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Abstract

Environmental microbiology is undergoing a dramatic revolution due to the

increasing accumulation of biological information and contextual environmental

parameters. This will not only enable a better identification of diversity patterns,

but will also shed more light on the associated environmental conditions, spatial

locations, and seasonal fluctuations, which could explain such patterns. Complex

ecological questions may now be addressed using multivariate statistical analyses,

which represent a vast potential of techniques that are still underexploited. Here,

well-established exploratory and hypothesis-driven approaches are reviewed, so as

to foster their addition to the microbial ecologist toolbox. Because such tools aim

at reducing data set complexity, at identifying major patterns and putative causal

factors, they will certainly find many applications in microbial ecology.

Introduction

Microbial ecology is undergoing a profound change because

structure–function relationships between communities and

their environment are starting to be investigated at the field,

regional, and even continental scales (e.g. Hughes Martiny

et al., 2006; Ramette & Tiedje, 2007a, b). Because DNA

sequences are being accumulated at an unprecedented rate

due to high-throughput technologies such as pyrosequen-

cing (Edwards et al., 2006a, b), single-cell genome sequen-

cing (Zhang et al., 2006), or metagenomics (Venter et al.,

2004; Field et al., 2006; Gill et al., 2006), future challenges

will very likely consist of interpreting the observed diversity

patterns as a function of contextual environmental para-

meters. This would help answer fundamental questions in

microbial ecology such as whether microbial diversity

responds qualitatively and quantitatively to the same factors

as macroorganism diversity (Horner-Devine et al., 2004; van

der Gast et al., 2005; Green & Bohannan, 2006; Hughes

Martiny et al., 2006).

Most obstacles encountered by microbial ecologists

when they try to summarize and further explore large data

sets concern the choice of the adequate numerical tools to

further evaluate the data statistically and visually. Such tools,

which have been developed by community ecologists to

work on distribution and diversity patterns of plants and

animals, could be readily applied in microbial ecology.

Although multivariate analyses of community diversity

patterns are well described in the literature, microbial

ecologists have used multivariate analyses either rarely or

mostly for exploratory purposes. A brief survey of the

literature confirms this trend (Table 1; Fig. 1). Table 1

indicates that bacterial studies rank third after plant and

fish studies for their use of multivariate analyses. Complex

data sets are mostly explored via principal component

analysis, or cluster analysis, and hypothesis-driven techni-

ques such as redundancy analysis, canonical correspondence

analysis (CCA), or Mantel tests are more rarely used (Fig. 1).

Axis 1 (horizontal) clearly differentiates microscopic (bac-

teria, microorganisms, fungi) from macroscopic (fish, bird,

plant, insect) life, and this may be related to the use of

more exploratory methods (e.g. cluster analysis, PCA) in

the first group. It is important to state that the figures

presented in Table 1 and Fig. 1 have to be taken with

caution because many articles do not include a description

of statistical approaches in their titles or abstracts, and so
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the table is certainly biased and incomplete. However, the

point of the table was both to identify some general trends

in the literature and to give one example of the usefulness of

multivariate analysis to analyze a data table.

This review aims at presenting some common multivariate

techniques in order to foster their integration into the

microbial ecologist’s toolbox. Indeed, ‘it is no longer possible

to gain a full understanding of Ecology and Systematics

without some knowledge of multivariate analysis. Or, contra-

riwise, misunderstanding of the methods can inhibit ad-

vancement of the science’ (James & McCulloch, 1990). Such a

review is ambitious because it tries to provide a few guide-

lines for a very vast discipline that is still under development.

For this reason, it cannot be exhaustive and does not pretend

to offer in-depth coverage of all selected topics. The review is

largely inspired by descriptions, comments, and suggestions

originating from multiple, highly recommended sources (ter

Braak & Prentice, 1988; James & McCulloch, 1990; Legendre

& Legendre, 1998; Leps & Smilauer, 1999; ter Braak &

Smilauer, 2002; Palmer, 2006), where detailed information

about each technique can be obtained.

In the first part, data type and preparation are reviewed as

a necessary basis for subsequent multivariate analyses.

Second, common multivariate methods (i.e. cluster analysis,

principal component analysis, correspondence analysis,

multidimensional scaling) and a few statistical methods to

test for significant differences between groups or clusters are

described, focusing on the methods’ main objectives, appli-

cations, and limitations. Beyond the mere identification of

diversity patterns, microbial ecologists may wish to correlate

or explain those patterns using measured environmental

parameters, and this approach is addressed in the third part.

Special emphasis is placed on a few methods that have

proven useful in ecological studies, namely redundancy

analysis, CCA, linear discriminant analysis, as well as varia-

tion partitioning. The final part provides practical consid-

erations to help researchers avoid pitfalls and choose the

most appropriate methods.
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Fig. 1. Correspondence analysis of method usage in various scientific

fields. In this symmetrical scaling of CA scores, the first two axes

explained 47.3% and 35.8% of the total inertia of Table 1, respectively.

The gray areas were drawn to facilitate the interpretation. Complete row

names (scientific fields; full circles) and column names (methods; white

triangles) are given in Table 1. Methods (triangles) located close to each

other correspond to methods often occurring together in studies. The

distance between a scientific field point and a method point approx-

imates the probability of method usage in the field.

Table 1. Usage (%) of multivariate methods in different fields

Keywordsw

Exploratory analysis Hypothesis-driven analysis

Total numberzCluster PCA MDS PCoA CCA RDA MANOVA Mantel ANOSIM CVA

Bacter� 48.5 38 4.5 0.4 3.2 1.8 1.3 0.4 0.9 1.1 1141

Microb� 45.8 40.2 3.9 1.1 2.2 2.2 1.1 1.7 0.6 1.1 179

Plant� 40.3 28.5 4.6 1.7 15.5 3.7 1.9 2.3 0.6 0.9 3335

Fung� 54 27.2 2.8 1.1 8.5 2.8 0.9 1.1 0.2 1.4 563

Fish� 30.1 33.7 9.8 0.3 13.5 2.7 3.6 2.9 2.3 1.2 1464

Bird� 41 20.5 5.4 0.7 21.2 3.5 2.1 4.2 0.5 0.9 429

Insect� 54.3 13.7 6.1 0.8 11.5 4.4 3.5 3 1.1 1.7 637

A literature search was performed with the Thomson ISI research tool with the following parameters (Doc type, all document types; language, all

languages; databases, SCI-EXPANDED, SSCI, A&HCI; Timespan, 1900–2006) on December 13, 2006 in the titles and abstracts of the articles only.
wAsterisks were placed at the end of each keyword to accommodate for variations. Each keyword was additionally combined with the following

technical designations: cluster, cluster analysis; PCA, principal component analysis; MDS, multidimensional scaling; PcoA, principal coordinate analysis;

CCA, canonical correspondence analysis; RDA, redundancy analysis; Mantel, Mantel test, or CVA, canonical variate analysis.
zTotal number refers to the total number of publications identified by each keyword and all its combinations. The ordination based on correspondence

analysis of the raw number is depicted in Fig. 1.
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Data types and data preparation

Data sets

The initial multivariate data set may consist of a table of

objects (e.g. samples, sites, time periods) in rows and

measured variables for those objects in columns. This table

structure is the standard used in the present review. When

the latter variables are biological taxa, the columns will

simply be designated as ‘species’ thereafter. It is critical to

clearly identify what corresponds to objects and variables in

the data set. Indeed, objects in one study may be species or

operational taxonomic units (OTU) for which catabolic

profiles, gene presence or polymorphism, etc. are measured.

In another study where samples from different sites are

compared based on, for instance, community fingerprinting

techniques, objects can now be samples and species vari-

ables. This distinction is important because procedures that

analyze relationships among objects or among variables are

different. Objects are defined a priori by the sampling

strategy before making observations and variable measure-

ments. Besides, most multivariate analyses assume indepen-

dence between objects (or samples), i.e. observations made

on an object are not a priori dependent on those made on

another object. Variables, however, can be found to be

intercorrelated to various degrees, but this is not necessarily

known in advance. Initial data sets can also consist of

distance matrices where pairwise dissimilarities between

objects are calculated. The original table of raw data is not

always available, e.g. for DNA–DNA hybridization values,

phylogenetic distances, and thus specific multivariate tech-

niques have to be considered to deal with data matrices.

