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Abstract. Formation of non-clathrin-coated vesicles 
requires the recruitment of several cytosolic factors to 
the Golgi membrane. To identify membrane proteins 
involved in this budding process, a highly abundant 
type I transmembrane protein (p23) was isolated from 
mammalian Golgi-derived COPI-coated vesicles, and 
its cDNA was cloned and sequenced. It belongs to the 
p24 family of proteins involved in the budding of trans- 
port vesicles (Stamnes, M.A., M.W. Craighead, M.H. 
Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. 
Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011- 
8015). p23 consists of a large NH2-terminal luminal do- 
main and a short COOH-terminal  cytoplasmic tail 
(-LRRFFKAKKLIE-CO2-) that shows similarity, but 
not identity, with the sequence motif -KKXX-CO2-, 
known as a signal for retrieval of escaped ER-resident 
membrane proteins (Jackson, M.R., T. Nilsson, and 

P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 
9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peter- 
son. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 
binds to coatomer with similar efficiency as known 
KKXX motifs. However, the p23 tail differs from the 
KKXX motif in having an additional motif needed for 
binding of coatomer, p23 is localized to Golgi cisternae 
and, during vesicle formation, it concentrates into 
COPI-coated buds and vesicles. Biochemical analysis 
revealed that p23 is enriched in vesicles by a factor of 
~20, as compared with the donor Golgi fraction, and is 
present in amounts stoichiometric to the small GTP- 
binding protein ADP-ribosylation factor (ARF) and 
coatomer. From these data we conclude that p23 repre- 
sents a Golgi-specific receptor for coatomer involved in 
the formation of COPI-coated vesicles. 

T 
RANSPORT of proteins along the secretory pathway 
is mediated by transport vesicles and can be recon- 
stituted in vitro (41). From such incubations, Golgi- 

derived COPI-coated transport vesicles can be isolated 
(29). The coat of these vesicles consists of the small GTP- 
binding protein ADP-ribosylation factor (ARF) 1 and of 
coatomer, a cytosolic complex made up of seven subunits, 
the COPs (for coat proteins) (47, 48, 57). During budding 
of the vesicles, ARF in its GTP-bound form (ARF-GTP) 
binds to the Golgi membrane, with subsequent recruit- 
ment of coatomer (7, 35, 37). A direct GTP-dependent 
binding of ARF1 to coatomer in this budding process re- 
cently has been shown (Zhao, L., J.B. Helms, B. Brtigger, 
C. Harter, B. Martoglio, R. Graf, J. Brunner, and F.T. 

Address all correspondence to Felix Wieland, Institut fur Biochemie I der 
Universit~t Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, 
Germany. Tel.: (49) 6221 54 41 50. Fax: (49) 6221 54 43 66. e-mail: 
wieland@novsrvl.piol.uni-heidelberg.de 
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Wieland, manuscript submitted for publication). However, 
interaction of coatomer with an additional binding partner 
in the membrane is likely to occur during the budding re- 
action, because, in addition to the ARF-GTP-dependent 
binding, a basal binding of coatomer to Golgi membranes 
is observed in the absence of GTP (37). Moreover, in vitro 
experiments have revealed binding of the complex to pep- 
tides analogous to the cytoplasmic tails of ER-resident 
membrane proteins (6). These tails contain a sequence 
motif KKXX-CO2, previously described as an ER-retrieval 
signal (19, 30). Genetic experiments have implicated such 
interactions in retrograde vesicular transport from the 
Golgi to the ER (25) in addition to the well-established 
role of COPI-coated vesicles in anterograde transport (3, 
33, 39, 41). Recently, a membrane protein from CHO cells 
was found as a component of COPI-coated vesicles that 
belongs to a novel family of type I membrane proteins 
(50). The p24 family comprises at least 13 members (five 
to seven homologues within one species) and shares the 
same type I membrane topology with a large luminal do- 
main and a short cytoplasmic tail. Many of the p24 homo- 
logues have the COOH-terminal dilysine motif, and it has 
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therefore been speculated that they function as ARF or 
coatomer receptors (50). Alternatively, the large luminal 
domain of p24 homologues led to the speculation that they 
might be involved in cargo recognition. A yeast member of 
the p24 family, Emp24, was characterized as a component 
of COPII-coated vesicles (2, 45). In a yeast mutant lacking 
Emp24, ER to Golgi transport of a subset of proteins was 
reduced. It was therefore proposed that Emp24 might be 
involved in the sorting and/or concentration of cargo mol- 
ecules into COPII-coated vesicles. 

We began a search for transmembrane proteins of 
COPI-coated vesicles to identify a possible Golgi-derived 
coatomer receptor. As part of the budding machinery, 
such a receptor would be predicted to fulfill the following 
criteria: (a) high abundancy in COPI-coated vesicles, (b) 
Golgi localization, and (c) ability to bind coatomer. 

Here we describe a novel type I membrane protein of 
COPI-coated transport vesicles with functional properties 
that meet these characteristics. 

