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Abstract. Whether or not a nontransformed, mature 
mouse mast cell (MC) or its committed progenitor can 
change its granule protease phenotype during inflam- 
matory responses, has not been determined. To address 
this issue, the granule morphology and protease con- 
tent of the MC in the jejunum of BALB/c mice exposed 
to Trichinella spiralis were assessed during the course 
of the infection. Within 1 wk after helminth infection of 
the mice, increased numbers of MC appeared in the 
crypts at the base of the villi, and by wk 2 the number of 
MC throughout the villi increased by ~25-fold. Shortly 
after the peak of the mastocytosis, the intraepithelial 
population of MC disappeared, followed by a progres- 
sive loss of lamina propria MC. The presence of stel- 
late-shaped granules containing crystalline structures in 
intraepithelial MC at the height of infection and the re- 
tention of such granules with fragmented crystals in 
lamina propria MC during resolution of the mastocyto- 
sis suggest that MC migrate during the various phases 
of the inflammation. As assessed by immunohistochem- 
ical analyses of serial sections, predominant chymase 

phenotypes were observed at the height of the infection 
in the muscle that expressed mouse MC protease 
(mMCP) 5 without mMCP-1 or mMCP-2 and in the ep- 
ithelium that expressed mMCP-1 and mMCP-2 without 
mMCP-5. Accompanying these two MC populations 
were transitional forms in the submucosa that ex- 
pressed mMCP-2 and mMCP-5 without mMCP-1 and 
in the lamina propria that expressed rnMCP-2 alone. 
These data suggest that jejunal MC sequentially ex- 
press mMCP-2, cease expressing mMCP-5, and finally 
express mMCP-1 as the cells progressively appear in 
the submucosa, lamina propria, and epithelium, respec- 
tively. In the recovery phase of the disease, MC sequen- 
tially cease expressing mMCP-1, express mMCP-5, and 
finally cease expressing mMCP-2 as they present at the 
tips of the villi, the base of the villi, and the submucosa, 
respectively. That MC can reversibly alter their pro- 
tease phenotypes suggests that a static nomenclature 
with fixed functional implications is inadequate to de- 
scribe MC populations during an inflammatory process 
within a particular tissue. 

M 
ICE, rats, and other mammals that have been in- 
fected with a helminth such as Trichinella spira- 
lis or Nippostrongylus brasiliensis experience a 

transient, but pronounced, T cell-dependent mastocytosis 
in their intestinal mucosa (Wells, 1962; Murray et al., 1968; 
Miller and Jarrett, 1971; Ruitenberg and Elgersma, 1976; 
Mayrhofer, 1979; Ruitenberg et al., 1979). The mast cells 
(MC) 1 that increase in number in the lamina propria and 
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between the epithelial cells of the mucosa have less hista- 
mine and tend to have fewer, but larger granules than the 
MC that reside in muscle, peritoneal cavity, and skin (Mur- 
ray et al., 1968; Enerb~ick and Lundin, 1974; Befus et al., 
1982; Crowle and Phillips, 1983). In contrast to the MC 
that reside at other tissue locations, MC in the mucosa epi- 
thelium are poorly stained by safranin (Enerb~ick, 1966; 
Murray et al., 1968), presumably because their serglycin 
proteoglycans contain predominately chondroitin sulfate 
diB/E glycosaminoglycans rather than heparin glycosami- 
noglycans (Stevens et al., 1986). Based primarily on mor- 
phologic criteria, Murray et al. (1968) proposed that the 
lamina propria MC and intraepithelial MC in the jejunum 
of Nippostrongylus brasiliensis-infected rats are develop- 
mentally related. 
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Besides serglycin proteoglycans, MC store in their gran- 
ules different types of proteases that are enzymatically ac- 
tive at neutral pH. cDNAs that encode four chymase-like 
serine proteases (designated mouse MC protease [mMCP] 1, 
mMCP-2, mMCP-4, and mMCP-5) (Miller et al., 1988; Le 
Trong et al., 1989; Serafin et al., 1990, 1991; McNeil et al., 
1991; Huang et al., 1991; Chu et al., 1992; Ghildyal et al., 
1992b) whose genes reside at a complex on chromosome 
14 (Gurish et al., 1993) have been used to identify differ- 
ent populations of MC in tissues. As assessed by RNA blot 
analysis, 1-2 wks after mice have been infected with Trich- 
inella spiralis or Nippostrongylus brasiliensis, the intestine 
contains high steady-state levels of the transcripts that en- 
code mMCP-1 and mMCP-2 but not mMCP-4 or mMCP-5 
(Serafin et al., 1990; Ghildyal et al., 1992b, 1993). Because 
the MC in the mucosa of helminth-infected mice also con- 
tain mMCP-1 (Newlands et al., 1987; Miller et al., 1988; Le 
Trong et al., 1989) and/or mMCP-2 proteins (Ghildyal et 
al., 1993), they are phenotypically different from the popu- 
lations of MC that reside in the spleen (Gurish et al., 1995) 
and peritoneal cavity (Miller et al., 1988; Le Trong et al., 
1989; Reynolds et al., 1990; Serafin et al., 1990, 1991; 
Ghildyal et al., 1992b; McNeil et al., 1991, 1992) of normal, 
noninfected BALB/c mice. 