Data transformations

In multivariate data tables, measured variables can be

binary, quantitative, qualitative, rank-ordered, classes, fre-

quencies, or even a mixture of those types. If variables do

not have a uniform scale (e.g. environmental parameters

measured in different units or scales) or an adequate format,

variables have to be transformed before performing further

analyses. Each qualitative variable has to be recoded as a set

of numerical variables that replace it in the numerical

calculations. One way to do so is to create a series of

‘dummy’ variables that correspond to all the states of the

qualitative variable. For instance, if the variable ‘season’ has

to be recoded, four associated variables will be constructed,

and for each object the value 1 will be given to the

corresponding season when it occurs, and 0 for the three

other seasons when it is absent. Many statistical packages

automatically perform this recoding.

Standardization provides dimensionless variables and

removes the undue influence of magnitude differences

between scales or units. A common procedure is to apply

the z-score transformation to the values of each variable. For

each variable, it consists of (1) computing the difference

between the original value and the mean of the variable (i.e.

centering) and of (2) dividing this difference by the SD of

the variable.

Normalizing transformations aim at correcting the dis-

tribution shapes of certain variables, which depart from

normality. One thus tries to obtain a homogeneous var-

iances for variables, conditions under which multivariate

procedures often perform better. Different mathematical

transformations can be used to normalize the x values of a

variable: for instance, the arcsin (
p

x) transformation can be

applied to percentages or proportions, log(x1c) to variables

departing strongly from a normal distribution, and
p

(x1c)

to less problematic cases, with c being a constant that is

added to avoid mathematically undefined computations.

The c constant is generally chosen so that the smallest

nonzero value is obtained by computing x1c in the former

functions. The constant should also be of the same order of

magnitude as the variable (Legendre & Legendre, 1998).

To make community composition (either presence–

absence or abundance) data containing many zeros suitable

for analysis by linear methods such as principal component

analysis (PCA) or canonical redundancy analysis (RDA), the

Hellinger transformation [Eq. (1)] is one of five transforma-

tions that give good results (Legendre & Gallagher, 2001).

The chord transformation is a useful transformation that

also gives less weight to rare species in the species table [Eq.

(2)]. The transformations are given by

y0ij ¼
ffiffiffiffiffiffi
yij

yiþ

r
ð1Þ

y0ij ¼
yijffiffiffiffiffiffiffiffiffiffiPp
j¼1

y2
ij

s ð2Þ

where yij is the original species value for site i and species j,

yi1 represents the sum of all species values for site i (i.e. sum

per row), p is the number of species in the table (number of

columns), and y
0
ijrepresents the resulting, transformed spe-

cies value (Legendre & Gallagher, 2001). These transforma-

tions are particularly recommended when rare species are

not truly rare, i.e. when they mostly occur because the

sampling was performed blindly, as generally done in soil

or marine microbial ecology. Further data transformations

can be found in Sokal & Rohlf (1995) and Legendre &

Legendre (1998).

The way to deal with missing data is a discipline on its

own (Legendre & Legendre, 1998). Briefly, one can either

delete rows or columns containing the missing value(s), or

try to replace the missing values by mathematical estimates

inferred from values obtained from other objects in the data
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set. In the latter case, it is still difficult to provide ecologically

meaningful explanations for these estimates. In any case, the

specific handling of missing data should be reported by the

investigator.

When dealing with matrices, it is possible to change a

similarity matrix (S) into a dissimilarity matrix (D) by

applying the following transformations: D = 1� S,

D =
p

(1� S), or D =
p

(1� S2). To normalize any D matrix

to the interval [0–1], one can compute D/Dmax, or

(D�Dmin)/(Dmax�Dmin), where Dmax and Dmin represent

the highest and lowest values of D, respectively (Legendre &

Legendre, 1998).

Exploratory analyses

Visualization and exploration of complex data
sets

The basic aim of ordination and cluster analysis is to

represent the (dis)similarity between objects (e.g. samples,

sites) based on values of multiple variables (columns)

associated with them, so that similar objects are depicted

near from each other and dissimilar objects are found

further apart from each other. Exploratory multivariate

analyses are thus useful to reveal patterns in large data sets,

but they do not directly explain why those patterns exist.

This latter point is addressed in the third part of the review.

Cluster analysis and association coefficients

Cluster analysis encompasses several multivariate techni-

ques that are used to group objects into categories based on

their dissimilarities. The aim is both to minimize within-

group variation and maximize between-group variation in

order to reveal well-defined categories of objects, and there-

fore reduce the dimensionality of the data set to a few groups

of rows (James & McCulloch, 1990; Legendre & Legendre,

1998). This approach is thus generally recommended when

distinct discontinuities instead of continuous differences

(i.e. gradients) are expected between samples (objects)

because cluster analysis mostly aims at representing parti-

tions in a data set (Legendre & Legendre, 1998).

Because distance matrices that are based on differences in

DNA or amino acid sequences are commonly used to

describe microbial diversity, cluster analysis has become

very popular in microbial ecology (Table 1; Fig. 1). This is

not surprising because the grouping of organisms based on

their phenotypic or genotypic similarities in order to infer

their taxonomic positioning is generally and historically

based on cluster analysis (or at least based on a tree-like

representation) and, as such, is central to biology and

evolution (Avise, 2006). Typical microbial ecology questions

that are addressed by cluster analysis are whether the

clustering patterns of molecular sequences reflect sample

origin or sampling time in order to reveal specific biogeo-

graphical or temporal patterns, respectively (Whitaker et al.,

2003; Acinas et al., 2004). Those factors are generally

hypothesized to be of a discontinuous nature, but the

rationale of generally representing molecular differences as

discontinuous clusters in microbial ecology and microbial

genomic studies has only started to be questioned (Kon-

stantinidis et al., 2006). Another common application con-

sists of sorting out clones from environmental samples

based on specific criteria (e.g. genetic or phenotypic mar-

kers) because clones or variants are expected to form tight

clusters around their parental strains and to be more distinct

from other lineages (Acinas et al., 2004). In microarray data

analysis, cluster analysis has helped identify common ex-

pression patterns of groups of genes, which may shed light

on functionally related genes or pathways (Eisen et al.,

1998).

Cluster analysis of a data table proceeds in two steps.

First, a relevant association coefficient has to be chosen to

measure the association (similarity or dissimilarity) among

objects or among variables. Second, the calculated associa-

tion matrix is represented as a horizontal tree (hierarchical

clustering) or as distinct groups of objects (k-means cluster-

ing), based on specific rules to aggregate objects. For

ecologists, the power of cluster analysis derives from the

existence of different types of (dis)similarity coefficients.

The choice of appropriate and ecologically meaningful

association coefficients is particularly important because it

directly affects the values that are subsequently used for the

categorization of objects.

The analysis of similarities among objects (rows) is

designated as Q mode analysis, whereas when relationships

among variables (columns) are the focus of the study, this is

referred to as R mode analysis (Legendre & Legendre, 1998).

Noticeably, the two modes of analysis do not generally use

the same association coefficients. Although it is not possible

to give a full review of all association coefficients here, it is

useful to known that, for comparing objects (rows) based on

their column attributes in Q mode analysis, coefficients may

be chosen as a function of data type (quantitative, qualita-

tive, ordinal, or mixed data, normalized data, presence-

absence), importance given to rare species, weight given to

each object, and calculation of associated probability levels.

For comparing objects in a sample-by-environment table

(e.g. water, soil chemistry), selection of appropriate coeffi-

cients generally depends on data type and unit homogeneity

of the measured variables. In R mode analyses, in addition to

the previously cited criteria, the choice of a coefficient may

also depend on how the variables are related to each other

(e.g. linearly, monotonically, qualitatively, ordered), and on

how species absence is handled in the calculations. In most

ecological studies, the absence of a species at two sites being
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compared is not considered as a measure of similarity

between those sites. Indeed, a simultaneous species absence

at two sites may be due to different reasons, e.g. the sites

offer different physical–chemical conditions and the species

cannot exist under both conditions, and so there is no

straightforward conclusion about site similarity that can be

drawn in this case. Asymmetric coefficients are coefficients

that do not take into account cases of double absences of

species (‘double zeros’) in the calculation of pairwise

similarities among sites. Moreover, in microbial ecology

where environmental communities are generally far from

being exhaustively sampled, a double absence of an OTU has

to be regarded more as a lack of information rather than a

sign of common structure among samples, and asymmetric

coefficients such as Jaccard (1901) or S�rensen (1948)

should be preferred. More details about the calculation of

association coefficients and their appropriateness can be

found, for instance, in Chapter 7 of (Legendre & Legendre,

1998).

When an association matrix is calculated, the relation-

ships between objects or variables can be represented

following specific aggregation rules. Three general ap-

proaches are commonly used: hierarchical clustering,

k-means partitioning, and two-way joining. In hierarchical

clustering, a linkage rule to form clusters and the numbers of

clusters that best suit the data have to be determined a priori.