Materials and Methods 

Antibodies 
Antibodies against various peptides of p23 were generated in rabbits: 
polyclonal sera were raised against (a) a peptide containing the first 11 
amino acids (ISFHLPVNSRK) of the NH 2 terminus of the mature p23, 
synthesized on a polylysine backbone (KAI2/3); (b) a peptide within the 
luminal domain of p23 (KITDSAGHILYSK) coupled to keyhole limpet 
hemocyanin (KLH) (#1327); (c) a peptide corresponding to the cytoplas- 
mic tail of p23 (YLRRFFKAKKLIE) also coupled to KLH (#1402). Cou- 
pling of peptides to KLH for immunization and to CNBr-activated beads 
for affinity purification was performed according to standard protocols (14). 

SubceUular Fractionation 
Golgi-enriched membranes were isolated according to (52) without 
performing the final salt wash (galactosyltransferase activity was 35-fold 
enriched compared with starting postnuclear supernatant [21]). COPI- 
coated vesicles were generated by incubating rabbit liver Golgi with bo- 
vine brain cytosol in the presence of GTP~S and purified according to (48). 

Protein Chemical Methods 
SDS-PAGE was performed on 16% (44) or on 12% (24) acrytamide gels 
and proteins were visualized by silver (5). Two-dimensional gel electro- 
phoresis was performed according to standard protocols (31) with 1.9% 
ampholines, pH 5-7, and 0.7% ampholines, pH 3.5-10, (ampholines from 
Pharmacia, Uppsala, Sweden) using the Mini Protean II 2-D Cell (Bin 
Rad Laboratories, Hercules, CA). Second dimension was performed on 
12% SDS-PAGE. Western blotting was done according to (22). Microse- 
quencing was performed according to (9). 

Cloning and Sequencing of p23 
p23 eDNA was cloned from a rabbit liver Y-stretch plus eDNA library 
(kgtl0; Clontech, Palo Alto, CA) using nondegenerated primers, obtained 
from two human expressed sequence tag (EST) sequences (accession 
numbers Z43865; T32238): 5'-ATG TCT GGT TTG TCT GGC CCA 
CCA GCC CGG CGG-3', 5'-CTT CTC AAC TTT TGC AAT CTC TTC 
GTA AT1" T'I~-3', 5'-AAT CAA TI ' I  CTT GGC c T r  GAA GAA 
GCG TCG-3'. Cloning was performed using filter hybridization standard 
techniques (43). The open reading frame of one full-length clone was se- 
quenced, which comprised 657 base pairs. The corresponding sequence is 
accessible at the EMBL/GenBank/DDBJ database (accession number X98303). 

Homologies and Structure Prediction of p23 
For comparison of rabbit p23 with members of the p24 family, the BEST- 
FIT program (Genetics Computer Group) was used, with the following 
peptide and eDNA sequences (accession numbers in brackets): rabbit p23 

(this work; X98303), gp25L (p27869.swiss), Emp24 (em24..yeast.swiss; 
p32803.swiss), chop24 (p49020.swiss), yp24c (yhr0__yeast.swiss), yeast ho- 
mologue of p23 (s55107.pir2); frog p23 eDNA (X90517), human p23 cDNAs 
(I.A0397, N30987, R20989, H62112), and fish p23 genornic sequence (U4ff'/61) 
were translated into peptide sequences. Homologies were determined for 
different domains of p23 (Ile32-Va1141, Glula-Arg 185, VaPar-Tyr 2°7, Leu 2°a- 
Glu 219) and expressed in percentage identity to rabbit p23. Hydropathy 
plot of the p23 precursor protein was obtained according to (23), using a 
window of 11 amino acid residues. 

Protease Digestion and Alkaline Treatment of 
Golgi Membranes 
For protease treatment, Golgi-enriched membranes (52) were incubated 
with pronase E (6 Ixg pronase E, 60 ixg membrane protein in 120 ixl 10 mM 
Tris-HCl buffer for 20 rain at 37°C). Mock incubations were performed 
under identical conditions without pronase E. Where indicated, Triton X-100 
was added as a detergent to give a final concentration of 1% (wt/vol). 
Thereafter, the samples were precipitated by the addition of TCA (10% 
final concentration) and analyzed by SDS-PAGE on gels containing 12% 
acrylamide, p23 was visualized by Western blotting with a polyclonal rab- 
bit antiserum directed against the NH 2 terminus of p23 (K-AI2/3). Alka- 
line treatment was performed with 0.1 M Na2CO3 for 30 min at 0°C and 
subsequent centrifugation at 100,000 g for 30 min (under these conditions 
some soluble proteins [e.g., X-COP] tend to precipitate partially and there- 
fore are recovered with the membrane fraction. However, no protein re- 
garded as membrane bound is found in the supernatant). 

