Gumbiner, 1996), 
integrin-independent cell adhesion may also be important. 
For example, malignantly transformed cells often lose the 
ability to express specific integrins (Boukerche et al., 1994; 
Roussel et al., 1994; Howlett et al., 1995; Hauptmann et 
al., 1995) and to assemble fibronectin around themselves 
(Rouslahti, 1994). Although such cells are frequently non- 
adhesive, they may become adhesive under certain cir- 
cumstances (i.e., by using alternative adhesion molecules). 
The adhesive properties of U937 lymphoma cells illustrate 
this behavior. Although these cells do not normally adhere 
to ECM, Chapman and his collaborators showed that they 
could be induced to adhere to VN by treating them with 
TGF-131 and Vitamin D3 (Waltz et al., 1993), treatments 
subsequently shown to upregulate uPAR, uPA, and PAI-1 
(Waltz et al., 1993). In a series of intriguing papers, these 
authors demonstrated that this adhesion occurred in the 
presence of E D T A  (Waltz and Chapman, 1994), eliminat- 
ing the contribution of known integrins since integrins re- 
quire divalent cations for activity (Gumbiner, 1996; Hynes 
and Lander, 1992). Adhesion required uPA and was medi- 
ated through uPAR (Wei et al., 1994), a molecule origi- 
nally implicated in the localization of uPA to the surface 
of invading cells (Roldan et al., 1990; Behrendt et al., 1995; 
Estreicher et al., 1990). The conclusion that uPAR plays a 
central role in this process is further supported by the ob- 
servation that nonadherent 293 cells became adherent to 
VN when transfected with uPAR cDNA (Wei et al., 1994). 
Finally, antibodies to PAI-1 appeared to promote the ad- 
hesion of U937 cells to VN, leading to the suggestion that 
PAI-1 itself would inhibit cell adhesion by binding to uPA 
on cells and inducing the internalization of the uPA/uPAR 
complex (Waltz et al., 1993; Cubellis et al., 1990). The ob- 
servations in this report demonstrate directly that PAI-1 
inhibits uPAR mediated cell adhesion. However, in these 
studies, this effect of PAI-1 appears to be due largely to its 
interaction with VN and not with uPA. 

First, we directly demonstrate that purified, recombi- 
nant PAI-1 inhibits the binding of 125I-labeled VN to U937 
cells (Fig. 1), and that active but not latent PAI-1 inhibits 
the binding of purified uPAR to purified VN (Fig. 2). 
Since these latter experiments were performed using puri- 
fied components (i.e., in the absence of cells), this effect of 
PAI-1 could not depend upon cell-mediated internaliza- 
tion and degradation. In this regard, preincubation of 
U937 cells with PAI-1 did not reduce their ability to subse- 
quently bind to VN (Fig. 1), but preincubation of VN with 
PAl-1 blocked its ability to bind to purified uPAR (Fig. 2). 
These results suggest that PAI-1 inhibits cell adhesion in 
these assays by interacting with VN and not with uPA/ 
uPAR complexes on the cell surface. The experiments 
shown in Fig. 1 were conducted under conditions of mini- 
mal internalization (i.e., at 4°C). Thus, PAI-1 completely 
blocked the binding of cells to VN in the absence of uPAR 
mediated internalization. PAI-1 also blocked, and in fact 
reversed, the interaction between cells and VN when the 
experiments were performed at 37°C (Fig. 3). Although 
this result could be due in part to PAI-1 mediated uPAR 

internalization, the uPA reversal experiments again sug- 
gest that uPAR is not involved. First of all, PAL1 com- 
plexed to uPA on the receptor is no longer active and thus 
would not be a substrate for the added uPA. However, 
PAI-1 bound to VN can still bind to the excess added uPA 
and the resulting uPA/PAI-1 complexes would be re- 
leased. These latter changes would be expected to pro- 
mote cell adhesion (Fig. 8). The fact that the inactive ATF 
fragment does not reverse the effect of PAI-1 at 4°C (Fig. 
4) or at 37°C (not shown) is consistent with this hypothesis 
since ATF binds to uPAR (Waltz and Chapman, 1994) but 
not to PAI-1 (Cubellis et al., 1989). 