Clusters, which are nested rather than mutually exclusive

here, are either formed by progressively agglomerating

objects from high to low similarity cutoff values (forward

clustering), or using the converse strategy, i.e. grouping all

cases together and progressing from low to high cutoff

values in order to merge objects and clusters (backward

clustering). These two strategies do not necessarily yield the

same clusters. The merging of clusters is visualized using a

tree format (generally horizontal) and is successful when

well-defined clusters are identified in the data set (Sneath &

Sokal, 1973).

Common linkage rules are, e.g. nearest neighbor (the

distance between two clusters is the distance between their

closest neighboring points), furthest neighbor (the distance

between two clusters is the distance between their two

furthest objects), and the widely used unweighted pair-

group method using averages (UPGMA; Sneath & Sokal,

1973), where the distance between two clusters is the average

distance between all intercluster pairs. When within-cluster

homogeneity is desired, Ward’s method, which merges

clusters only if they increase the within-cluster variation

the least, is recommended (Legendre & Legendre, 1998).

Finally, equal weight can also be given to clusters that are

expected to be of different sizes using the weighted arithmetic

average clustering (WPGMA), which consists of giving less

weight to the original similarities of the largest groups

(Legendre & Legendre, 1998).

In k-means clustering, objects are assigned to k clusters (k

being defined in advance), based on their nearest Euclidean

distance to the mean of the clusters. The mean of the cluster

is iteratively recalculated until no more assignments are

made and cluster means fall below a predefined cut-off value

or until the iteration limit is reached. Different means for

each cluster are ideally obtained for each dimension used in

the analysis, as indicated by high F-values from the respec-

tive analyses of variance. Unlike hierarchical clustering,

k-means clustering does not require prior computation of

dissimilarity matrix among objects and is therefore more

adapted to large data sets (e.g. few thousand objects) where

computing power is an issue. However, the method is quite

sensitive to outliers, which are usually removed before

performing the analyses (Legendre & Legendre, 1998).

Two-step cluster analysis may be useful to group objects

into clusters when one or more of the variables are catego-

rical (not interval or dichotomous). Objects are first

grouped based on the categories, which are themselves

hierarchically clustered as single cases. Because neither a

proximity table nor iterative steps are required, the method

is particularly suited for the analysis of very large data sets

(Eisen et al., 1998).

Principal component analysis (PCA)

PCA has been applied to numerous phenotypic and geno-

typic (e.g. fingerprinting patterns) data sets, and it is one

of the most popular exploratory analyses (Table 1), perhaps

because the technique is generally the first multivariate

approach to be explained in most data analysis manuals.

However, this choice may not always be justified in ecology

and recommendations for appropriate applications are

provided at the end of this section and in the ‘Practical

considerations’ part of the present review. Examples of use

in microbial ecology concern the identification of patterns

of microbial community change over seasons or geographic

areas (e.g. Merrill & Halverson, 2002), or as those patterns

relate to different plant compartments at different plant

developmental stages (Mougel et al., 2006), or the reduction

of the complexity of data sets involving hydrochemistry

data, bacterial, and archeal community profiles in order to

visualize and interpret complex multivariate data sets onto

two-dimensional geographic maps of contaminated sites

(Mouser et al., 2005).

The PCA procedure basically calculates new synthetic

variables (principal components), which are linear combi-

nations of the original variables (for instance, the species of a

sample-by-species table), and that account for as much of

the variance of the original data as possible (Hotelling,

1933). The aim is to represent the objects (rows) and

variables (columns) of the data set in a new system of

coordinates (generally on two or three axes or dimensions)
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where the maximum amount of variation from the original

data set can be depicted. In practice, PCA is either per-

formed on a variance–covariance matrix or on a correlation

matrix. The first approach is followed when the same units

or data types are used (e.g. abundance of different species).

The aim is then to preserve and to represent the relative

positions of the objects and the magnitude of variation

between variables in the reduced space. PCA on a correlation

matrix is rather used when descriptor variables are mea-

sured in different units or on different scales (e.g. different

environmental parameters) or when the aim is to display the

correlations among (standardized) descriptor variables. The

two approaches lead to different principal components and

different distances between projected objects in the ordina-

tion; hence, the interpretation of the relationships must be

made with care (Table 2). Indeed, for correlation matrices,

variables are first standardized (i.e. they become indepen-

dent of their original scales), and so distances between

objects are also independent from the scales of the original

variables. All variables thus contribute to the same extent

to the ordination of objects, regardless of their original

variance.

PCA results are generally displayed as a biplot (Jolicoeur

& Mosimann, 1960), where the axes correspond to the new

system of coordinates, and both samples (dots) and taxa

(arrows) are represented (Fig. 1a). The direction of a species

arrow indicates the greatest change in abundance, whereas

its length may be related to a rate of change. Depending on

whether a distance or a correlation biplot is chosen, different

interpretations can be made from the ordination diagram

(Table 2). The interpretation of the relationships between

samples and species differs and is directly affected by the

scaling chosen, i.e. whether the analysis mainly focuses on

intersample relationships (scaling 1) or interspecies correla-

tions (scaling 2). For instance, in scaling 1, the distances

between objects are an approximation of their Euclidean

distances in the multidimensional space, but this approx-

imation is not valid if scaling 2 is chosen (Table 2).

Projecting an object at a right angle on a species arrow in

the ordination diagram approximates the position of the

Table 2. Interpretation of ordination diagrams

Linear methods (PCA, RDA)

Scaling 1 Scaling 2
PCA, RDA RDA

Samples Species ENV NENV Focus on sample (rows) distance Focus on species (columns) correlation
p

Euclidean distances among samples –p
– Linear correlations among speciesp
Marginal effects of ENV on ordination scores Correlations among ENVp
Euclidean distance between sample classes –p p

Abundance values in species datap p
– Values of ENV in the samplesp p
Membership of samples in the classesp p

Linear correlations between species and ENVp p
Mean species abundance within classes of nominal ENVp p
– Average of ENV within classes

Unimodal methods (CA, CCA)

Focus on sample (rows) distance and Hill’s scaling Focus on species (columns) distancesCA, CCA CCA

p
Turnover distances among samples w2 distances between samplesp
- w2 distances among species distributionsp
Marginal effects of ENV Correlations among ENVp
Turnover distances between sample classes w2 distances between sample classesp p
Relative abundances of the species table Relative abundances of the species tablep p
– Values of ENV in the samplesp p

Membership of samples in the classesp p
Weighted averages – the species optima in respect to particular ENVp p

Relative total abundances in the sample classesp p
– ENV averages within sample classes

The interpretation of ordination diagrams depends on the focus of the study, because sample scores are rescaled as a function of the scaling choice.

Approximate relationships between and among the different elements represented in biplots and triplots as species (represented as dots or arrows),

samples (dots), environmental variables (ENV; arrows), and nominal (qualitative) environmental variables (NENV; dots). A meaningless interpretation

(‘‘–’’) happens when the suggested comparison is not optimal because of inappropriate scaling of the ordination scores. Adapted from ter Braak (1994);

Leps & Smilauer (1999); ter Braak & Smilauer (2002).
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object along that species descriptor. The length of the species

descriptor indicates its contribution to the formation of the

ordination space. For correlation biplots, the length of the

orthogonal projection of a species arrow on the axes

approximates its SD on the respective axes. Angles between

species arrows reflect their correlations, e.g. putative inter-

actions between species (scaling 2). An erroneous interpre-

tation of the biplot would be to use the proximity of an

object point and the tip of a species arrow to deduce a

relationship between them. Indeed, only right-angle projec-

tions of samples onto species arrows are correct to derive

approximated species abundance in the samples.

PCA should generally be used when the objects (sites or

samples) cover very short gradients, i.e. when the same

species are mostly identified everywhere in the study area

(i.e., when samples mostly differ in species abundances), and

when species linearly respond to environmental gradients.

Because those conditions are often not met in ecological

studies, other multivariate approaches have been progres-

sively preferred over PCA (as also suggested by Table 1) such

as correspondence analysis or multidimensional scaling.

PCA is successful when most of the variance is accounted

for by the largest (generally the first two or three) compo-

nents. The amount of variance accounted for by each

principal component is given by its ‘eigenvalue.’ The math-

ematical description of eigenvalue calculation steps goes

beyond the aim of the present review but can be found in

most linear algebra manuals. Eigenvalues derived from a

PCA are generally considered to be significant when their

values are larger than the average of all eigenvalues (Le-

gendre & Legendre, 1998). The cumulative percentage of

variance accounted for by the largest components indicates

how much proportion of the total variance is depicted by

the actual ordination. High absolute correlation values

between the synthetic variables (principal components) and

the original variables are useful to identify which variables

mainly contribute to the variation in the data set, and this is

referred to as the loading of the variables on a given axis.