Coatomer Binding to Beads 
CHO cell lysates were prepared by extraction of the cells with Hepes de- 
tergent buffer (50 mM Hepes-KOH, pH 7.3, 90 mM KC1, (300 raM) NaCI, 
0.5% NP-40,1 mM PMSF, 0.5 p.g/ml leupeptin, 1 ixg/ml aprotinin, 0.7 p.g/ml 
pepstatin A, 1 mM EDTA) and diluted to a final protein concentration of 
1 mg/ml. Peptides were linked to Thiopropyl Sepharose 613 (Pharmacia) 
via their NH2-terminal Cys residues. Coupling yields were determined af- 
ter release of the peptides in weighed aliquots of the Sepharose beads by 
addition of 2-mercaptoetbanol (50 mM), acid hydrolysis of the superna- 
tants (6 M HCI) for 12 h at ll0°C, and amino acid analysis according to 
(11). For incubation with cell lysates, the amounts of beads added were 
adjusted to give identical absolute amounts of peptides present in the in- 
cubations. Beads were added to a final volume of 175 I~1 containing 150 p.g 
cell lysate protein and 3.3 nmol peptide. Incubation was at 4°C for 2 h or 
overnight. Thereafter, the beads were washed four times with Hepes de- 
tergent buffer and once with buffer without detergent, elution was per- 
formed by the addition of 100 p~l of SDS sample buffer, and identical ali- 
quots were separated on a 10% acrylamide SDS gel. For Western blotting, 
the following antibodies were used: rabbit anti-ct/~-COP (10), rabbit anti- 
13'-COP (51) and anti--8-COP (15), and monoclonal mouse anti-13-COP 
antibody M3A5 (8). Western blots were developed by the enhanced 
chemiluminescence (ECL) system (Amersham Intl., Little Chalfont, UK) 
and quantitatively evaluated by scanning. To this end, the films were de- 
veloped for various times, allowing the scanning of all bands in a linear 
range. As standards for calibration, various amounts of cell lysate were 
quantitated. 

Immunocytochemistry 
Immunofluorescence studies were performed as described earlier (36) 
using the following affinity-purified antibodies against p23, and antibodies 
against coatomer: KAI2/3, #1327, #1402, and CM1 (against coatomer). For 
colocalization, ceils were fixed with paraformaldehyde. For immunelectron 
microscopy, thin eryosections of rat liver Golgi fractions (49) were fixed 
with 1% glutaraldehyde and processed for immunolabeling by cryosec- 
tioning (55) and by the protein A-gold method (40). Affinity-purified 
antibody against p23 (#1327) was diluted 1:2. Gold particles were 8-12 
nm in size. Quantitation of gold particles was performed as described ear- 
lier (36). 

Relative Amounts of p23 in Golgi Membranes 
and Vesicles 
Golgi membranes (isolated as described under subcellular fractionation) 
used for the generation of COPI-coated transport vesicles and the result- 
ing vesicles were separated by SDS-PAGE and visualized by Western 
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blotting using the polyclonai antiserum directed against the NH2-terminal 
peptide of p23 (KAI2/3). Blots were developed with 3,3'-diamine benzi- 
dine (54) and quantified by computer scanning analysis. 

Stoichiometry of p23 to Coatomer and ARF 
COPI-coated vesicles were analyzed by Western blotting for their abso- 
lute amounts of p23, ARF, and e-COP using polyclonal rabbit antibodies 
directed against these proteins and developed with the ECL system (Am- 
ersham Intl.) (59). The relative intensities of the corresponding bands 
were quantified by computer scanning analysis within a linear range of in- 
tensity and compared to defined amounts of recombinant standard pro- 
teins: c-COP (Mr = 36,000) (13), ARF1 (~20 kD) (58), and the luminal 
domain of p23 (amino acid residues Ile 32 to Arg 185, Mr ~20 kD, expressed 
as (His)6-tagged protein in Escherichia coli [pQE30; QIAGEN Inc., Chats- 
worth, CA]). The amounts of these proteins used for calibration of the 
Western blots were determined using the Lowry method (28). The molar 
ratios of c-COP to p23 and to ARF were calculated as: 

x" ng p23 (or ARF) • 36 (1) 
y.ng c-COP" 20 
Antibodies used were: polyclonal rabbit antibodies directed against (a) 

a peptide of the luminal domain of p23 (#1327), affinity purified using this 
peptide; (b) against ARF (37); and (c) against recombinant c-COP (13). 

Results 

Isolation and Molecular Characterization of p23, a 
Major Membrane Protein from COPI-coated Vesicles 