The v-abl-immortalized V3 MC line undergoes tissue- 
dependent changes in its granule protease expression after 
adoptive transfer into BALB/c mice (Gurish et al., 1995) and 
the interleukin 3-dependent, mouse bone marrow-derived 
MC undergoes changes in its granule protease expression 
in culture in response to particular combinations of cyto- 
kines (Ghildyal et al., 1992a, b; Gurish et al., 1992; Eklund 
et al., 1993). Whereas the MC in the skin and jejunum of 
Nippostrongylus brasiliensis-infected rats selectively ex- 
press RMCP-I and RMCP-II, respectively, the MC in the 
lungs of these animals express both chymases (Huntley et 
al., 1993; Arizono et al., 1993). While it is now clear that 
the mouse is not the only species having MC that undergo 
tissue-dependent changes in protease expression, no inves- 
tigation has yet addressed whether or not a non-trans- 
formed, mature mouse MC or its committed progenitor 
can undergo a dynamic change in its protease content in a 
specific tissue site during an inflammatory response. Mor- 
phologic, histochemical, immunohistochemical, and ultra- 
structural analyses were therefore conducted on MC dur- 
ing the mastocytosis that develops and then subsides in the 
jejunum of Trichinella spiralis-infected BALB/c mice. We 
now show that jejunal MC can sequentially and reversibly 
alter their granule morphology and chymase expression in 
response to the onset and subsidence of inflammation 
caused by helminth infection. 

Materials  and  Me thods  

Derivation of an mMCP-l-specific Antibody 
Peptide A (Asn-Phe-Gln-Val-Cys-Val-Gly-Ser-Ser-Thr-Lys-Leu-Lys-Thr- 
Ala-Tyr-Met-Gly), which corresponds to residues 163-180 of mMCP-1 
(Fig. 1 A), is not present in any other mMCP or in any other mouse pro- 
tein listed in the Protein Identification Resource database of the National 
Biomedical Foundation. A model of the three-dimensional structure of 
mMCP-1 predicted ~ a t  this peptide would protrude from the surface of 
the folded enzyme (Sali et al., 1993). Peptide A, peptide B (Gly-Ser-Ser- 
Thr-Lys-Leu-Lys-Thr-Ala-Tyr-Met), and peptide C (Gly-Ser-Pro-Thr- 

Thr-Leu-Lys-Ser-Ile-Gly-Gln) were synthesized by Quality Controlled 
Biochemicals (Hopkinton, MA). Peptide B corresponds to residues 169- 
179 in mMCP-1. Relative to the other MC chymases (Fig. 1 A), peptide B 
matches the least conserved sequence in peptide A. Peptide C corre- 
sponds to residues 169-179 in the most homologous chymase, mMCP-2. 

As described previously for the derivation of peptide antibodies to 
mMCP-2 (Ghildyal et al., 1993) and mMCP-5 (McNeil et al., 1992), ~500 
/~g of peptide A (coupled to octavalent lysine) was suspended in 0.5 ml of 

Figure 1. Generation of rabbit anti-mMCP-1 Ig. (A) Comparison 
of the deduced amino acid sequences of the relevant homologous 
regions in mMCP-1, mMCP-2, mMCP-4, and mMCP-5. Dashes 
indicate identical amino acids. The immunizing peptide (peptide 
A) and the two peptides (peptides B and C) used in the specific- 
ity study are highlighted. (B) SDS-PAGE/immunoblot analysis of 
lysates of High Five insect cells infected with recombinant bacu- 
lovirus constructs containing cDNAs that encode mMCP-1 (lanes 
3, 6, and 9), mMCP-2 (lanes 2, 5, and 8), or mMCP-4 (lanes 1, 4, 
and 7). All lanes contain abundant amounts of a recombinant 
protein (data not shown). The depicted immunoblots were 
probed with anti-mMCP-1 Ig in the absence of any synthetic pep- 
tide (lanes 1-3), in the presence of peptide B, which corresponds 
to residues 169-179 of mMCP-1 (lanes 4-6), or in presence of 
peptide C, which corresponds to residues 169-179 of mMCP-2 
(lanes 7-9). 
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PBS. 0.5 ml of Titermax synthetic adjuvant (CytRx Corp., Norcross, GA) 
was added and a New Zealand white rabbit was injected with the resulting 
emulsion im at multiple sites. The immunized rabbit received booster injec- 
tions (~250 p~g) 4, 8, and 12 wks later, and then its serum was collected at 
biweekly intervals. As assessed by ELISA, the rabbit produced a high titer 
of antibodies that recognized the immunizing peptide. After affinity purifi- 
cation with a 4-ml column containing ~10 mg of peptide A coupled to 
Affi-Gel 10 (Bio-Rad, Hercules CA), the antibodies reacted in an ELISA 
at a >5,000-fold dilution. 

In terms of its primary amino acid sequence, mMCP-1 (Le Trong et al., 
1989) is more homologous to mMCP-2 (Serafin et al., 1990) and mMCP-4 
(Serafin et al., 1991) than to mMCP-5 (McNeil et al., 1991). To confirm the 
specificity of the anti-mMCP-1 peptide antibody, pro-mMCP-1, pro- 
mMCP-2, and pro-mMCP-4 were expressed separately in High Five insect 
ceils, as described for pro-mMCP-7 (Matsumoto et al., 1995). Each full- 
length mMCP cDNA was liberated from its plasmid and inserted in the 
correct orientation into the multiple cloning site of pVL1393 (PharMingen, 
San Diego, CA) downstream of the promoter of the polyhedrin gene. 
Plasmid DNA (~2 txg), purified by CsCI density gradient centrifugation, 
was mixed with 0.5 p~g of linearized BaculoGold TM DNA (PharMingen) 
and calcium phosphate in a total volume of 1 ml. The resulting DNA solu- 
tion was briefly incubated at room temperature and added to a tissue cul- 
ture dish containing Grace's insect medium and adherent insect cells that 
were in their log phase of growth. After a 4-h incubation at 27°C, the me- 
dium was replaced with insect culture medium (Invitrogen, San Diego, 
CA) supplemented with 10% heat-inactivated FCS. The infected insect 
cells were cultured for 7 d at 27°C, and a plaque assay was used to select a 
single virus clone. After this clone was amplified,/>3 × 107 recombinant vi- 
rus particles were added to each 10-cm tissue culture dish containing 6 × 
106 High Five cells in their log phase of growth. 3 4  d later, the collected 
insect ceils and supernatants were separated from one another by centrif- 
ugation at ~300 g. The infected High Five ceils were then cultured in the 
presence of protein-free medium (Insect Xpress; BioWhittaker, Walkers- 
ville, MD). All infected insect cells produced large amounts of recombi- 
nant protein, which remained cell associated. 