Experiments were performed to identify the binding site 
in VN for uPA/uPAR. Since the high affinity binding site 
for active PAI-1 in VN is the SMB domain (Seiffert and 
Loskutoff, 1991a), we initially examined this region of the 
molecule. Fig. 5 shows that purified, recombinant SMB 
also blocked the binding of uPAR to VN (Fig. 5 A), and 
that an mAb directed to the SMB domain blocked the 
binding of 125I-labeled VN to immobilized uPA/uPAR 
(Fig. 5 B). Recombinant SMB and a mAb that blocked the 
binding of PAI-1 to SMB also blocked the binding of VN 
to activated U937 cells (Fig. 6). In control experiments, we 
showed that a mutant of SMB which does not bind to PAI-1 
(i.e., SMBvz8A), and an mAb whose epitope was mapped 
outside of the SMB domain (i.e., 1244), had no effect in 
these binding experiments. These results indicate that 
both PAI-1 and uPAR bind to the SMB domain of VN. 
Mutagenesis studies further demonstrate that these sites 
are overlapping but distinct (Fig. 7). In this regard, the po- 
lar/hydrophobic residues shown to be critical for uPAR 
binding (Fig. 7) were also critical for PAI-1 binding (Deng 
et al., 1996). However, when we directly compared the 
critical residues in SMB for PAI-l-binding (Deng et al., 
1996) with those for uPAR-binding (Fig. 7), we noted one 
important difference: Glu23 was necessary for uPAR 
binding but not for PAI-1 binding. This difference may in- 
dicate that uPAR requires more negatively charged resi- 
dues in SMB for binding than are required by PAI-1. 
These results indicate that the sequence in SMB for uPAR 
binding is very similar to, but not identical with, the PAI-1 
binding sequence. 

Based on these observations, we propose that PAI-1 
plays a central regulatory role in uPAR mediated cell ad- 
hesion (Fig. 8). The three key features of this model are 
that uPA stimulates uPAR-dependent cell adhesion 
(Waltz et al., 1993), that uPAR binds to the SMB domain 
of VN (Figs. 5-7), and that PAI-1 also binds to SMB but 
with considerably higher affinity than does uPAR. This 
difference in affinity suggests that the interactions that 
govern cell adhesion and release will be regulated by the 
concentration of active PAI-1 available. According to this 
model (Fig. 8), cells will be nonadherent in the absence of 
either uPA or uPAR. Stimulation of cells in any way that 
causes the expression of both uPA and uPAR (e.g., with 
TGF[31 and Vitamin D3) will lead to the binding of uPA 
to cell-associated uPAR, an interaction that alters the con- 
formation of uPAR (Ploug et al., 1994) and promotes its 
binding to the SMB domain of VN in the ECM. These 
changes, which lead to the formation of stable attach- 
ments, will occur only when uPAR is available and uPA is 
present in excess over PAI-1. Consistent with this idea, 
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Figure 8. Model for the regulation of uPAR dependent cell adhe- 
sion and release by PAI-1 and uPA. 

Western blot analysis of  SDS-extracts of  TGFI31/Vitamin 
D3 treated adherent U937 cells revealed the presence of 
15 ng of uPA per 2.5 × 105 cells and undetectable (i.e., less 
than 1 ng) of PAI-1 (data not shown). If these cells are 
now stimulated or otherwise altered to produce excess 
PAl- l ,  the inhibitor should compete with and displace 
uPAR from its association with SMB, releasing the cells 
from their VN substratum. This idea is supported by the 
demonstration that low concentrations of PAL1 release 
U937 cells from their attachment to VN (Fig. 3). Interest- 
ingly, U937 cells attached to VN in this way cannot be re- 
leased by E D T A  or an RGD peptide (i.e., GRGDSP),  
suggesting that integrins are not involved in this process. 
Finally, this adhesive process is expected to be fully revers- 
ible, and excess uPA will again promote cell adhesion and 
invasion (Figs. 3 and 8). 