In vitro-generated COPI-coated vesicles were purified ac- 
cording to (48) and analyzed for their membrane protein 
constituents by SDS gel electrophoresis. Fig. 1 A (lane 1) 
depicts the pattern of a purified vesicle fraction. A mem- 
brane protein fraction was prepared by alkaline treatment 
of the vesicles and subsequent centrifugation (Fig. 1 A, 
lane 2). Only a few prominent bands are observed in a mo- 
lecular mass range between 14 and 30 kD: some of which 
were identified as [ -COP and ARF, and another faint 
band visible at N25 kD, which represents Erd2, the K D E L  
receptor, as revealed by immunoblotting (data not 
shown). An additional prominent band was detected with 
an apparent molecular mass of 23 kD. This band consists 
of two proteins as shown by two-dimensional gel electro- 
phoresis (Fig. 1 B). By immunoblotting (data not shown), 
one was identified as the homologue of CHOp24 (small 
arrow), and the other one is a so far unknown protein 
(large arrow). Besides p23 and p24, only [ -COP and ARF 
were found to be abundant in COPI-coated vesicles in the 
range between 14 and 31 kD. The material of the unknown 
protein was analyzed for its NHE-terminal amino acid se- 
quence (Fig. 1 C, lane 1). To obtain larger amounts for in- 
ternal peptide sequence information, a protein of the same 
apparent molecular mass and with an identical NHE-termi- 
nal sequence was isolated from a Golgi membrane prepa- 
ration. This protein provided the molecular structure of 
three additional peptides (Fig. i C, lane 2). Database re- 
search using the TBLASTN program revealed two human 
ESTs, one containing the information coding for three of 
the peptides and the other for the remaining one. Nonde- 
generated oligonucleotide probes were designed accord- 
ing to the EST eDNA sequences and used for screening a 
kgtl0 rabbit liver eDNA library. The deduced amino acid 
sequence from the obtained eDNA is shown in Fig. 2 A. 
The eDNA encodes a protein of 219 amino acid residues 
and includes the four peptide sequences determined by 
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Figure 1. Isolation and characterization of p23 from isolated 
COPI-coated transport vesicles and from Golgi-enriched mem- 
branes. (A) COPI-coated vesicles analyzed by SDS gel electro- 
phoresis (SDS-PAGE, 16% aerylamide) before (lane 1) and after 
treatment with sodium carbonate (lane 2). In lane 3, the superna- 
tant after carbonate treatment is analyzed. A low molecular mass 
window between 30 and 14 kD is shown. (B) COPI-coated vesi- 
cles analyzed by two-dimensional gel electrophoresis (12% acry- 
lamide in the second dimension). Arrows indicate the spots cor- 
responding to p23 (large arrow) and to p24 (small arrow). The 
most acidic spot at 21 kD is g-COP (filled arrowhead); the spot 
between p23 and p24 at ,~20 kD is ARF (open arrowhead). (C) 
SDS-PAGE (12% acrylamide) analysis of total vesicles (lane 1) 
and of a Golgi membrane fraction after carbonate treatment 
(lane 2). A low molecular mass window between ~20 and 30 kD 
is shown. The material depicted with arrows was analyzed by mi- 
crosequencing and the peptide sequences obtained are shown. 
(A-C) Proteins were visualized by silver staining. 

microsequencing of p23. From a hydropathy plot (Fig. 2 B), 
the structure of a type I membrane protein is suggested, 
with a large NH2-terminal luminal domain and a short cyto- 
plasmic tail. A suggested membrane-spanning domain com- 
prises 22 amino acid residues containing four Phe residues. 
The NH2-terminal hydrophobic stretch of 31 amino acid 
residues represents the signal peptide of p23, as the ma- 
ture protein (188 amino acid residues) starts with Ile 32. 
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Figure 2. eDNA-derived amino acid sequence and topology of 
p23. (A) Amino acid sequence of the precursor protein. The ma- 
ture protein starts with Ile 32, as indicated with an asterisk. Pep- 
tide sequences obtained by microsequencing of isolated p23 are 
underlined. A putative membrane-spanning domain is under- 
lined in bold. The sequence data are available from EMBL/Gen- 
Bank/DDBJ database under the accession number X98303. (B) 
Hydropathy plot of p23 precursor protein. (C) Topology of p23. 
Purified Golgi-enriched membranes were digested with pronase 
E with or without detergent, p23 was analyzed by SDS-PAGE 
and subsequent Western blotting with an antibody against the 
NH2 terminus of p23 (KAI2/3). 

This predicted topology is confirmed by proteolytic diges- 
tion: after treatment with pronase E of an intact Golgi mem- 
brane fraction, a slightly smaller protein fragment (22 kD) 
is detected, consistent with the loss of a short cytosolic tail 
(Fig. 2 C). This overall structure is characteristic for a vari- 
ety of related type I membrane proteins, the so-called p24 
family (50). Members of this family with the overall high- 
est identities to p23 (from 23-98%) are gathered in Table I. 
Homologues in various species of p23 are listed in the up- 
per panel. Conservation within the animal homologues is 
observed throughout the complete sequence, including an 
,-.q00% identity of the COOH-terminal tails. The yeast 

homologue yp24g exhibits the most striking homology in 
the luminal domain, next to the membrane span (63%). 
The lower panel shows additional members (relatives) of 
the family, with lower overall sequence identity and higher 
level of heterogeneity in the COOH-terminal tails. One 
striking feature shared by the whole family is a conserved 
Phe residue upstream of a dibasic motif. 