SDS-PAGE/immunoblot analysis revealed that anti-mMCP-1 Ig recog- 
nized a diffuse band of ~28 kD in the lysates of High Five insect cells that 
were induced to express recombinant pro-mMCP-1 but not recombinant 
pro-mMCP-2 or pro-mMCP-4 (Fig. 1 B). In some experiments, affinity- 
purified antibody was preincubated for 1 h at 37°C and then incubated 
overnight at 4°C with 1 mg/ml of peptide B or peptide C. The antibody did 
not recognize recombinant pro-mMCP-1 if the reaction was carried out in 
the presence of peptide B (Fig. 1 B). Thus, the primary epitope recognized 
by the antiserum corresponds to the least conserved COOH-terminal do- 
main in the peptide. Because peptide C did not inhibit the SDS-PAGE/ 
immunoblot analysis, it was concluded that the rabbit antibody was spe- 

cific for mMCP-1. In subsequent immunohistochemical analyses of the 
three populations of baculovirus-infected insect cells, anti-mMCP-1 Ig rec- 
ognized only those High Five cells that had been induced to express pro- 
mMCP-1 (data not shown). 

Histochemistry, Enzyme Cytochemistry, and 
Immunohistochemistry of the MC in the Jejunum of 
Noninfected and Trichinella spiralis-Infected 
BALB/c Mice 

BALB/c mice were each infected orally with 500 freshly isolated, stage-3 
Trichinella spiralis larvae, as previously described (Ghildyal et al., 1992b, 
1993). At various times after infection, the mice were killed and 2-cm 
lengths of jejunum were removed and fixed for analysis. For histologic ex- 
amination, serial 1.5-~m-thick glycolmethacrylate-embedded sections of 
jejunal tissue from noninfected and from Trichinella spiralis-infected 
BALB/c mice were placed on coverslips or slides, air dried, and incubated 
sequentially with double-strength hematoxylin for 2 min, 1% aqueous 
eosin Y for 15 min, azure II for 1 min, and ethylene glycol monomethyl 
ether for 5 s (Beckstead et al., 1981). Alternately, sections were stained for 
20 s in a 5% ethanolic solution of methylene blue (Matin et al., 1992) or 
toluidine blue (Befus et al., 1982). 

Unlike human MC, all mouse MC that have been analyzed contain 
large amounts of at least one chymase in their granules. Thus, even when 
tissue sections are fixed, dehydrated, and embedded, MC are readily rec- 
ognized in mouse tissues because of their pronounced chloroacetate es- 
terase activity. Because intraepithelial MC in rodents do not stain in- 
tensely with cationic dyes when intestinal tissue is fixed in aldehydes 
(Enerb/ick, 1966), a modification (Beckstead et al., 1981) of the chloroacetate 
esterase procedure of Leder (1979) was used to facilitate the morphomet- 
ric analysis of MC in sections of jejunum. In this enzyme cytochemistry 
procedure, fixed sections of intestine from noninfected and helminth- 
infected mice were incubated at 30°C for 1 h with a solution containing 
naphthol AS-D chloroacetate. The tissue preparations were rinsed and 
counterstained with hematoxylin. In numerous control experiments car- 
ried out on serial sections of jejunum, all toluidine blue + (data not shown)/ 
methylene blue + MC in the mucosa exhibited an intense, intracellular- 
localized, red reaction product when incubated with the chloroacetate es- 
terase substrate (Fig. 2). In the jejunum of noninfected (data not shown) 
and Trichinella spiralis-infected (Fig. 2) BALB/c mice, no other cell type 
exhibited a chloroacetate esterase activity comparable to that of a mature 
MC. Polymorphonuclear leukocytes also contain chloroacetate esterase 
activity. However, relative to MC, these cells stain less intensely, are 
smaller in size, and are fewer in number in the intestine. They are not seen 
if the ×20 objective magnification is used to quantitate cells that contain 

Figure 2. Histochemist ry  and enzyme 
cytochemistry of the je junum of a Trich- 
inella spiralis-infected BALB/c  mouse.  
Serial sections of the j e junum of a hel- 
minth-infected BALB/c  mouse  at wk 2 
were incubated with methylene  blue 
(a) or  the chloroacetate  esterase sub- 
strate (b). Ar rows  indicate methylene  
blue+/chloroacetate  esterase +MC. 
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chloroacetate esterase activity. Thus, for quantitating MC in the jejunum, 
areas were traced from paraformaldehyde-fixed, glycolmethacrylate- 
embedded blocks of tissue, sectioned at 1.5-t~m thickness, and subjected 
to the chloroacetate esterase cytochemistry procedure. Using a drawing 
tube attachment to an optical microscope (E. Leitz, Inc., Rockleigh, N J), 
the areas traced were then measured on a computer-controlled digitizing 
board using a digitizing program (Sigma Scan; Jandel Scientific, San 
Rafael, CA). MC were quantitated with a Dialux-20 optical microscope 
possessing a x20 objective; the results were expressed as the number of 
MC/mm 2. In some instances, the numbers obtained were confirmed by 
high magnification examination of replicate sections stained with methyl- 
ene blue or toluidine blue. 