This model is useful because it provides a potential 
mechanism and testable hypothesis to account for the un- 
expected observation that PAI-1 is an independent marker 
for poor survival in many cancers (Pappot et al., 1995). It 
may also help us to understand the findings of Quax et al. 
(1991) who noted that metastasis of human melanoma 
cells correlated with PAI-1 (Quax et al., 1991), and of Sier 
et al. (1994) who observed increased levels of PAI-1 in colo- 
rectal cancer liver metastasis (Sier et al., 1994). In these 
examples, the PAI-l -mediated release of cells from VN 
would be expected to promote the dissemination of these 
cells to distant tissue sites. The possibility that PAI-1 also 
influences the migration/invasion of these cells remains to 
be determined. In this regard, it should be noted that if the 
bound uPA is in its proenzyme form, PAI-1 will not be 
able to bind to and inactivate it (Andreasen et al., 1986). 
The released cells will be fully armed with pro-uPA and 
therefore with the potential protease activity necessary to 
invade and remodel the ECM. 

This demonstration that PAI-1 regulates cell adhesion 
and release, and that it does so by binding to VN and not 
by inhibiting its natural substrate (uPA), sets it apart from 
other serine protease inhibitors (serpins). PAL1 also dif- 
fers from other serpins because it is a trace protein in 
plasma, it has a relatively short half-life (i.e., 10 min), and 
its biosynthesis is rapidly stimulated by a variety of inflam- 
matory mediators, growth factors, and hormones (for re- 
views see Loskutoff, 1991; Van Meijer and Pannekoek, 
1995). Moreover, P A I d  is an immediate-early gene (Pren- 
dergast and Cole, 1989) and has been shown to accumulate 
at focal points of  adhesion (Ciambrone and McKeown- 
Longo, 1992). The short half-life and ability to be rapidly 
and dramatically upregulated, are the expected properties 
of molecules that have the potential to rapidly initiate or 
terminate biological processes (i.e., molecular switches). 

Thus, by regulating the production rate and/or activity of  
PAl- l ,  cells may be able to control their adhesiveness and 
m o v e m e n t .  

We thank Drs. L. Miles and S. Hawley for helpful discussion, Drs. E. Mad- 

ison and S. Shattil for critical reading of this manuscript,  Dr. J. Wang for 
ATF,  and M. McRae and J. Lapan for excellent secretarial  assistance. 

This work was supported in part by grant HL31950 to D.J. Loskutoff  

from the National  Insti tutes of Health.  G. Deng is a recipient of National  

Research Service Award  HL09400-01, and S. Wang was supported by 
Training Grant  HL07195-19. 

Received for publicat ion 13 May 1996 and in revised form 5 July 1996. 

References 

Andreasen, P.A., L.S. Nielsen, P. Kristensen. J. Grondahl-Hansen, L. Skriver, 
and K. Dano. 1986. Plasminogen activator inhibitor from human fibrosar- 
coma cells binds urokinase-type plasminogen activator, but not its proen- 
zyme. J. BioL Chem. 261:7644-7651. 

Behrendt, N., E. Ronne, and K. Dano. 1995. The structure and function of the 
urokinase receptor, a membrane protein governing plasminogen activation 
on the cell surface. BioL Chem. Hoppe-Seyler. 376:269-279. 

Bcrnfield, M.R., M.T, Hinkes, and R.L. Gallo~ 1993. Developmental expression 
of the syndecans: possible function and regulation. Development. 1t9:205-212. 

Boukerche, H., M. Benchaibi, O. Berthier-Vergnes, G. Lizard, M. Bainy, and 
J.L. McGregor. 1994. Two human melanoma cell-line variants with en- 
hanced in vivo tumor growth and metastatic capacity do not express the 13 3 
integrin subunit. Eur. J. Biochem. 220:485-491. 