The Complete Tail of p23 Represents a Novel Coatomer 
Binding Motif 

The COOH-terminal tail of p23 ends with a sequence 
(KKLIE) reminiscent of but not identical with the dibasic 
ER retention/retrieval motifs KKXX or KXKXX (19, 30) 
known to bind coatomer directly (6, 15, 27). In addition, 
conservation of amino acid residues upstream of this se- 
quence is observed, as shown in Table I. The functionality of 
the complete tail to bind coatomer was analyzed using a syn- 
thetic peptide linked to Sepharose via an NH2-terminally 
introduced Cys residue. Total cell lysates were incubated 
with these beads, and binding of coatomer was quantitated 
by Western blotting. The efficiency of coatomer binding 
was quantitated by comparison of input signal with the 
amount bound to the beads. As shown in Fig. 3 A (lanes 1, 
7, and 9), the tail peptide of p23 does bind coatomer with 
an efficiency (~25% of the input material) comparable to 
the binding of the established retention/retrieval motifs of 
the adenoviral protein E19 (30) (31%), or the yeast oli- 
gosaccharyl transferase subunit Wbpl (53) (36%). Binding 
to the established motifs was reported to strictly depend 
on the presence of the two Lys residues (6), as confirmed 
in lanes 8 and 10 in Fig. 3 A. In contrast, exchange of Lys 
residues 5 and 4 in the tail peptide of p23 with serine resi- 
dues did not abolish binding of coatomer, but only caused 
a reduction to ~50% (Fig. 3 A, lane 2). Thus, an upstream 
part of the tail sequence must contribute to this binding. 
Therefore, the conserved Phe residues in positions 8 and 9 
(see Table I) were exchanged for Ala residues. As a result 
(Fig. 3 A, lane 3), coatomer binding was completely abol- 
ished. Evidently, the presence of these conserved Phe resi- 
dues is obligatory for coatomer binding. Accordingly, ex- 
change of both the dibasic and the di-Phe motifs leads to a 
complete loss of the capability to bind coatomer as well 
(Fig. 3 A, lane 4). Interestingly, the exact position of these 
Phe residues is not critical for the function of the cytosolic 
tail peptide of p23, because changing their position with 
the two upstream Arg-residues does not cause a significant 
decrease of binding capacity, as shown in lane 5. In sum- 
mary, we have defined, in addition to the dibasic motif, a 
new structural element in the tail peptide of p23 that is es- 
sential for the binding of COPI coat proteins. 

p23 Is Localized to the Golgi and Is Highly Enriched in 
COPI-coated Vesicles 

The presence of a unique KKXX-Iike motif in COPI- 
coated vesicles prompted us to analyze the intracellular lo- 
calization of p23. Immunofluorescence microscopy with an 
antibody directed against an internal peptide of p23 shows 
a distinct perinuclear pattern typical of the Golgi complex 
of three different mammalian cell types (Fig. 4, a-c). The 
Golgi localization was confirmed in a double-labeling ex- 
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Table L Homologues and Relatives of p23 

Identity 

Homologues Overall Ilen-Val t4] Glu 142-Arg185 Vail 86~Tyr2°7 Leu20S_Glu 219 
of p23 identity (lumen) ( l u m e n )  (mmsmembrane domain) (cytoplasmic tail) Tail structure 

% % 

Rabbit i00 100 100 100 100 LRRFFKAKKLIE 
Human 97.9 96.4 100 1 O0 100 LRRF• KAKKL I E 
Fish 88.3 80 100 1 O0 1 O0 LRRF F KAKKL I E 

Frog 68.6 62.7 84.1 81.8 91.7 LRHF FKAKKL I E 
Yeast 39.3 27.3 63 45.5 41.7 LKNYFKTKH I I 

Other members of the p24 family 

gp251 32.3 30.9 31.8 18.2 58.5 LKNFF IAKKLV 
Emp24 27.9 21.8 31.8 31.8 50 LRRFFEVT SLV 
chop24 23.6 17.3 29.5 27.3 33.3 LKRFFEVRRVV 
yp24c 22.8 20 25 27.3 33.3 LKNFFVKQKVV 

p23 is a member of the p24 family. The upper panel lists putative homologues of rabbit p23, based on their striking sequence identifies. In the lower panel, putative relatives of 
p23 are shown, with a lower but significant degree of conservation. The cytoplasmic tails of the proteins are listed with their amino acid sequence under "Tail structure". For m o r e  

members of the p24 family, see (50). 
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Figure 3. Binding of coatomer to the cytoplasmic tail peptides 
and various mutations of p23 (lanes 1-5), adenoviral protein El9 
(30) (lanes 7 and 8), and yeast oligosaecharyltransferase subunit 
Wbpl (53) (lanes 9 and 10). Total CHO cell lysates were incu- 
bated with the various peptides (as indicated) covalently linked 
to Sepharose beads. Bound proteins were eluted with SDS sam- 
pie buffer and analyzed by SDS-PAGE and Western blotting 
with antibodies directed against different coatomer subunits indi- 
cated. Three independent quantitations were performed. (A) A 

periment, where p23 colocalizes with coatomer, bound to 
the Golgi complex (32) (Fig 4, d and e). 