Sections of jejunum from noninfected and Trichinella spiralis-infected 
mice were stained with immunoalkaline phosphatase, as previously de- 
scribed (Boenisch et al., 1989; McNeil et al., 1992; Ghildyal et al., 1993). 
Briefly, collected tissues were fixed for 4 h at room temperature in 4% 
paraforrnaldehyde in 0.1 M sodium phosphate, pH 7.6. Alternately, se- 
lected samples were fixed in Carnoy's solution. Preparations were washed 
twice with PBS containing 2% DMSO and then were suspended in 50 mM 
NH4C1 overnight at 4°C. The specimens were dehydrated and embedded 
in accordance with the JB-4 embedding kit instructions from Polysciences 
Inc (Niles, IL). Sections were cut on a microtome (Reichert-Jung Su- 
pracut; Leica Inc., Deerfield, IL) with glass knives and picked up on glass 

slides. The slides were incubated sequentially for 15 min at 37°C in 2 mM 
CaC12 containing 0.025 % trypsin, for 15 min at room temperature in PBS 
containing 0.05% Tween-20 and 0.1% BSA, for 30 min at 37°C in PBS 
containing 0.05% Tween-20 and 4% normal goat serum, and then over- 
night at 4°C in 4% normal goat serum containing purified rabbit anti- 
mMCP-1 ig, anti-mMCP-2 Ig (Ghildyal et aI., 1993), or anti-mMCP-5 lg 
(McNeil et al., 1992). The mMCP-2-specific and mMCP-5-specific anti- 
bodies were previously obtained against synthetic peptides that corre- 
spond to residues 56-71 and residues 146-162 in the respective protease. 
Samples were washed, incubated for 40 rain at room temperature in buffer 
containing biotin-labeled goat anti-rabbit lgG, washed twice in 0.1% BSA 
and 0.05 % Tween-20 in PBS, incubated for 40 min at room temperature in 
reagent (Vectastain ABC-AP; Vector Laboratories, Burlingame, CA), 
and then incubated for 15 min in the dark at room temperature in an alka- 
line phosphatase substrate solution. Controls consisted of sections of tis- 
sue from mice treated with nonimmune IgG (Endogen, Boston, MA) or 
without primary antibody. Tissue sections were counterstained with Gill's 
hematoxylin in 20% ethylene glycol, and then coverslips with ImmuMount 
(Shandon, Pittsburgh, PA) were applied. 

Electron Microscopy 
Electron microscopy was performed on uitrathin sections, according to 

Figure 3. E n z y m e  cy tochemis t ry  and m o rp h o -  
metr ic  analysis of  the M C  in the j e junum of non-  
infected and Trichineila spiralis-infected B ALB/c  
mice. (A) Cross sections of j e junum f rom a non-  
infec ted  mouse  (a) and  f rom Trichinella spi- 
ralis-infected mice at 1 (b), 2 (c), and 4 (d) wks 
af ter  infection were  incubated  with the chloroac-  
e ta te  es terase  substrate.  Much  of the crypt  re- 
gion of the j e junum consists of ep i the l ium and 
m a n y  of the M C  at the wk-1 t ime point  reside in 
the ep i the l ium por t ion  of the crypt. (B) MC per  
mm 2 in the submucosa  and  mucosa  ( lamina  pro-  
pria MC + intraepi thel ia l  MC)  of noninfec ted  
mice and mice 1-8 wks af ter  infect ion with Trich- 
inetla spiralis. The "n"  values for 0, 1.5, 2, 3, 4, 
and 8 wks are 6, 4, 7, 2, 5, and 2, respectively,  The 
bars  r ep resen t  the SD for data  ob ta ined  at 0, 1.5, 
2, and 4 wks and the SE for data  ob ta ined  at 3 
and  8 wks. The  relat ive percen tages  of intraepi-  
thelial  M C  in the mucosa  at each t ime point  are 
indicated.  O, mucosa;  ©, submucosa.  
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standard procedures  (Friend and Heuser,  1981). Samples of je junum (1 
mm 3) were immersed in 2.5% glutaraldehyde buffered to pH 7.4 with 0.1 M 
sodium cacodylate. Each tissue sample was fixed for 4-6 h at room tem- 
perature,  washed overnight in pH 7.4 buffer containing 0.1 M sodium ca- 
codylate and 2% sucrose, and then postfixed for 2 h at 4°C in an acetate/  
Veronal  buffer, pH 7.4, containing 1% OsO4. The OsO4-postfixed tissues 
were dehydrated  in graded ethanol  solutions and embedded  in Epon. Sec- 
tions were cut with d iamond knives on the Reichert  microtome, picked up 
on copper  grids, stained with uranyl acetate and alkal ine lead, and exam- 
ined on an electron microscope (100CX; J E O L  USA Inc., Peabody, MA)  
equipped with a eucentric goniometer  stage. For  analysis of the crystalline 
granules of an MC, selected sections were ti l ted in the y-axis -+ 10°; photo- 
graphs were taken at each setting. 

Results 

Time-dependent Change in the Number of MC in the 
Intestinal Mucosa of  Trichinella spiralis-infected Mice 

As assessed by histochemistry and by enzyme cytochemistry, 
only one or two MC were generally present in a i-ram-wide 
section of jejunum of a noninfected BALB/c mouse (Table 
I; Fig. 3 A). After BALB/c mice were infected with Trich- 
inella spiralis larvae, MC appeared in submucosa by 3 d 
and remained confined to the crypt area of the mucosa for 
the first 7 d. MC were detected in the crypts 2 wks after in- 
fection but also were numerous in the epithelium of the 
villi. Relative to MC in noninfected mice, the number of 
MC in the mucosa increased >25-fold during the height of 
helminth infection at 2-3 wks (Fig. 3, A and B). Accompa- 
nying this rise in MC was a marked increase in the number 
of goblet cells and mucuslike material in the jejunal epi- 
thelium (data not shown). Mucosal MC in the process of 
mitosis were occasionally found during the developmental 
phase but not the recovery phase of the mastocytosis (data 
not shown). At 4 wks, MC were located in the crypts and 
the lower halves of the villi (Fig. 3 A). However by 8 wks, 

the number of mucosal MC was not significantly different 
from that of noninfected mice (Fig. 3 B). 