However, because the synthetic and original variables are

linearly correlated (i.e. they are not independent), standard

tests to determine the statistical significance of the correla-

tions between them cannot be used.

Principal coordinate analysis (PCoA)

The technique is more rarely used by microbial ecologists

(Table 1), despite its usefulness at reducing and representing

patterns present in distance matrices displaying dissimila-

rities among objects (Gower, 1966). Its objectives are very

similar to those of PCA in that it uses a linear (Euclidean)

mapping of the distance or dissimilarities between objects

onto the ordination space (i.e. projection in a Cartesian

space), and the algorithm attempts to explain most of the

variance in the original data set. In microbial ecology, PCoA

has been used, for instance, to test whether virulence profiles

(i.e. presence or absence of specific genes) arising from

pathogenic strains could differentiate either healthy or

contaminated hosts (Chapman et al., 2006), or to determine

whether PCoA axes could separate groups of Staphylococcus

aureus isolates into bovine and human hosts when genetic

relationships among them had been established by random

amplified polymorphic DNA-PCR analysis (Reinoso et al.,

2004).

As opposed to PCA, PCoA works with any dissimilarity

measure and so specific association coefficients that better

deal with the problem of the presence of many double zeros

in data sets can be surmounted. Moreover, PCoA does not

provide a direct link between the components and the

original variables and so the interpretation of variable

contribution may be more difficult. This is because PCoA

components, instead of being linear combinations of the

original variables as in PCA, are complex functions of the

original variables depending on the selected dissimilarity

measure. Besides, the non-Euclidean nature of some dis-

tance measures does not allow for a full representation of the

extracted variation into a Euclidean ordination space. In

that case, the non-Euclidean variation cannot be represented

and the percent of total variance cannot be computed with

exactness. The choice of the dissimilarity measure is thus

of great importance, and subsequent transformation of the

data to correct for negative eigenvalues is sometimes neces-

sary (see Legendre & Legendre, 1998, section 9.2.4. for how

to correct for such negative eigenvalues).

Objects are represented as points in the ordination space.

Eigenvalues are also used here to measure how much

variance is accounted for by the largest synthetic variables

on each PCoA synthetic axis. Although there is no direct,

linear relationship between the components and the original

variables, it is still possible to correlate object scores on the

main axis (or axes) with the original variables to assess their

contribution to the ordination.

Correspondence analysis (CA)

A basic question that ecologists may want to address when

facing a multidimensional table of sites (or samples) by

species is whether certain species occur at specific sites, as a

measure of their ecological preferences. CA has generally

been used in microbial ecology to determine whether

patterns in microbial OTU distribution could reflect differ-

entiation in community composition as a function of

seasons, geographic origin, or habitat structure (Olapade

et al., 2005; Edwards et al., 2006a, b; Kent et al., 2007). The

overall aim of the method is to compare the correspondence

between samples and species from a table of counted data

(or any dimensionally homogenous table) and to represent
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it in a reduced ordination space (Hill, 1974). Noticeably,

instead of maximizing the amount of variance explained by

the ordination, CA maximizes the correspondence between

species scores and sample scores. Several algorithms exist

and the most commonly described one is reciprocal aver-

aging, which consists of (1) assigning arbitrary numbers to

all species in the table (these are the initial species scores),

(2) for each sample, a sample score is then determined as a

weighted average of all species scores (this thus takes into

account the abundance of each species at the site and the

previously determined species scores), (3) for each species, a

new species score is then calculated as the weighted average

of all the sample scores, (4) both species scores and sample

scores are standardized again to obtain a mean of zero and

a SD of one, and (5) steps two to four are repeated until

species and site scores converge towards stable solutions in

successive iterations (Hill, 1974). The overall table variance

(inertia) based on w2 distances is decomposed into succes-

sive components that are uncorrelated to each other, as in

the PCA or PCoA procedures. For each axis, the overall

correspondence between species scores and sample scores is

summarized by an eigenvalue, and the latter is thus equiva-

lent to a correlation coefficient between species scores and

sample scores (Gauch, 1982).

The technique is popular among ecologists because CA is

particularly recommended when species display unimodal

(bell shaped or Gaussian) relationships with environmental

gradients (ter Braak, 1985), as it happens when a species

favors specific values of a given environmental variable,

which is revealed by a peak of abundance or presence when

the optimal conditions are met (this can be visualized by

plotting species abundance against the environmental para-

meter). The unimodal model that supports the concept of

ecological niches has also been shown to be of the right

order of complexity for the ordination of most ecological

data (ter Braak & Prentice, 1988). Although examples of

unimodal distributions along variables or environmental

gradients exist with macroorganisms (ter Braak, 1985), the

shape of the distribution of the abundance of microbial

species along environmental parameters or gradients has not

been extensively investigated (but see Ramette & Tiedje,

2007a, b). This may arise from the fact that, in microbial

surveys, environmental sampling is mostly performed

blindly in relation to environmental heterogeneity, and the

abundance of target species is generally determined without

systematically analyzing associated environmental para-

meters. Finally, another important feature of CA for micro-

bial ecologists is that the reciprocal averaging algorithm

disregards species double absences because the relationships

between rows and columns of the table are quantified using

the w2 coefficient that excludes double absences (Legendre &

Legendre, 1998).

Both samples and taxa are often jointly depicted in the

ordination space (i.e. joint plot; Fig. 2b), where the center of

inertia (centroid) of their scores corresponds to the zero for

all axes. Depending on the choice of the scaling type, either

the ordination of rows (samples) or the columns (species) is

meaningful, and can be interpreted as an approximation of

the w2 distances between samples or species, respectively (see

Table 2 for more details about interpretation). Sample

points that are close to each other are similar with regard to

the pattern of relative frequencies across species. It is

important to remember that in such joint plots, either

distances between sample points or distances between

species points can be interpreted, but not the distances

between sample and species points. Indeed, these distances

are not simple Euclidean distances computed from the

relative row or column frequencies, but rather they are

0

0

Axis I (PCA)

(b)(a)

0

0

Axis I (CA)

A
xi

s 
II 

(P
C

A
)

A
xi

s 
II 

(C
A

)

Fig. 2. Ordination diagrams in two dimensions. (a) In a PCA biplot representation, samples are represented by dots and species by arrows. The arrows

point in the direction of maximal variation in the species abundances, and their lengths are proportional to their maximal rate of change. Long arrows

correspond to species contributing more to the data set variation. Right-angle projection of a sample dot on a species arrow gives approximate species

abundance in the sample. (b) In a CA joint plot representation focusing on species distance, both samples and species are depicted as dots. Species dots

correspond to the center of gravity (inertia) of the samples where they mostly occur. Distances between sample and species points give an indication of

the probability of species composition in samples (see Table 2 for more details about diagram interpretation).
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weighted distances. The proximity between sample and

species points in the plot can thus be understood as a

probability of species occurrence or of a high abundance in

the samples in the vicinity of a species point.

In scaling 2 (i.e. focus on species), species points found at

the center of the ordination space should be carefully

checked with the raw data to clarify whether the species

ordination really corresponds to the optimal abundance or

occurrence of the species, or whether the species is just badly

represented by the main axes, as it is the case when other

axes are more appropriate to represent the species. Rare

species contribute little to the total table inertia (i.e. they

only play a minor role in the overall table variance) and are

hence positioned at the edges of the plot, next to the site(s)

where they occur. In general, only the species points found

away from the ordination center and not close to the edges

of the ordination have more chances to be related to the

ordination axes, i.e. to contribute to the overall variance

(Legendre & Legendre, 1998).

When the species composition of the sites progressively

changes along the environmental gradient, sample positions

may appear in the ordination plot as nonlinear configura-

tions called ‘arch’ (Gauch, 1982) (or ‘horseshoe’ in the case

of PCA), which may impair further ecological interpreta-

tion. In CA, the arch effect may be mathematically produced

as a side-effect of the CA procedure that tries to obtain axes

that both maximally separate species and that are uncorre-

lated to each other (ter Braak, 1987): when the first axis

suffices to correctly order the sites and species, a second axis

(uncorrelated with the former) can be obtained by folding

the first axis in the middle and bringing its extremities

together, thus resulting in an arch configuration. Further

axes can be obtained by further dividing and folding the first

axis into segments (Legendre & Legendre, 1998). To remove

the arch effect in CA, a mathematical procedure, detrending,

is used to flatten the distribution of the sites along the first

CA axis without changing their ordination on that axis. The

approach is then designated as detrended correspondence

analysis (DCA). The review of different detrending algo-

rithms such as using segments or polynomials goes beyond

the scope of this review, but more information can be

obtained in (ter Braak & Prentice, 1988; Legendre &

Legendre, 1998). Some authors have also argued that the

arch effect may not be an artifact but an expected feature of

the analysis, especially when species turnover is high along

environmental gradients (James & McCulloch, 1990). In

that case, if the samples are meaningfully positioned along

the arch, the ordination should be accepted as a valid result.