The function of p23 in binding of coatomer, together 
with its predominant presence in the Golgi, suggested a 
role of p23 as a Golgi-derived coatomer receptor for the 
formation of COPI-eoated vesicles. Therefore, its quanti- 
tative distribution was assessed by immunoelectron mi- 
croscopy in control Golgi fractions ("unprimed") and in 
Golgi fractions incubated under the conditions defined to 
form COPI-eoated vesicles in vitro (29) ("primed Golgi"). 
The results are shown in Fig. 5, a--c. In primed Golgi, a 
large fraction of p23 immunolabeling is observed on 70-- 
90-nm coated vesicle profiles (Fig. 5, a and c). In unprimed 
Golgi, the budding of coated vesicles is virtually undetect- 
able, and most immunolabeling is found on the cisternal 
elements (Fig. 5, b and c). In primed Golgi, the concentra- 
tion between coated vesicle profiles and cisternal elements 
is ,--fourfold higher (Fig. 5 c). Thin-sections of intact insu- 
lin cells were also qualitatively assessed, p23 immunolabel- 
ing was predominant on Golgi-associated vesicles and 
found also, in sparse quantity, on transitional elements of 
the ER (data not shown). 

p23 Is a Structural Component of  COPl-coated Vesicles 

The striking concentration in buds and vesicles observed 
by immunoelectron microscopy was estimated biochemi- 
cally. To this end, the relative immunostaining of donor 
Golgi fractions and purified vesicles was compared by 
Western blotting. As shown in Fig. 6, 50 I~g of donor Golgi 
protein (lane 2) yielded a signal comparable to the one ob- 
tained by 2 I~g of vesicular protein (lane 1). Thus, we con- 
clude that p23 is enriched in COPI-coated vesicles by a 
factor of :-,20. This is only a rough estimation, as both the 

typical Western blot obtained. (B) Quantitative evaluation of 
c~-COP (dark bars) and I3-COP (light bars) from Western blots. 
Values are means of +SD; "average background" depicts the sig- 
nal obtained with the average amount of beads used but without 
peptide. Binding of coatomer to each wild-type peptide (p23, 
El9, and Wbpl) was set to 100%. 

Sohn et al. Coatomer Binding to Golgi Membranes 1243 



Figure 4. Immunolocalization of p23 to the Golgi complex. Immunofiuorescent labeling of p23 in CHO-ceUs (a), NRK cells (b), and in- 
sulin cells in monolayer culture (c). A distinct perinuclear reticular-punctate labeling is elicited in all three cell types: (a and c) antibody 
directed against the NH2 terminus of p23 (KAI2/3); (b) affinity-purified antibody against an internal peptide of the luminal domain of 
p23 (#1327). Monospecificity of these antibodies was assessed by Western blotting. Colocalization of p23 with coatomer in NRK cells: 
immunofluorescent labeling of p23 (d) with an antibody against the COOH terminus of p23 (#1402), and of coatomer (e) with an anti- 
body recognizing native coatomer (CM1). Bars, 10 i~m. 

donor Golgi membranes and the vesicles are only 30-50% 
pure. However, given the fact that the protein to lipid ratio 
in vesicles is four times higher as compared with that of 
the Golgi donor membrane (Brtigger, B., and F.T. Wie- 
land, unpublished data), the actual enrichment of p23 into 
COPI-coated vesicles is likely to be underestimated. This 
made p23 a strong candidate for a coatomer receptor as 
part of the machinery for the formation of COPI-coated 

vesicles. Such a role would require the presence in vesicles 
of p23 in amounts stoichiometric to coatomer. This was in- 
vestigated by quantitation of the absolute amounts in the 
vesicles of t-COP (for coatomer [13]), ARF, and p23 by 
Western blotting, using the purified recombinant proteins 
as calibration standards. The results of this analysis are 
given in Table II. From quantitation of four independent 
vesicle preparations, an average of ~5  mol of p23 per 1 mol 
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Cisternae 70-9Ohm coated 
vesicle profiles 

Control Golfli 75 + 9 not detectable 

GTPyS treated Golgi 33 + 3 128 + 13 

D 

Figure 5. p23 concentrates into coated buds and vesicles. (A) 
GTP~/S--treated Golgi membranes with immunogold particles sit- 
uated preferentially on 70-90-nm coated vesicle profiles (ar- 
rows). G, Golgi cisternal elements. (B) Control Golgi membranes 
(without GTP~S) with no detectable budding, but with a distinct 
p23 labeling on the cisternae (G). (C) Number of p23 immu- 
nogold particles per ixm 2 of Golgi compartment (mean --- SEM). 
n = 10 Golgi areas evaluated. Total number of gold particles per 
txm 2 of Golgi area: GTP~S-treated, 23 - 2; control, 29 -+ 5. Bar, 
200 nm. 

of ~-COP is found. In the same preparations, an average of 
~10 mol of ARF1 per 1 mol of c-COP is observed, proba- 
bly an overestimation (47) as a result of variations of the 
known unsaturable amounts of ARF that bind to Golgi 
membranes depending on the amount of active ARF 
present in various cytosol preparations (16). Thus, p23 is 
present in COPI-coated vesicles in amounts that allow sto- 
ichiometric binding to coatomer, and its stoichiometry 
points to an oligomeric complex as the binding partner. 

kD 
45 

3 0 ~  

2 

21 

Figure 6. p23 is enriched in COPI-coated vesicles. The amounts 
of p23 in Golgi membranes and in isolated COPI-coated vesicles 
were compared by Western blotting. 50 ixg of Golgi membranes 
(lane 2) and 2 ~g of COPI-coated vesicle fraction (lane 1) were 
separated by SDS-PAGE and visualized by Western blotting us- 
ing the polyclonal antiserum directed against the NH2-terminal 
peptide of p23 (KAI2/3). 