Characterization of Intestinal MC during the 
Development and at the Height of  the Mastocytosis 

The MC located in the muscle and submucosa 1-2 wks af- 
ter helminth infection contained large numbers of gran- 
ules that were spherical in shape and ~1 txm in diameter 
(Fig, 4, a and d). At this stage of the disease, lamina pro- 
pria MC also contained spherical granules, but generally 
they were fewer in number and the majority were ~2.5 txm 
in diameter (Fig. 4, b and e). No crystalline granules were 
identified in the MC present in the muscle, submucosa, or 
lamina propria at the height of the mastocytosis. Intraepi- 
thelial MC contained predominantly large sized granules 
that were few in number (Fig. 4, c and f). However, unlike 
lamina propria MC, every one of the sixty intraepithelial 
MC examined at the ultrastructural level possessed at least 
one granule that exhibited an irregular stellate shape due 
to the presence of crystals. The crystals were detected in 
tissue sections prepared either for enzyme cytochemistry 
(Fig. 4 c) or electron microscopy (Fig. 4, f-h). At even 
higher magnification, the lattices of the crystals in intraep- 
ithelial MC granules were found to possess a prominent 
spacing of 8.3 nm. Superimposed at a 78 ° diagonal angle 
was a second prominent lattice spacing of 5.4 nm. Depend- 
ing on how the crystal was tilted, the 5.4 or 8.3 nm spacing 
became more prominent. Thus, both spacings are part of 
the same unit structure. 

In the jejunum of noninfected BALB/c mice, the sparse 
MC in the submucosa and muscle expressed mMCP-5 alone 
and the sparse MC in the epithelium expressed both 
mMCP-1 and mMCP-2 (Table I). No MC were detected at 
either site which expressed mMCP-1 alone, mMCP-2 alone, 

Table I. Quantitation of MC Exhibiting Specific mMCP Phenotypes in Cross Sections of the Jejunum of Noninfected and Trichinella 
spiralis-infected Mice* 

MC 
Location and number mMCP- 1 mMCP- 1 mMCP-2 mMCP-2 mMCP-5 
stage of infection examined alone mMCP-2 alone mMCP-5 alone 

Noninfected 

Mucosa epithelium 15 0 5.0 ± 3.6 0 
Mucosa lamina propria 0 0 0 0 

Submucosa 15 0 0 0 

Infected 1 wk 

Mucosa epithelium 253 0 81 ± 29 4.0 ± 2.9 

Mucosa lamina propria 25 0 0.33 _+ 0.47 6.7 ± 5.0 

Submucosa 31 0 0 0 

Infected 2 wk 

Mucosa epithelium 735 0 230 ± 37 13 -+ 3.3 

Mucosa lamina propria 61 0 0.33 ± 0.05 15 ± 4.1 
Submucosa 34 0 0 0.33 ± 0.47 

Infected 4 wk 

Mucosa epithelium 172 0 49 ± 6,7 8.3 -+ 1.7 
Mucosa lamina propria 146 0 0.30 _+ 0.50 27 ± 6.5 
Submucosa 106 0 0 2.0 ± 1.6 

0 0 

0 0 

0 5.0 -- 1.4 

0 0 

1.0 ± 0.82 0.33 - 0.47 

1.0 + 0.82 9.3 ± 4.1 

0 0 

3.0 ± 1.4 2.3 ± 0.47 

0.66 ± 0.47 l0  ± 0.94 

0 0 
13 -+ 0.82 8.7 -+ 2.1 

4.7 --+ 2.5 29 ± 6.2 

* Serial cross sections (~2 ~m) of jejunum were sequentially stained with anti-mMCP-1 Ig, anti-mMCP-2 Ig, and anti-mMCP-5 lg, and then the five distinct protease phenotypes 
were quantitated. The depicted results are the mean -+ SD of three mice examined at each time point. All epithelial MC found in the crypts express both mMCP- 1 and mMCP-2, 
whereas some of the epithelial MC in the villi express only mMCP-2. At wk 4, lamina propria MC that only express mMCP-2 tend to reside in the tips of the villi, whereas those 
thay only express mMCP-5 tend to be located in the crypts. 
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Figure 4. Enzyme cytochem- 
istry and ultrastructure of the 
MC that reside in different 
locations in the jejunum of 
BALB/c mice 2 wks after in- 
fection with Trichinella spira- 
lis. In a, b, and c are MC that 
contain chloroacetate es- 
terase activity in the muscle/ 
submucosa, lamina propria, 
and epithelium, respectively. 
The arrow in c indicates an 
irregular shaped granule in 
an intraepithelial MC. In d, e, 
and f are electron micro- 
graphs of representative MC 
that reside in the muscle/sub- 
mucosa, lamina propria, and 
epithelium, respectively, at 
the same magnification. In 
panels g and h at higher mag- 
nification are electron micro- 
graphs of the stellate crystals 
in two intraepithelial MC. 
The circled numbers in h 
mark three randomly ori- 
ented, distinct crystals in the 
same stellate granule. 