Chen, W.T. 1992. Membrane proteases: roles in tissue remodeling and tumour 
invasion. Curt. Opin. Cell Biol. 4:802-809. 

Ciambrone, G.J., and P.J. McKeown-Longo. 1992. Vitronectin regulates the 
synthesis and location of urokinase-type plasminogen activator in HT-1080 
cells. ,/. BioL Chem. 267:13617-13622. 

Cohen, R.L., X.-P. Xi, C.W. Crowley, B.K. Lucas, A.D. Levinson, and M.A. 
Shuman. 1991. Effects of urokinase receptor occupancy on plasmin genera- 
tion and proteolysis of basement membrane by human tumor cells. Blood. 
78:479-487. 

Cubellis, M.V., P. Andreasen, P. Ragno, M. Mayer, K. Dano, and F. Blasi. 1989. 
Accessibility of receptor-bound urokinase to type-1 plasminogen activator 
inhibitor. Proc. NatL Acad. Sci. USA. 86:4828-4832. 

Cubellis, M.V., T.-C. Wun, and F. Blasi. 1990. Receptor-mediated internaliza- 
tion and degradation of urokinase is caused by its specific inhibitor PAl-1. 
EMBO (Eur Mol. BioL Organ.)J. 9:1079-1085. 

Dano, K., P.A. Andreasen, J. Grondahl-Hansen, P. Kristensen, L.S. Nielsen, 
and L. Skriver. 1985. Plasminogen activators, tissue degradation, and cancer. 
Adv. Cancer Res. 44:139-266. 

Declerck, P.L, M. De Mol, M.C. Alessi, S. Baudner, E.P. Paques, K.T. Preiss- 
her, G.M. Berhaus, and D. Collen. 1988. Purification and characterization of 
a plasminogen activator inhibitor 1 binding protein from human plasma. J. 
Biol. Chem. 30:15454-15461. 

Del Vecchio, S., M.P. StoppeUi, M.V. Carriero, R. Fonti, O. Massa, P.Y. Li, G. 
Boni, M. Cerra, G. D'Aiuto, G. Esposito, and M. Salvatore. 1993. Human 
urokinase receptor concentration in malignant and benign breast tumors by 
in vitro quantitative autoradiography: comparison with urokinase levels. 
Cancer Res. 53:3198-3206. 

Delbaldo, C., M. Cunningham, J.-D. Vassalli, and A.-P. Sappino. 1995. Plasmin- 
catalyzed proteolysis in colorectal neoplasia. Cancer Res. 55:4688-4695, 

Deng, G., G. Royle, D. Seiffert, and D. Loskutoff. 1995. The PAI-1/vitronectin 
interaction: two cats in a bag? Thromb. Haemostasis. 74:66--70. 

Deng, G., G. Royle, S. Wang, K. Crain. and D.J. Loskutoff. 1996. Structural and 
functional analysis of the PAI-1 binding motif in the somatomedin B domain 
of vitronectin. Z BioL Chem. 271:t2716-12723. 

Estreicher, A., J. Mtihlhauser, J.-L Carpentier, L. Orci, and J.-D. Vassalli. 
1990. The receptor for urokinase type plasminogen activator polarizes ex- 
pression of the protease to the leading edge of migrating monocytes and pro- 
motes degradation of enzyme inhibitor complexes. J. Cell BioL 111:783-792. 

Gladson, C.L., V. Pijuan-Thompson, M.A. Olman, G.Y. Gillespie, and I.Z. Ya- 
coub. 1995. Up-regulation of urokinase and urokinase receptor genes in ma- 
lignant astrocytoma. Am. J. PathoL 146:1150--1160, 

Goodson, R.J,, M.V. Doyle, S.E. Kaufman, and S. Rosenberg. 1994. High-affin- 
ity urokinase receptor antagonists identified with bacteriophage peptide dis- 
play, Proc. NatL Aead. Sci. USA. 91:7129-7133. 