Discussion 

We have characterized a novel membrane protein of 
COPI-coated vesicles that most likely represents a compo- 
nent of the membrane machinery involved in the forma- 
tion of COPI-coated vesicles. The properties of p23 are 
consistent with a function as a coatomer receptor: p23 is a 
major membrane protein of COPI-coated vesicles; it is 
present in these vesicles in amounts stoichiometric to 
coatomer; and its cytoplasmic tail peptide binds coatomer 
efficiently, with structural elements involved in this bind- 
ing that are different from the established dibasic motifs 
known to interact with the complex. It is localized to the 
Golgi and, upon priming, is concentrated into COPI- 
coated buds and vesicles. Taken together, these data sug- 
gest that p23 serves as a receptor for coatomer in Golgi 
membranes. 

In vivo evidence for a role 6f p23 in biosynthetic protein 
transport comes from Xenopus, in which a homologue of 
the protein has been characterized at the mRNA level 
(17): p23 homologue expression, together with constitu- 
ents of the ER translocation machinery, is coordinately in- 
creased when secretion of pro-opiomelanocortin is stimu- 
lated in the intermediate pituitary cells of the frog. 

p23 belongs to the p24 family of type I membrane proteins 
that share short cytoplasmic tails and large luminal domains 
(50), and they have been discussed to serve as ARF/  
coatomer receptors and/or cargo receptors for COPII-  
coated vesicles that bud off the ER (45), as well as for 
COPI-coated vesicles (50). Currently, seven p24 family mem- 
bers are known within yeast and five members within 

Table II. Stoichiometry of p23 to Coatomer and ARF 

Molar ratio Molar ratao 

Vesicle prep E-COP:p23 ~-COP:ARF 

I 1 : 4 . 9  - -  

II 1:4.8 - 

III 1:6.9 1:9.6 

IV 1:3.9 1:9.8 

Stoichiometry of p23 to coatomer (represented by its subtmit t-COP) and ARF in iso- 
lated COPl-coated vesicle fractions. Four independent COPI-coated vesicle prepara- 
tions were examined. 
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mammals. It has been suggested that they are involved 
in vesicle formation at various intracellular locations (50). 
gp251 and Emp24 have been found to reside in the ER 
(45, 56). In COPI-coated vesicles only two members of this 
family are found to be abundant: p23 and p24. Mammalian 
p24 was described as a constituent of COPI-coated vesi- 
cles; however, its steady state localization in the cell is not 
yet defined. 

It is not known at present what makes the various p24 
family members localize to different intracellular mem- 
branes. In this context, it may be of note that a COOH-ter- 
minal double FF-containing dibasic motif is required and 
sufficient for pre-Golgi localization of ERGIC-53 (18). A 
possible role of the upstream FF of p23 in its steady state 
localization remains to be investigated. It was shown that 
the Golgi localization of a yeast protein, Emp47, is depen- 
dent on the presence of its KXKXX motif, but indepen- 
dent on intact a-COP (46). Subsequent work, however, re- 
vealed that in a ~/-COP mutant (sec21), the steady state 
localization of Emp47 is perturbed, and the protein travels 
to the vacuole (26). These seemingly conflicting results in- 
dicate that individual subunits of the coatomer might play 
a role in governing the direction a COPI-coated vesicle 
may take. 

Here we restrict our speculations on functions of p23, 
the member of the p24 family most abundant in COPI- 
coated vesicle preparations and clearly localized to the 
Golgi complex at steady state. 

Machinery for Budding? 
As in the binding of ER-retrieval motifs to coatomer, inter- 
action of the complex with the COOH-terminal tail of p23 
in this study was determined in vitro, impeding analysis of 
any impact ARF-GTP might have on this interaction. 
However, evidence for a direct interaction of Golgi-bound 
ARF-GTP with coatomer specifically via the 13-subunit of 
the complex exists (Zhao, L., J.B. Helms, B. Brtigger, C. 
Harter, B. Martogiio, R. Graf, J. Brunner, and F.T. 
Wieland, manuscript submitted for publication). This indi- 
cates that coatomer is bound to membranes by a bivalent 
interaction with ARF and p23. Thus, our present model 
for priming of COPI-coated vesicle formation includes (a) 
binding of ARF-GTP to Golgi membranes (7, 37) via an 
(at present uncharacterized [16]) ARF-receptor, and (b) 
binding of coatomer to membrane-anchored ARF via 
13-COP (Zhao, L., J.B. Helms, B. Briagger, C. Harter, B. 
Martogiio, R. Graf, J. Brunner, and F.T. Wieland, manu- 
script submitted for publication), with (c) concomitant re- 
cruitment of receptor-bound ARF (47) and p23 into bud- 
ding regions of the membrane that would lead to binding 
of the cytoplasmic tail of the protein with coatomer sub- 
units different from I3-COP (alternatively, binding of 
ARF-GTP to coatomer may occur in specialized areas of 
the Golgi, with subsequent recruitment of p23 via its bind- 
ing to coatomer). Independent studies have suggested ei- 
ther a trimeric complex formed from the et,[3' and ~ sub- 
units of coatomer (6, 27), or ~/-COP (15) to specifically 
bind to dibasic cytoplasmic tail motifs. ~/-COP has also 
been identified as the predominant binding partner of a 
peptide analogous to the cytoplasmic tail of p23 (Harter, 
C., and F.T. Wieland, unpublished results). As shown 