or  which coexpressed mMCP-2 and mMCP-5.  1 wk after 
Trichinella spiralis infection, when the major i ty  of MC are 
in the crypts, those in the epi thel ium tended  to coexpress 
mMCP-1 and mMCP-2,  while those in the lamina propr ia  
tended to express just mMCP-2 (Table  I). The major i ty  of 
the MC in the submucosa cont inued to express only 
mMCP-5,  but now MC were occasionally found at this lo- 
cation and in the lamina propria  that coexpressed mMCP-2 
and mMCP-5.  Thus, the presence of MC in the lamina pro-  

pria and epi thel ium that  express only mMCP-2 and MC in 
the lamina propria  and submucosa that coexpress mMCP-2 
and mMCP-5 are the two most marked phenotypic changes 
associated with the helminth- induced mastocytosis.  Al-  
though there are considerably more  MC in the je junum at 
wk 2, the MC that presented  at the varied locations pos- 
sessed chymase phenotypes  similar to that obta ined at wk 1 
(Table I). Most  of the intraepi thel ia l  MC in the villi (Fig. 5, 
a-c) and crypts (Fig. 5, g-i) 2 wk after Trichinella spiralis 
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Figure 5. Immunohistochemistry of the MC in the intestinal villi at the height of the mastocytosis that occurs after Trichinella spiralis in- 
fection. 2 wks after infection, 1.5-~m serial sections of jejunum (a-c, d-f, g-i, j-l, and m-o) were stained with anti-mMCP-1 Ig (a, d, g, j, 
and m), anti-mMCP-2 Ig (b, e, h, k, and n), or anti-mMCP-5 Ig (c, f. i, l, and o). Arrows indicate immunoreactive MC. The red reaction 
product on the brush borders of the villi (a-f) is due to the endogenous intestinal alkaline phosphatase. The presence of this product in- 
dicates that the color substrate was active in these immunohistochemical reactions. 



infection contained mMCP-1 and mMCP-2. Intraepithelial 
MC were not detected that expressed mMCP-5 alone or 
mMCP-1 alone, but intraepithelial MC were again occa- 
sionally found that expressed just mMCP-2 (Table I). 
Some lamina propria MC expressed both mMCP-1 and 
mMCP-2 but most only expressed mMCP-2 (Table I; Fig. 
5, d-f). Moreover, at this stage of the mastocytosis, N15% 
of the lamina propria MC in the crypts also possessed 
granules that contained both mMCP-2 protein and mMCP-5 
protein. Most of the MC in the submucosa at the height of 
the infection expressed just mMCP-5 (Table I; Fig. 5, j-l). 
However, a few submucosa-localized MC possessed gran- 
ules that contained both mMCP-2 and mMCP-5 (Fig. 5, 
m-o). The MC that reside in the muscle expressed mMCP-5, 
but not mMCP-1 or mMCP-2 (data not shown). 

Characterization of Intestinal MC during Resolution of 
the Mastocytosis 

During the recovery phase, many of the MC in the lamina 
propria and submucosa of the jejunum possessed only a 
few granules. Moreover, the cytoplasm became lightly 
metachromatic when some of these cells were stained by 
toluidine blue (data not shown), suggesting that many of 
the MC remaining in the intestine during the resolution 
phase of the mastocytosis had partially degranulated or 
had begun to turn over their older granules intracellularly 
(data not shown). Occasionally, an MC was detected un- 
dergoing apoptosis (data not shown). Electron micro- 
scopic analysis of the MC in the mucosa 4 wks after hel- 
minth infection revealed that the few remaining cells in 
the epithelium of the villi (8 cells examined) exhibited var- 
ious stages of granule fragmentation and crystal dissolu- 
tion (Fig. 6 a). At this time point, some of the MC (6 cells 
examined) in the lamina propria also contained frag- 
mented crystals and a few slightly irregular-shaped gran- 
ules possessing ~8-nm lattice structures (Fig. 6, b-d). 

Four weeks after the initiation of the Trichinella spiralis 
infection, intraepithelial MC were still found in the crypts. 
However, very few intraepithelial MC were found in the 

upper portions of the villi (Fig. 3 d). Rather, the MC in the 
villi tended to localize in the lamina propria. The lamina 
propria MC that were present in the villi continued to ex- 
press substantial amounts of mMCP-2, but now many of 
the lamina propria MC in the upper villus expressed both 
mMCP-2 and mMCP-5 (Table I; Fig. 7, a-f). Moreover, 
lamina propria MC were also found in the lower villus that 
expressed just mMCP-5 (Table I). Numerous MC were 
still present in the crypt region of the mucosa, as well as in 
the submucosa 4 wks after Trichinella spiralis infection. 
The MC in the lamina propria region of the crypts ex- 
pressed mMCP-5 alone (Fig. 7, j-l), mMCP-2 alone (Fig. 7, 
g-i), or mMCP-1 and mMCP-2 without mMCP-5 (Fig. 7, 
g-i). Most of the MC in the submucosa expressed only 
mMCP-5 (Fig. 8, a-c), but a small percentage expressed 
mMCP-2 and mMCP-5 (Fig. 8, d-f). The MC in the muscle 
expressed mMCP-5 but not mMCP-1 or mMCP-2 (Fig. 8, 
g-i). 

Discussion 

Immunohistochemical analyses of serial sections with anti- 
peptide antibodies directed against three granule chy- 
mases and morphologic analysis revealed that MC in the 
jejunum of BALB/c mice exposed to Trichinella spiralis 
undergo dynamic and reversible changes in their granule 
chymase expression during the establishment and subse- 
quent subsidence of the infection-induced inflammation. 