Nonmetric multidimensional scaling (NMDS)

NMDS is generally efficient at identifying underlying gradi-

ents and at representing relationships based on various types

of distance measures. Not surprisingly, NMDS has found an

increasing number of applications in microbial ecology

(Table 1). The technique has been generally applied to

identify patterns among multiple samples that were sub-

jected to molecular fingerprinting techniques. For instance,

NMDS was used to analyze and to compare the reproduci-

bility of various fingerprinting techniques such as ribosomal

internal spacer analysis (RISA), terminal fragment length

polymorphism (T-RFLP), and denaturing gradient gel elec-

trophoresis (DGGE) between different laboratories when

applied to samples chosen from a salinity gradient (Casa-

mayor et al., 2002). NMDS was also used to compare

diversity patterns of microbial communities (as determined

by length heterogeneity-PCR) from samples undergoing

different land management practices (Mills et al., 2006).

Another example is the analysis of the bacterioplankton

communities of four shallow eutrophic lakes that differed in

nutrient load and food web structure using DGGE profiling,

so as to determine the specificity of community signatures in

each lake (Van der Gucht et al., 2005).

The NMDS algorithm ranks distances between objects,

and uses these ranks to map the objects nonlinearly onto a

simplified, two-dimensional ordination space so as to pre-

serve their ranked differences, and not the original distances

(Shepard, 1966). The procedure works as follows: the objects

are first placed randomly in the ordination space (the desired

number of dimensions has to be defined a priori), and their

distances in this initial configuration are compared by

monotonic regression with the distances in the original data

matrix based on a stress function (values between 0 and 1).

The latter indicates how different the ranks on the ordina-

tion configuration are from the ranks in the original distance

matrix. Several iterations of the NMDS procedure are

generally implemented so as to obtain the lowest stress value

possible (i.e. the best goodness of fit) based on different

random initial positions of the objects in the ordination

space. For sample-by-species tables, simulations have shown

that before applying NMDS, a standardization of each

species by its maximum abundance, followed by the compu-

tation of distances between samples based on the Steinhaus

or Kulczinski similarity coefficients yielded informative

ordination results (Legendre & Legendre, 1998, p. 449).

In NMDS ordination, the proximity between objects

corresponds to their similarity, but the ordination distances

do not correspond to the original distances among objects.

Because NMDS preserves the order of objects, NMDS

ordination axes can be freely rescaled, rotated, or inverted,

as needed for a better visualization or interpretation.

Because of the iterative procedure, NMDS is more computer

intensive than eigenanalyses such as PCoA, PCA, or CA.

However, constant improvement in computing power

makes this limitation less of a problem for small- to

medium-sized matrices.
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Testing for significant differences between
groups

In addition to representing objects in an ordination plot or

as clusters of similar objects, another objective may be to test

whether differences between groups of objects (rows) in a

multivariate table are significantly different based on the set

of their attributes (columns), i.e. to test whether similarities

within groups are higher than those between groups. Here,

nonparametric multivariate ANOVA (NPMANOVA) and analysis

of similarities (ANOSIM), which are commonly found in

standard statistical packages, are briefly reviewed. It is also

possible to use canonical analyses (‘Testing for significant

differences between groups’) to test for significant differ-

ences between groups of objects. These statistical tests,

however, must not be used to assess the statistical difference

among groups that were derived from a previous cluster

analysis on the same variables because, under those condi-

tions, the two approaches would not be independent from

each other. Indeed, the groups derived from cluster analysis

(which are themselves made to fit the data) would then be

used for testing the null hypothesis that there is no differ-

ence among the groups. This hypothesis would then not be

independent of the data used to test it, and would nearly

always produce significant differences between the groups

even if it is not the case (Legendre & Legendre, 1998).

NPMANOVA

The method can be used to test for significant differences

between the means of two or more groups of multivariate,

quantitative data (Anderson, 2001). The null hypothesis of

equality of means is tested based on Wilks’ L (lambda)

statistic, which replaces the F-test normally used in uni-

variate ANOVA. When only two groups are compared, Ho-

telling’s T2 test is more appropriate. The latter test can also

be used, as a post hoc test, to assess the significance of

pairwise comparisons statistically between groups, following

an overall significant Wilks’ test. Significance is generally

computed by permutation of group membership, with

several thousand replicates, alleviating concerns about multi-

normality of the data. Because multiple pairwise compar-

isons are made, the significance level of the pairwise

Hotelling’s tests needs, however, to be corrected. With the

Bonferroni correction, for instance, the P-value usually

chosen for significant differences between groups (i.e. 0.05)

is replaced by a smaller P-value calculated by dividing the

original P-value by the total number of pairwise compar-

isons that are performed. For instance, for 10 pairwise

comparisons, the corrected P-value becomes 0.005. This

correction is often judged to be rather conservative as

it leads to significance for fewer pairwise comparisons

(Legendre & Legendre, 1998).

ANOSIM

This nonparametric procedure tests for significant differ-

ence between two or more groups, based on any distance

measure (Clarke, 1993). It compares the ranks of distances

between groups with ranks of distances within groups. The

means of those two types of ranks are compared, and the

resulting R test statistic measures whether separation of

community structure is found (R = 1), or whether no

separation occurs (R = 0). R values 4 0.75 are commonly

interpreted as well separated, R4 0.5 as separated, but

overlapping, and Ro 0.25 as barely separable (Clarke &

Gorley, 2001). The test makes fewer assumptions than

MANOVA because it is based on the ranks of distances, and it

is often used for sample-by-species tables, where groups of

samples are compared. All groups should have comparable

within-group dispersion to avoid finding falsely significant

results (Legendre & Legendre, 1998).

Applications in microbial ecology include testing for

spatial differences, temporal changes, or environmental

impacts on microbial assemblages. For instance, Kent et al.

(2007) determined whether bacterial communities from the

same lake were more similar in composition to each other

than to communities in different lakes. The bacterial com-

position and diversity of samples from different geographic

origins, habitats, and avian hosts were also compared using

ANOSIM based on a length heterogeneity (LH)-PCR (Bisson

et al., 2007). Another example is the application of ANOSIM

to terminal restriction fragment length polymorphism

(T-RFLP)-generated data to determine the impact of B and

NaCl on soil microbial community structure in the wheat

rhizosphere (Nelson & Mele, 2007).

Environmental interpretation

Exploratory analyses may reveal the existence of clusters or

groups of objects in a data set. When a supplementary table

or matrix of environmental variables is available for those

objects, it is then possible to examine whether the observed

patterns are related to environmental gradients. Typical

objectives may be, for instance, to reveal the existence of a

relationship between community structure and habitat

heterogeneity, between community structure and spatial

distance, or to identify the main variables affecting bacterial

communities when a large set of environmental variables has

been conjointly collected.

The significance of the relationships between species

patterns and environmental variables can generally be

assessed by permutation techniques such as Monte Carlo

permutation tests, which infer statistical properties from the

data themselves. The order of data (generally the rows of one

matrix) is permuted and the relationships between the

observed patterns and environmental variables can be
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assessed for randomness. This approach is particularly

suitable when variables do not follow a normal distribution

(which is often the case with environmental or ecological

data), as generally required by traditional statistical proce-

dures (Legendre & Legendre, 1998).

Indirect gradient analyses

Ordination axes or clusters can be interpreted based on

additional environmental variables (i.e. variables not used in

the ordination or cluster analysis) that provide ecological

knowledge about the studied sites or species ecological

characteristics. When using exploratory ordination ap-

proaches on a sample-by-species table, samples are displayed

along the axes of main variation in species composition.