here, this tail binds coatomer with similar efficiency as 
compared v~ith the established KKXX motifs. Given the 
high abundancy of p23 and p24 in COPI-coated vesicles 
and the stoichiometry between p23 and coatomer, this 
protein is likely to be part of the budding machinery and 
to function in the binding of coatomer in COPI-coated 
vesicles. Alternatively, the membrane layer of a COPI- 
coated vesicle for the binding of coatomer might be estab- 
lished by a mixture of a multitude of different K(X)KXX- 
containing membrane proteins, each of which is present in 
the vesicle at concentrations too low to be detected. Given 
the function of p23's tail peptide and the presence of this 
membrane protein in the vesicles in amounts stoichiometric 
to coatomer, this mechanism remains unlikely. 

Various Types of COPI-coated Vesicles? 
Although the scope of this study was to characterize mem- 
brane machinery involved in the formation of COPI- 
coated vesicles, it is tempting to speculate about the func- 
tions these vesicles serve. Experimental evidence exists for 
a role of Golgi-derived COPI-coated vesicles in antero- 
grade biosynthetic protein transport through the Golgi ap- 
paratus (3, 34, 39, 41). More recent findings by Cosson and 
Letourneur showed that COPI-coated vesicles are impli- 
cated in retrograde transport from the Golgi to the ER 
(25) - -  a transport needed not only for the retrieval of lu- 
minal and membrane proteins of the ER, but also likely 
for the reshuffling of membrane lipids and constituents of 
forward transporting machinery (38). 

Next, we would like to speculate on possible mecha- 
nisms for the formation of anterograde and retrograde 
vesicles. In the Golgi, p23 is present at concentrations far 
exceeding the concentrations of KKXX-containing cargo 
for retrieval to the ER, because retrieval tagged proteins 
at steady state are predominantly localized to the ER (20). 
As mentioned above, the manifold concentration of ARF-  
GTP and p23 in COPI-coated buds and vesicles upon 
priming indicates that these proteins form layers within 
the Golgi membrane that represent a scaffold for efficient 
binding of coatomer, allowing the formation of coated 
buds. For retrieval, the few escaped ER-type I membrane 
proteins present in the Golgi at any given time would then 
easily be accomodated within the forming coat structures, 
as a result of their K(X)KXX signals binding to coatomer 
with an affinity comparable to the tails of p23. This would 
provide a simple mechanism for selective retrieval of es- 
caped ER-resident type I membrane proteins. 

In contrast with retrieval, signals for anterograde trans- 
port through the Golgi have not been found. This is in ac- 
cordance with the observation that cargo does not seem to 
be concentrated on its way through the Golgi apparatus (4, 
12, 33, 34, 60). Therefore, in contrast with the exit from the 
ER (1), cargo receptors may not be needed for transport 
of proteins through the Golgi in an anterograde direction. 
Alternatively, the involvement of cargo receptors might 
not necessarily lead to a concentration of cargo within the 
Golgi above the level already achieved in the ER. In this 
case, members of the p24 family might well serve as cargo 
receptors for intra-Golgi transport. Localization of the in- 
dividual members of this protein family to their various 
steady state residencies will be needed as a basis to clarify 
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this issue. As to the presence of p24 and p23 in COPI- 
coated vesicles, there are mainly two possibilities: (a) both 
proteins reside in one and the same vesicle; in this case, 
both membrane proteins together might form the scaffold 
for coatomer binding; or (b) p24 and p23 define different 
types of COPI-coated vesicles within a heterogeneous 
population, mediating either anterograde or retrograde 
transport. Thus, a major challenge for future work will be 
to further characterize COPI-coated vesicles with respect 
to their homogeneity. 
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Note Added in Proof. During submission of the manuscript, the sequence 
of p23 was published by Blum, R., P. Feick, M. Puype, J. Vandekerck- 
hove, R. Klengel, W. Nastainczyk, and I. Shulz. 1996. Tmp21 and p24A, 
two type 1 proteins enriched in pancreatic microsomai membranes, are 
members of a protein family involved in vesicular trafficking. J. Biol. 

Chem. 271:17183-17189. 
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