Although the number of metachromatic MC that con- 
tained chloroacetate esterase activity did not change sig- 
nificantly in the muscle throughout the 8 wks of study, 
there was an >25-fold increase in their number in the mu- 
cosa 2 wks after infection with Trichinella spiralis (Figs. 2 
and 3). As assessed by morphology alone, three popula- 
tions of MC were recognized in the jejunum of helminth- 
infected mice (Fig. 4). Muscle/submucosal MC and lamina 
propria MC possessed mostly spherical granules H1 Ixm 
and 2.5 Ixm in size, respectively. Granules that resembled 
those in the lamina propria MC were present in intraepi- 
thelial MC, but these latter cells also possessed many large 

Figure 6. Ultrastructure of 
MC in the intestines of 
Trichinella spiralis-infected 
BALB/c mice during the re- 
covery phase. Intraepithelial 
MC are rare in the villus. 
However, they present gran- 
ules with crystal remnants 
(a). (b-d) Electron micro- 
graphs of a MC in the lamina 
propria 4 wks after helminth 
infection; crystal remnants 
are present in its granules. 
Arrows indicate the same 
granule at incremental mag- 
nifications. 
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Figure 7. Immunohistochemistry of the MC in the lamina propria and crypts of the jejunum at the recovery phase of the mastocytosis that 
occurs after Trichinella spiralis infection. 4 wks after infection, 1.5-1~m-thick serial sections of the upper villus region of the lamina propria 
(a-c), the lower villus region of the lamina propria (d-f), and the crypts (g-i and j-l) were stained with anti-mMCP-1 Ig (a, d, g, and j), 
anti-mMCP-2 Ig (b, e, h, and k), or anti-mMCP-5 Ig (c,.f, i. and I). Arrows indicate immunoreactive MC. 

sized granules with stellate crystals. Although no other 
MC type in the BALB/c mouse contains crystalline struc- 
tures in its granule, Crowle and Phillips (1983) also found 
irregularly shaped granules in some of the jejunal MC in 
the mucosa of Nippostrongylus brasiliensis-infected Beige 
(bg/bg) mice and their normal C57BL/6 mouse littermates. 
Likewise, Murray et al. (1968) found irregular shaped 
granules with paracrystalline structures in the intraepithe- 
lial MC of Nippostrongylus brasiliensis-infected rats. The 
unique crystallization of the preformed mediators in the 
BALB/c mouse intraepithelial MC, therefore, is not unique 
to this mouse strain nor is it dependent  on the type of hel- 
minth that infects the intestine. The lattices of the granule 
crystals in a BALB/c mouse intraepithelial MC possess a 
prominent spacing of 8.3 nm. Superimposed in the same 

unit structure at a 78 ° diagonal angle is a second promi- 
nent lattice spacing of 5.4 nm. The crystalline structures 
(e.g., scrolls, gratings, and lattices) observed in human MC 
differ in that they have 15- and 7.5-nm spacings (Caulfield 
et al., 1980). Murray et al. (1968) proposed that the lamina 
propria MC and intraepithelial MC in the jejunum of Nip- 
postrongylus brasiliensis-infected rats are developmen- 
tally related. If they also are developmentally related in 
the Trichinella spiralis-infected BALB/c mouse, the crys- 
talline structures observed in latter population of MC 
probably are a consequence of direct contact of these MC 
with the epithelium or the basement membrane.  

With the use of a newly derived anti-peptide antibody 
specific for mMCP-1 (Fig. 1) and previously generated 
anti-peptide antibodies to mMCP-2 (Ghildyal et al., 1993) 
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Figure 8. Immunohistochemistry of the MC in the submucosa and muscle at the recovery phase of the mastocytosis. 4 wks after infection 
with Trichinella spiralis, 1.5-1~m-thick serial sections of the submucosa (a-c and d-f) and the muscle (g-i) were stained with anti-mMCP-1 
Ig (a, d, and g), anti-mMCP-2 Ig (b, e, and h), or anti-mMCP-5 Ig (c, f, and i). Arrows indicate immunoreactive MC. 

and mMCP-5 (McNeil et al., 1992), predominant chymase 
phenotypes were observed at the height of the infection in 
the muscle that expressed mMCP-5 without mMCP-1 or 
mMCP-2 and in the epithelium that expressed mMCP-1 
and mMCP-2 without mMCP-5 (Fig. 5). Accompanying 
these two MC populations, however, were transitional 
cells in the submucosa and lamina propria that expressed 
mMCP-2 and mMCP-5 without mMCP-1, and in the lam- 
ina propria that expressed mMCP-2 alone. The protease 
phenotype data could be explained, in part, by a local pro- 
liferation of varied cell types that are each irreversibly 
programmed to express particular protease phenotypes. 
However, the diversity of chymase expression in the jeju- 
nal MC of Trichinella spiralis-infected BALB/c mice, in- 
cluding the appearance of phenotypes not appreciated in 
noninfected mice, suggests that this possibility is unlikely. 
The presence of MC in the same section of the lamina pro- 
pria 2 wks after infection that express mMCP-2 with or 
without mMCP-1 and in the same section of the submu- 
cosa that express mMCP-5 with or without mMCP-2 (Fig. 5; 
Table I) suggests that the specific microenvironment may 
require some time interval to provide a particular chymase 
phenotype. As depicted in Fig. 3 A, increased numbers of 
MC are first seen in the submucosa/crypt area of the je- 