Grondahl-Hansen, J., I.J. Christensen, C. Rosenquist, N. Brunner, H.T. Mou- 
ridsen, K. Dano, and M. Blichert-Toft. 1993. High levels of urokinase-type 
plasminogen activator and its inhibitor PAL1 in cytosolic extracts of breast 
carcinomas are associated with poor prognosis. Cancer Res. 53:2513-2521. 

Gumbiner, B.M. 1996. Cell adhesion: the molecular basis of tissue architecture 
and morphogenesis. Cell Press. 84:345-357. 

Hauptmann, S., C. Denkert, H. Lohrke, L. Tietze, S. Ott, B. Klosterhalfen, and 
C. Mittermayer. 1995. Integrin expression on colorectal tumor cells growing 
as monolayers, as multicellular tumor spheroids, or in nude mice, Int. J. Can- 

The Journal of Cell Biology, Volume 134, 1996 1570 



cer. 61:819-825. 
He, C.S., S.M. Wilhelm, A.P. Pentland, B.L. Marmer, G.A. Grant, A.Z. Eisen, 

and G.I. Goldberg. 1989. Tissue cooperation in a proteolytic cascade activat- 
ing human interstitial collagenase. Proc. Natl. Acad. Sci. USA. 86:2632-2636. 

Heiss, M.M., R. Babic, H. Allgayer, K.U. Greutzner, K.-W. Jauch, U. Loehrs, 
and F.W. Schildberg. 1995. Tumor-associated proteolysis and prognosis: new 
functional risk factors in gastric cancer defined by the urokinase-type plas- 
minogen activator system. J. Clin. OncoL 13:2084-2093. 

Howlett, A.R., N. Bailey, C. Damsky, O.W. Petersen, and M.J. Bissell. 1995. 
Cellular growth and survival are mediated by 13 I integrins in normal human 
breast epithelium but not in breast carcinoma. Z Cell Sci. 108:1945-1957. 

Huarte. J., D. Belin, and J.-D. Vassalli. 1985. Plasminogen activator in mouse 
and rat oocytes: induction during meiotic maturation. Cell. 43:551-558. 

Hynes, R.O., and A.D. Lander, 1992. Contact and adhesive specificities in the 
associations, migrations, and targeting of cells and axons. Cell. 68:303-322. 

Jenne, D., and K.K. Stanley. 1985. Molecular cloning of S-protein, a link be- 
tween complement, coagulation and cell-substrate adhesion. E M B O  (Eur. 
Mot. Biol. Organ.) ,L 4:3153-3157. 

Kaufman, S.E., S. Brown, and G.B. Stauber. 1993. Characterization of ligand 
binding to immobilized biotinylated extracellular domains of three growth 
factor receptors. Anal, Biochem. 211:261-266. 

Knudsen, B.S., P.C. Hapel, and R.L. Nachman. 1987. Plasminogen activator in- 
hibitor is associated with the extracellular matrix of cultured bovine smooth 
muscle cells. J. Clin. Invest. 80:1082-1089. 

Kobayashi, H., S. Fujishiro, and T. Terao. 1994. Impact of urokinase-type plas- 
minogen activator and its inhibitor type 1 on prognosis in cervical cancer of 
the uterus. Cancer Res. 54:6539-6548. 

Kruithof, E.K.O. 1988. Plasminogen activator inhibitors--a review. Enzyme. 
40:113-121. 

Kuhn, W,~ L. Pache, B. Schmalfeldt, P. Dettmar, M. Schmitt, F. Janicke, and H. 
Graeff. 1994. Urokinase (uPA) and PAI-I predict survival in advanced ova- 
rian cancer patients (FIGO III) after radical surgery and platinum-based 
chemotherapy. GynecoL Oncol. 55:401-409. 

Liu. G., M.A. Shuman, and R.L. Cohen. 1995. Co-expression of urokinase, 
urokinase receptor and PAI-1 is necessary for optimum invasiveness of cul- 
tured lung cancer cells. Int. ,L Cancer. 60:501-506. 