These axes are thus constructed without reference to envir-

onmental characteristics, but they can be hypothesized to

represent underlying environmental gradients (e.g. environ-

mental parameters, spatial or temporal variables, chemical

gradients), which need to be subsequently identified. Such

an approach is designated as ‘indirect,’ because synthetic

variables (i.e. the axes) are first constructed and thereafter

related to environmental variation. For instance, the scores

of the objects on PCA or CA main components (axes) can be

further related by standard statistical procedures (e.g. ANOVA,

regression analysis) to environmental variables. Likewise, in

PCoA or NMDS, it is possible to statistically compare the

ranks obtained by the objects on each axis and the ranks

of those objects on additional environmental variables,

using Spearman’s rank correlation coefficients (Legendre &

Legendre, 1998).

A convenient method of interpretation is to represent the

additional environmental variables as fitted arrows directly

on the ordination diagram. These variables are added to the

existing ordination by linear regression of their values onto

the existing ordination axes. This procedure is implemented

in various statistical packages (e.g. CANOCO, R). Hence, it is

possible to assess the direction and magnitude of the most

rapid change in the environmental variables and to deter-

mine whether they correspond to the observed patterns

among objects (Oksanen, 2007). In cluster analysis, the

magnitude of the absolute correlation value between an

ordered clustering solution and environmental variables

may also provide clues about putative environmental causes

for the observed discontinuities in the data set.

Another convenient way of displaying additional infor-

mation to help interpret the ordination is to use site symbols

whose sizes are proportional to the values of the additional

variable. Hence, one can visually assess whether the ordina-

tion of objects (samples, sites) matches specific trends in the

additional variable. This strategy was, for instance, used on

NMDS ordination plots inferred from DGGE profiles on

which the values of five additional environmental variables

were individually mapped as proportional circles in order

to identify the main environmental factors related to the

bacterial community structure in four freshwater lakes (Van

der Gucht et al., 2005).

Direct gradient analyses (constrained analyses)

In constrained (canonical) ordination analyses, only the

variation in the species table that can be explained by the

environmental variables is displayed and analyzed, and not

all the variation in the species table. Gradients are supposed

to be known and represented by the measured variables or

their combinations, while species abundance or occurrence

is considered to be a response to those gradients. Con-

strained ordinations are mostly based on multivariate linear

models relating principal axes to the observed environmen-

tal variables, and the different techniques depend on data

types (matrix or table), and on the hypothesis underlying

species distribution in the gradients (i.e. linear or unim-

odal). Their aim is to find the best mathematical relation-

ships between species composition and the measured

environmental variables, and to assess whether, statistically,

such a relationship could have been produced due to chance

alone using permutation tests. The resulting ordination

diagrams display samples, species, and environmental vari-

ables so that ‘fitted species� samples’ and ‘species�
environment’ relationships can be derived as easily as

possible from angles between arrows or distances between

points and arrows (Table 2).

Redundancy analysis (RDA)

In microbial ecology, RDA has been applied, for instance, to

test whether the occurrence of biocontrol bacteria with

specific carbon source utilization profiles was related to

their origin from different root samples (Folman et al.,

2003), to determine which environmental factors were the

most significant to explain variation in microbial commu-

nity composition in undisturbed native prairies and

cropped agricultural field (McKinley et al., 2005), to exam-

ine the effects of sampling locations (longitude, latitude,

altitude) on genetic diversity of plant pathogenic bacteria

(Kolliker et al., 2006), or to assess the influence of season,

farm management, and soil chemical, physical, and biologi-

cal properties on nitrogen fluxes and bacterial community

structure (Cookson et al., 2006).

This method can be considered as an extension of PCA in

which the main axes (components) are constrained to be

linear combinations of the environmental variables (Rao,

1964). Two tables are then necessary: one for the species data

(‘dependent’ variables) and one for the environmental

variables (‘independent’ variables). Multiple linear regres-

sions are used to ‘explain’ variation between independent
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and dependent variables, and these calculations are per-

formed within the iterative procedure to find the best

ordination of the objects. The interest of such an approach

is to represent not only the main patterns of species

variation as much as they can be explained by the measured

environmental variables but also to display correlation

coefficients between each species and each environmental

variable in the data set.

When the data set consists of a matrix of distances

between objects, distance-based RDA (db-RDA; Legendre &

Anderson, 1999) can be applied to determine how well

additional environmental parameters can explain the varia-

tion among objects in the matrix. The technique first applies

a PCoA on the distance matrix to convert it back to a

rectangular table containing rows of objects by columns of

PCoA coordinates. Those new, uncorrelated coordinates

thus correspond to synthetic ‘species’ variables that are then

related to additional environmental parameters using a

classical RDA. For instance, db-RDA was successfully used

to determine how the variation in matrices of genomic

distances among environmental strains could be explained

by factors such as soil parameters, host plant species, and

spatial scale, each factor being taken alone or in combina-

tion (Ramette & Tiedje, 2007b).

Most software outputs provide the total variation in

species composition as explained by the environmental axes,

the cumulative percentage of variance of the species–envir-

onment relationship, and the overall statistical significance

of the relationships between the species and environmental

tables. RDA can be represented by a triplot of samples

(dots), species (arrows), and environmental variables (ar-

rows for quantitative variables and dots for each level of

qualitative or nominal variables), or by any combinations

thereof (i.e. biplots) (ter Braak, 1994). Depending on the

scaling chosen, i.e. whether the analysis mainly focuses on

intersample relationships or interspecies correlations, the

interpretation of the relationships between samples, species,

and environmental variables differs (Table 2).

Canonical correspondence analysis (CCA)

The approach is very similar to that of RDA, except that

CCA is based on unimodal species–environment relation-

ships whereas RDA is based on linear models (ter Braak,

1986). CCA can be considered as the constrained form of CA

in which the axes are linear combinations of the environ-

mental variables. CCA uses the unimodal model to model

species response to the environmental variation as a math-

ematical simplification to enable the estimation of a large

number of parameters and the identification of a small

number of ordination axes. This species model seems,

however, to be robust even when some species display

bimodal responses, unequal ranges, or unequal maxima

along environmental gradients, and the technique is thus

considered to be the method of choice by many ecologists

(ter Braak & Smilauer, 2002). It is therefore particularly

adapted for the environmental interpretation of tables of

abundance and occurrence of species, and accommodates

well the absence of species at certain sites in the data set.

CCA is sensitive to rare species that occur in species-poor

samples, and down-weighting of such species help reduce

the problem (Legendre & Legendre, 1998). Software outputs

are very similar to those of RDA and as for RDA, triplot and

biplot representations and interpretation depend on the

choice of the scaling type (Table 2). The same interpretation

of the relationships between sample and species points is

found in CA and CCA. Right-angle projection of these

points on the environmental arrows leads to the correct

approximation of the ranking of the points along environ-

mental variables.

CCA has been used in an increasing number of publica-

tions dealing with microbial assemblages in marine and soil

ecosystems. Typical questions that are addressed concern the

identification of environmental factors that influence the

diversity of bacterial assemblages among large sets of

candidate environmental parameters measured for the same

samples, when the diversity is determined by culture-

independent, genetic fingerprinting techniques such as

automated ribosomal intergenic spacer analysis (ARISA)

(Yannarell & Triplett, 2005), DGGE (Salles et al., 2004; Sapp

et al., 2007), or T-RFLP (Córdova-Kreylos et al., 2006; Klaus

et al., 2007). Another interest in the technique comes from

the possibility of determining the specific species or OTUs

that respond to particular environmental variables, and as

such that can be identified as candidate indicator species.

Those species can then be subjected to further experiments

so as to confirm their status of indicator species. For

instance, the relationships, as determined by CCA, between

bacterial community composition and 11 environmental

variables for 30 lakes in Wisconsin, revealed that patterns in

bacterial communities were best explained by regional- and

landscape-level factors, as well as by specific seasons, pH,

and water clarity (Yannarell & Triplett, 2005). CCA was also

successfully used to demonstrate that former land use

management affected the composition of the targeted soil

microbial community (Burkholderia) to a larger extent than

did plant species (Salles et al., 2004). Another interesting

example in the marine ecosystem is the study of the

interactions between various abiotic parameters and phyto-

plankton community data (biotic parameter) to explain

bacterioplankton dynamics in the North Sea and the sub-

sequent identification of the bacterial phylotypes respond-

ing more specifically to the factors (Sapp et al., 2007).

Another example of using CCA to identify some microbial

communities as pollution indicators can be found in

(Córdova-Kreylos et al., 2006).
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Partial ordination, variation partitioning

When the effects of a particular environmental variable need

to be tested after elimination of possible effects due to other

(environmental) variables, partial ordination may be used

(e.g. partial CCA, partial RDA). Such an approach is also

referred to as ‘partialling out’ or ‘controlling for’ the effects

of specific variables, which are specified as covariables in the

constrained analysis. For instance, in a study dealing with

the effects of environmental and pollutant variables on

microbial communities, Córdova-Kreylos et al. (2006) ob-

served that variation in microbial communities was more

due to spatial variation than to pollutants. The use of partial

CCA to account for spatial variation in the biological data

set revealed that metals had a greater effect on microbial

community composition than organic pollutants.