junum. If local proliferation of a cell that possesses a fixed 
phenotype is occurring, chloroacetate + MC should also 
have been detected in the tips of the villi at wk 1. Thus, the 
scenario that best describes the obtained data is that MC- 
committed progenitors undergo varied rates of in situ dif- 
ferentiation as they traverse the jejunum. In such an inter- 
pretation of infection/inflammation-dependent modulation, 
a MC that resides initially in the muscle/submucosa region 
of the jejunum has the ability to move into the lamina pro- 
pria and then into the epithelium. It is unlikely that all epi- 
thelial MC found in the tips of the villi at the height of hel- 
minth infection are derived from progenitors that initially 
resided in the submucosa. Some epithelial MC could be 
derived from progenitors that originally resided in, or homed 
to, the lamina propria. Because MC in the process of mito- 
sis were occasionally found, it is possible that migrating 
MC are proliferating at the same time they are changing 
their phenotypes during the inductive phase of the masto- 
cytosis. However, if a submucosal MC eventually makes 
its way into the epithelium, it sequentially expresses 
mMCP-2, ceases expressing mMCP-5, and finally ex- 
presses mMCP-1. The concept that a nontransformed MC 
can change its phenotype in the jejunum is in agreement 
with data obtained from the V3 mastocytosis mouse (Gur- 
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ish et al., 1995). The interpretation also is consistent with 
the data obtained from the recovery phase of the mastocy- 
tosis observed in the Trichinella spiralis-infected mouse. 

Intraepithelial MC disappeared shortly after the peak of 
the mastocytosis. This was followed by a progressive loss 
of mature lamina propria MC from the upper regions of 
the villi. Some of the MC appeared to be undergoing apop- 
tosis in the jejunum during the recovery phase of the mas- 
tocytosis. However, the presence of MC in the lamina pro- 
pria 4 wks after infection that had remnants of crystals in 
its granules (Fig. 6 b) suggested that some of the MC in the 
epithelium at 2 wks not only had moved into the lamina 
propria but also had begun to metabolize their granule 
constituents. During this recovery phase, the lamina pro- 
pria MC continued to express mMCP-2, but generally in 
association with mMCP-5 rather than mMCP-1 (Fig. 7; Ta- 
ble I). Many of the MC in the submucosa expressed 
mMCP-2 and mMCP-5, whereas the remainder expressed 
only mMCP-5, like the MC in the muscle (Fig. 8; Table I). 
These findings suggest that during the recovery phase of 
the infection, MC sequentially cease expressing mMCP-1, 
express mMCP-5, and finally cease expressing mMCP-2 as 
they present in the tips of the villi, the base of the villi, and 
the submucosa, respectively. The changes in chymase ex- 
pression in the various populations of MC are depicted 
schematically in Fig. 9. 

If MC in the submucosa 4 wks after infection are indeed 
derived from those in the lamina propria and epithelium at 
2 wks, it remains to be determined how they are able to se- 
lectively metabolize their mMCP-1 and mMCP-2. Many of 
the MC in the jejunum at 4 wks exhibit some of the histo- 
logic and morphologic features of degranulated and/or ac- 
tivated MC (Fig. 6). Although particular proteases could 
be lost through selective exocytosis if they were seques- 
tered in different granules, a more likely explanation for 
the change in chymase expression is that factors in the mi- 
croenvironment instruct the newly arrived MC to selec- 
tively stop expressing a particular chymase. This regula- 

tion could occur at the level of gene transcription but 
recent in vitro studies on nontransformed B ALB/c mouse 
bone marrow-derived mouse MC suggest that it probably 
occurs at the level of mRNA stability. Treatment of these 
MC with interleukin-10 causes them to rapidly express 
high steady-state levels of mMCP-2 mRNA (Ghildyal et 
al., 1993), primarily by inducing the expression of a trans- 
acting factor that prevents the degradation of the mMCP-2 
transcript (Xia et al., 1996). Presumably, the intracellular 
level of an immunoreactive chymase gradually falls be- 
cause the cell continues to degranulate or continues to in- 
ternally metabolize its older granules. 

Different cationic dyes and fixation techniques have 
been developed by Enerb~ick (1.966) and others to distin- 
guish granules in rat and mouse MC that contain heparin 
glycosaminoglycans from those that do not. Because MC 
with different stainable granules have not been detected in 
a single tissue microenvironment, it was concluded that if a 
mature MC is able to change its granule phenotype it 
probably dedifferentiates to an unrecognizable agranular 
cell before acquiring its new phenotype (Kitamura et al., 
1984). Adoptive transfer studies with the v-abl- immortal-  
ized V3 MC line seemed to support this concept. V3 MC 
express mMCP-5 but not mMCP-1 or mMCP-2. 6 d after 
V3 MC were adoptively transferred into BALB/c mice, 
agranular cells were detected in the lamina propria which 
contained immunoreactive abl protein but no immunore- 
active mMCP (Gurish et al., 1995). By 2 wks, most of the 
V3 MC in this location expressed mMCP-1 and mMCP-2 
but not mMCP-5. The immunohistochemical recognition 
of MC in the lamina propria in the recovery phase of the 
Trichinella spiralis-induced mastocytosis that contain both 
mMCP-2 and mMCP-5 or just mMCP-2 (Fig. 7) now sug- 
gests that a mature MC need not become an agranular, un- 
differentiated cell before it begins to acquire its new phe- 
notype. Whatever the mechanism by which jejunum MC 
modulate their chymase expression, it is now clear that 
conclusions about the phenotype, and thereby function, of 
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Figure 9. Schematic repre- 
sentation of the chymase 
phenotypes of the MC that 
reside at different locations 
in the jejunum of nonin- 
fected and helminth-infected 
BALB/c mice. The numbers 
1, 2, and 5 in the diagrams re- 
fer to mMCP-I, mMCP-2, 
and mMCP-5, respectively. 
The intent of this figure is to 
show schematically the types 
of MC that reside at different 
sites in the jejunum during 
helminth infection. The fig- 
ure does not adequately por- 
tray the quantitative rela- 
tionships of the different 
types of MC which are pre- 
sented in Table I. [], lamina 
propria; B, epithelium. 
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a MC cannot be made solely on its tissue location during 
an inflammatory response. 
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