Loskutoff, D.J. 199 i. Regulation of PAl-1 gene expression. Fibrinolysis. 5:197- 
206. 

Mignatti, P.. and D.B. Rifkin. 1993. Biology and biochemistry of proteinases in 
tumor invasion. Physiol. Rev. 73:161-195. 

Mimuro, J., and D3. Loskutoff. 1989. Binding of type 1 plasminogen activator 
inhibitor to the extracellular matrix of cultured bovine endothelial cells. J. 
Biol. Chem. 264:5058-5063. 

Nekarda, H., M, Schmitt, K. Ulm, A. Wenninger, H. Vogelsang, K. Becket, J.D. 
Roder, U. Fink, and J.R. Siewert. 1994, Prognostic impact of urokinase-type 
plasminogen activator and its inhibitor PAI-I in completely resected gastric 
cancer. Can. Res. 54:2900-2907. 

Nesbit. M., and M. Herlyn. 1994. Adhesion receptors in human melanoma pro- 
gression. In vasion Metastasis. 14:13 l-146. 

Pappot. H., H. G~rdsvoll, J. Romer. A. Navrsted Pedersen, J. Grondahl- 
Hansen, C. Pyke, and N. Briinner. 1995. Plasminogen activator inhibitor 
type 1 in cancer: therapeutic and prognostic implications, Biol, Chem. 
Hoppe-Seyler. 376:259-267. 

Pedersen, H., N. Brunner, D. Francis, K. Osterlind, E. Ronne, H.H. Hansen, K. 
Dano, and J. Grondahl-Hansen. 1994. Prognostic impact of urokinase, 
urokinase receptor, and type 1 plasminogen activator inhibitor in squamous 
and large cell lung cancer tissue. Cancer Res. 54:4671-4675. 

Ploug, M., E. Ronne, N. BehrendL A.L. Jensen. F. Blasi, and K. Dano. 1991. 
Cellular receptor for urokinase plasminogen activator: carboxyl-terminal 
processing and membrane anchoring by glycosyl-phosphatidylinositol. J. 
Blot, Chem. 266:I926-1933. 

Ploug, M., V. Ellis, and K. Dano. 1994. Ligand interaction between urokinase- 
type plasminogen activator and its receptor probed with 8-Anilino-l-naph- 

thalenesulfonate. Evidence for a hydrophobic binding site exposed only on 
the intact receptor. Biochemistry, 33:8991-8997. 

Plow, E.F., T. Herren, A. Redlitz, L.A. Miles, and J .L  Hoover-Plow. 1995. The 
cell biology of the plasminogen system. FASEB (Fed. Am. Soc. Exp. Bio- 
chem.) J. 9:939-945. 

Prendergast, G.C., and M.D. Cole. 1989. Posttranscriptional regulation of cellu- 
lar gene expression by the c-myc oncogene. Mol. Cell. Biol. 9:124-134. 

Quax, P.H.A., G.N.P. van Muijen, E.J.D. Weening-Verhoeff, L.R. Lund, K. 
Dano, D.J. Ruiter, and J.H. Verheijen. 1991. Metastatic behavior of human 
melanoma cell lines in nude mice correlated with urokinase-type plasmino- 
gen activator, its type-1 inhibitor, and urokinase-mediated matrix degrada- 
tion. ,L Cell BioL 115:191-199. 

Roldan, A.L., M.V. Cubellis, M.T. Masucci, N. Behrendt, L.R. Lund, K, Dano, 
E. Appella, and F. Blasi. 1990. Cloning and expression of the receptor for 
human urokinase plasminogen activator, a central molecule in cell surface, 
plasmin dependent proteolysis. EMBO (Eur Mot, BioL Organ.) J. 9:467-474. 

Rouslahti, E. 1994. Fibronectin and its a~13~ integrin receptor in malignancy. In- 
vasion Metastasis. 14:87-97. 