This idea of controlling for the effects of specific variables

can be extended to evaluate the effects of all the different sets

(factors) of environmental variables present in a study so as

to determine the relative contribution (amount of variation

explained) and significance of each variable set on the total

biological variance. The so-called variation partitioning

procedure (Borcard et al., 1992) partitions the total variance

of the species table into the respective contribution of each

set of environmental variables and into their covariations

using both standard and partial constrained ordinations

(Fig. 3). Two methods have traditionally been used to

partition the variation of community composition data, i.e.

canonical partitioning and regression on distance matrices

based on Mantel tests (Legendre & Legendre, 1998). The

canonical approach has been shown to be more appropriate

to partition the b diversity correctly among sites and to test

hypotheses about the origin and maintenance of its varia-

tion (Legendre et al., 2005).

Applications of variation partitioning in microbial ecol-

ogy include, for instance, the study by Ramette & Tiedje

(2007b), which applied the technique in the context of RDA

to disentangle the effects of space, environmental soil

parameters, and plant species on Burkholderia community

abundance and diversity. By quantifying the amount of

biological variation that is left unexplained when all envir-

onmental variables had been considered, the study suggested

that much less of the biological variation could be predicted

at the intraspecific level compared with higher taxonomic

levels. Another interesting example is the study of seasonal

changes in bacterial community composition in shallow

eutrophic lakes, in which top-down regulation (grazers) of

bacterial community composition was examined after ac-

counting for bottom-up regulation (resources) (Muylaert

et al., 2002).

Linear discriminant analysis (LDA)

When groups or clusters of objects have been obtained by

exploratory analyses for instance, LDA can be used to

identify linear combinations of additional environmental

variables that best discriminate those groups. In that respect,

LDA can be seen as an extension of MANOVA for two or more

groups, in which environmental variables that specifically

explain the grouping of objects are identified. Another

application consists of assigning new objects to previously

defined groups for prediction or classification purposes

based on the calculated discriminant function. For instance,

Fuhrman et al. (2006) used the technique to evidence the

existence of repeatable temporal patterns in the community

composition of marine bacterioplankton over 4.5 years.

The technique is mostly recommended for multinormal

data for which attribute data are linearly related and for

which variances and covariances of the variables are good

summary statistics. A visual representation of LDA can be

performed, and in the resulting ordination, the axes are then

the discriminant functions. The distances between objects,

which correspond to Mahalanobis distances that take into

account the correlations among descriptors (Mahalanobis,

1936), are independent of the scale of measurement of the

various descriptors and are mostly used to compare groups of

sites or objects with each other (Legendre & Legendre, 1998).

Selection of variables in regression models

In the previous constrained methods where linear combina-

tions of environmental (explanatory) variables are used, the

inclusion of too many explanatory variables to describe

species distribution may lead to difficult ecological inter-

pretations and to lower predictability of the models, due to

1 2 3

4

(a) (b)

Fig. 3. Partitioning biological variation into the effects of two factors.

The large rectangle represents the total variation in the biological data

table, which is partitioned among two sets of explanatory variables (a, b).

Fraction 4 shows the unexplained part of the biological variation.

Fractions 1 and 3 are obtained by partial constrained ordination or partial

regression, and can be tested for significance. For instance, fraction 1

corresponds to the amount of biological variation that can be exclusively

explained by (a) effects when (b) effects are taken into consideration (i.e.,

when b is considered as a covariable). Fraction 2 [i.e., variation indiffer-

ently attributed to (a) and (b) or a covariation of (a) and (b)] is obtained by

subtracting fractions 1 and 3 from the total explained variance, and

cannot be tested for statistical significance.
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intercorrelations among the explanatory variables (i.e. mul-

ticollinearity). Multicollinearity has the effects of inflating

the variance of the regression coefficients in the models,

leading to reduced precision in the prediction of the

response variables (Legendre & Legendre, 1998). In order

to only include in the model the environmental variables

that mostly and significantly contribute to the variation of

the species table, automatic selection procedures (forward

selection, backward elimination, or stepwise selection) are

often used. The selection depends on whether the partial

correlation coefficients of the variables fall below a given

significance level, the latter being generally assessed by

Monte Carlo permutation tests.

In forward selection, the construction of the regression

model starts with the variable that explains the most

variation in the dependent variables (generally the species

table). What remains of the biological variation to explain

after fitting the first environmental variable (i.e. of the

residual variation) is then used to choose the second

environmental variable. The process of selection goes on

until no more variables significantly explain the residual

variation. In backward elimination, the construction of

the regression model starts with all environmental variables

and the least significant ones are excluded from the

model, one at a time until a group of only ‘significant’

variables is obtained. To take advantage of the two ap-

proaches, stepwise regression mixes forward selection with

backward elimination by performing a forward selection,

but excluding the variables that no longer become signifi-

cant after the introduction of new variables into the regres-

sion model.

Despite the clear advantages of these variable selection

strategies, most authors still caution that researchers should

not blindly rely on automatic selection procedures to choose

the relevant environmental variables in regression models

because ecologically irrelevant models may also be obtained,

or other variable combinations could also yield better

models to explain species variation (Legendre & Legendre,

1998). Noticeably, the three selection strategies do not

necessarily yield the same set of significant environmental

variables, because they may be seen as heuristic methods

to identify a significant model when all possible combina-

tions of significant models are not possible to evaluate

computationally. Another approach is thus to combine

variables into biologically or environmentally meaningful

sets, instead of relying on automatic selection procedures,

and then to examine all possible regression models

based on the reduced number of variable sets (James &

McCulloch, 1990). For instance, before applying variation

partitioning to different groups of variables representing

spatial scales (15 variables), host species (four variables),

and soil parameters (10 variables), Ramette & Tiedje

(2007b) applied forward selection within each group

to determine the variables significantly explaining the

variation of microbial diversity and abundance at different

taxonomic levels.

Mantel test

This test is appropriate to compare two matrices that were

calculated for the same objects but that are based on two

independent data sets (e.g. a species dissimilarity matrix and

an environmental dissimilarity matrix for the same samples)

(Mantel, 1967). It calculates the correlation coefficient between

corresponding positions in the two matrices, and assesses its

significance based on permutations of the objects in one of the

matrices. In microbial ecology, the Mantel test has become

popular especially for testing the relationships between mole-

cular and geographic distance matrixes for a same set of

organisms or to relate community diversity to environmental

heterogeneity (e.g., Parker & Spoerke, 1998; Cho & Tiedje,

2000; Horner-Devine et al., 2004; Scortichini et al., 2006).

Another interesting application, called a goodness-of-fit

Mantel test, corresponds to the case where one matrix is

recoded to represent ecological hypotheses to be tested on

the other matrix (Legendre & Legendre, 1998). For instance,

if a matrix of molecular data is available for a set of strains

and their habitat of origin is known, it is possible to

determine whether the genetic distances are related to

habitat type using the (goodness-of-fit) Mantel test. The

matrix representing the ecological hypotheses should then

consist of a series of 1 and 0 for isolates found in the same or

different habitats, respectively. The Mantel test can thus

determine whether the posited habitat distribution can

significantly explain the structure of the molecular matrix.

This test cannot be used, however, to test a hypothesis

matrix that would be based on the results of a cluster

analysis, for instance. Indeed, as indicated in ‘Testing for

significant differences between groups,’ there would be a lack

of independence between the hypothesis being tested and

the data used to test the hypothesis.

Note that the Mantel test is also used to compute Mantel

correlograms, which are often found in biogeographical

studies (e.g. Mantel correlograms are usually used to detect

spatial structure in species assemblages based on grouping of

the response data into specific spatial distance classes).

Mantel tests are then applied to each group in order to detect

significant correlations at a given scale, i.e. the scales at which

the data are autocorrelated (Legendre & Legendre, 1998).