Roussel, E., M.C. Gingras, J.Y. Ro, C. Branch, and J.A. Roth. 1994. Loss o f a  1 
13 1 and reduced expression of other 13 I integrins and CAM in lung adeno- 
carcinoma compared with pneumocytes. J, Surg. Oncol. 56:198-208. 

Salonen, E., A. Vaheri, J. Pollanen, R. Stephens, P. Andreasen. M. Mayer, K. 
Dano, J. Gaifit, and E. RuoslahtL 1989. Interaction of plasminogen activator 
inhibitor (PAI-1) with vitronectin. J. Biol, Chem. 264:6339-6343. 

Seiffert, D., G. Ciambrone, N.V. Wagner, B.B. Binder, and D.J. Loskutoff. 
1994. The somatomedin B domain of vitronectin: structural requirements for 
the binding and stabilization of active type 1 plasminogen activator inhibitor. 
.L Biol, Chem. 269:2659-2666. 

Seiffert, D., and D.J. Loskutoff. 1991a. Evidence that type 1 plasminogen acti- 
vator inhibitor binds to the somatomedin B domain of vitronectin. J. Biol, 
Chem. 266:2824-2830. 

Seiffert, D., and D.J, Loskutoff. 1991b. Kinetic analysis of the interaction be- 
tween type i plasminogen activator inhibitor and vitronectin and evidence 
that the bovine inhibitor binds to a thrombin-derived amino-terminal frag- 
ment of bovine vitronectin. Biochim. Biophys. Acta. 1078:23-30. 

Sier, C.F.M.. H.J.M. Vloedgraven, S. Ganesh, G. Griffioen, P.H.A. Quax, J.H. 
Verheijen, G. Dooijewaard, K. Welvaart, C,J.H. Van de Velde, C.B.H.W. 
Lamers, et al. 1994. Inactive urokinase and increased levels of its inhibitor 
type 1 in colorectal cancer liver metastasis. Gastroenterology. 107:1449-1456. 

Stratton-Thomas, J.R., H.Y. Min, S.E. Kaufman, C.Y. Chiu, G.T. Mullenbach, 
and S. Rosenberg. 1995. Yeast expression and phagemid display of the hu- 
man urokinase plasminogen activator epidermal growth factor-like domain. 
Protein Engineering. 8:463-470. 

Van Meijer, M.. and H. Pannekoek. 1995. Structure of plasminogen activator 
inhibitor 1 (PAl- l )  and its function in fibrinolysis: an update. Fibrinolysis. 9: 
263-276. 

Vassalli, J.D., A. Sappino. and D. Befin. 1991. The plasminogen activator/plas- 
rain system. Z Clin. Invest. 88:1067-1072. 

Waltz. D,A.. and H.A. Chapman. 1994. Reversible cellular adhesion to vi- 
tronectin linked to urokinase receptor occupancy. Z Biol, Chem. 269:14746- 
14750. 

Waltz, D,A., L,Z. Sailor, and H.A. Chapman. 1993. Cytokines induce uroki- 
nase-dependent adhesion of human myeloid cells; A regulatory role for plas- 
minogen activator inhibitors. ,L Clin. Invest. 91:1541-I552. 

Wei. Y., D.A. Waltz, N. Rao, R.J. Drummond. S. Rosenberg, and H.A. Chap- 
man. 1994. Identification of the urokinase receptor as an adhesion receptor 
for vitronectin. J. Biol. Chem. 269:32380-32388. 

Wiman, B., A. Almquist, O. Sigurdardottir, and T. Lindahl. 1988. Plasminogen 
activator inhibitor 1 (PAl) is bound to vitronectin in plasma. FEBS Lett. 242: 
125-128. 

Yatohgo, T., M. lzumi. H. Kashiwagi, and M. Hayashi. 1988. Novel purification 
of vitronectin from human plasma by heparin affinity chromatography. Cell 
Slrl~ct. Fltnct. 13:281-292. 

Deng et al. uPAR-mediated Cell Adhesion 1571 