Practical considerations

Choice of an ordination method (Fig. 4)

Linear methods such as multiple regression, LDA, PCA, or

RDA are generally meant to be applied to continuous data.
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Their use is thus sometimes limited in Ecology where species

generally display nonlinear, nonmonotone responses to en-

vironmental variables (ter Braak & Prentice, 1988; Legendre

& Legendre, 1998). Different approaches can be undertaken

to choose the most appropriate ecological model. Plot of

species abundances along ordination axes or explanatory

variables (also called coenocline) may help visualize whether

species responses are linear or unimodal (ter Braak &

Smilauer, 2002). Besides, the choice of linear (PCA, RDA)

or unimodal (CA, CCA) species response models can be

made on the basis of whether the underlying gradient length

is short or long, respectively. Gradient length, as measured in

SD units along the first ordination axis, can be estimated by

DCA for unconstrained ordination and by detrended CCA

(DCCA) for constrained ordination in, e.g. the software

CANOCO (ter Braak & Smilauer, 2002). It is recommended

to use linear methods when the gradient length is o 3 SD,

unimodal methods when it is 4 4 SD, and any method for

intermediate gradient lengths (ter Braak & Smilauer, 2002).

Data type is also another important criterion. To repre-

sent absolute abundance values, linear-based methods

(PCA, RDA), which produce weighted summations, are

appropriate, whereas unimodal techniques (CCA, CA) are

rather used to model relative abundances (because species

scores are weighted averages of the samples scores, and vice

versa), i.e. they model the dissimilarities between samples (b
diversity). They also accommodate well the presence of

many zeros in the species table, in contrast to linear-based

methods for which double zeros lead to inadequate esti-

mates of sample distances.

Cluster analysis is the method of choice when relation-

ships between objects are expected to be discontinuous and

where defined categories or groups of objects are expected.

On the contrary, ordination would be more useful when the

variation between objects is posited to be continuous.

Although NMDS is more computer intensive than PCoA, it

is generally better at compressing the distance relationships

among objects into a few dimensions. This is because

NMDS can always lead to a Euclidean representation even

for non-Euclidean embeddable distances (Legendre & Le-

gendre, 1998). NMDS and PCoA can be compared using

Shepard diagrams to decide which technique better repre-

sents the original distances.

If one assumes that species do not have a linear response

to environmental gradients, NMDS is more appropriate

than PCA. CA may also be an alternative to PCA when many

zeros populate the data set and one strong gradient is

present. With long ecological gradients, however, CA may

produce the arch effect that can be corrected for using DCA.

In terms of the underlying species model, the main differ-

ence between DCA and NMDS is that the former is based on

a specific model of species distributions (unimodal model),

while NMDS is not. Thus, DCA may be favored by ecologists

who assume that the niche theory better fits their data

set, while NMDS may be a method of choice if species

composition is determined by factors other than position

along a gradient (for instance if the habitat is known to be

fragmented).

In constrained and unconstrained ordinations, all species

are posited to react to different extents to the same compo-

site gradients of environmental variables, whereas in a

multiple regression approach, a different gradient could be

modeled for each species separately. Because most species do

not respond linearly to environmental gradients, fitting
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Fig. 4. Relationships between numerical methods.

Exploratory tools such as PCA, CA, PCoA, NMDS, or

cluster analysis can be applied to a sample-by-

species table to extract the main patterns of varia-

tion, to identify groups or clusters of samples, or

specific species interactions. Sample scores on the

main axes of variation can be related to variation in

environmental variables using indirect gradient

analyses. When a constrained analysis is desired (i.e.

direct gradient analysis), RDA, db-RDA, CCA, or

linear discriminant analysis can be used as extensions

of the unconstrained methods. Mantel tests are

appropriate to test the significance of the correlation

between two distance matrices (e.g. one based on

species data and the other on environmental vari-

ables). Raw data may be transformed, normalised or

standardised as appropriate before analysis.
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nonlinear models to individual species may be difficult,

especially when dealing with a huge data set. Constrained

ordinations thus provide a good summary of species–envir-

onment relationships and can be very successful in ecologi-

cal data analysis (ter Braak & Prentice, 1988). It is also useful

to note that RDA is very similar to MANOVA, but in contrast

to the latter, RDA allows the consideration of any number of

species (columns) (Legendre & Legendre, 1998).

Constrained and unconstrained (exploratory) methods

should be used in parallel (Fig. 4) because, with the former,

only the biological variation that can be explained by the

available environmental variables is represented on the main

axes, whereas with unconstrained methods, the highest

amount of variance is extracted from the biological data

alone and represented on a few axes. If the constrained and

unconstrained approaches yield the same ordination of the

samples (objects), it thus means that the measured environ-

mental variables explain most of the biological variation. In

order to compare the results of different ordinations, a

useful technique is Procrustes analysis (Gower, 1975), which

estimates the concordance of scores in two ordinations after

rotating, translating, and dilating them in order to obtain

the best fit. A permutation procedure can also be used to test

for the significance of the concordance between ordinations

or matrices (Peres-Neto & Jackson, 2001).

Cluster analysis and ordination techniques can be com-

bined to provide powerful visualization tools. For instance,

hierarchical clustering can help obtain a better interpreta-

tion of ordination diagrams (Fig. 5). Because ordination

diagrams represent most of the data set variation into a

dimensionally reduced space, some relationships among

objects can be distorted because only a few projection axes

are considered. The addition of linkage results obtained

from cluster analysis may help identify objects belonging

to the same clusters even if their relative position in the

ordination diagram is not ideal (Legendre & Legendre,

1998).

Ordination and diversity indices

The measurement of diversity is generally performed using

indices such as the Shannon or Simpson indices. The latter

are often applied to measure different components of the

diversity such as a, b, and g diversity, corresponding to

diversity within a particular site or ecosystem, to change in

species composition from site to site (i.e. species turnover),

and to the diversity at the landscape scale, respectively

(Whittaker, 1972). The ordination approach sounds similar,

in that variation among samples is compared based on their

within-sample composition in species assemblages, and so

some of the a and b diversity should be depicted on

ordination diagrams. Because diversity indices pool the

multispecies information into a single value for each ob-

servation, before comparing them, it is not surprising that

complex diversity patterns may not be identified sometimes.

For instance, Hartman & Widmer (2006) did not find

significant changes in soil bacterial communities submitted

to various soil managements when using diversity indices,

while community structures were shown to have changed

using community fingerprinting analysis.
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Fig. 5. Combination of ordination and clus-

ter analysis. On a same distance matrix,

NMDS or PCOA can be applied to represent

the major axes of variation among objects in

a two-dimensional space. The superimposi-

tion of the results of cluster analysis (primary

connections) onto the ordination diagram

can help identify the structure in the data set

as discontinuities (clusters) into a continuous

space (ordination). Adapted from Legendre &

Legendre (1998).

FEMS Microbiol Ecol 62 (2007) 142–160 c� 2007 Max Planck Society
Journal compilation c� 2007 Federation of European Microbiological Societies

Published by Blackwell Publishing Ltd.

157Multivariate analyses in microbial ecology



To obtain a consistency between ordination techniques

and diversity index measurements, two numerical strategies

have been proposed: for species occurrence data, the CA-

species richness strategy adapted for data set rich in rare

species, and the Nonsymmetric CA – Simpson strategy,

which is more appropriate for tables dominated by abun-

dant species (Pelissier et al., 2003). These strategies attribute

specific weights to the species data so that simple or

constrained ordinations of the new species table represent

the total inertia as a and b diversity, and would thus be

consistent with the measures obtained by common diversity

indices.

Misconceptions about multivariate analyses

It is essential to reiterate that multivariate statistical proce-

dures may suggest causes or factors, but investigators should

bear in mind that the synthetic variables, axes, or clusters

derived do not necessarily correspond to biological or

ecological entities in nature (James & McCulloch, 1990).

One should thus not overinterpret the data by relying on

unjustified causality, especially in the absence of real experi-

mentation. In theory, it would be necessary to validate the

inferences and models made about pattern formation and

putative causes by analyzing new data, but this is rarely

performed in practice. Moreover, whether the originally

collected data are typical of the situation to be described

is most of the time not even questioned.

Another common misconception is that multivariate

analyses alone can sort out all solutions of complex multi-

variate studies. Although exploratory analyses may help

reveal interesting patterns in data sets, the interpretation

and explanation of the observations ultimately rely on the

researcher’s hypotheses and previous knowledge of the

ecological situation. Microbial ecologists themselves need

to formulate ecologically sound hypotheses and test them.

Conclusions

Exciting questions in Ecology typically consist of determin-

ing whether community patterns are structured across space

or time, of explaining how those patterns can be related to

environmental heterogeneity, and of quantifying how much

still remains unexplained when all significant, measured

variables have been considered. Such questions can now

start to be addressed in microbial ecology because numerical

tools may help explore and test such ecological hypotheses.

These are indeed exciting times because even larger and

more complex databases are being created and in parallel,

computing power gradually becomes less of an issue. If

microbial ecologists want to test numerical methods, devel-

op new ecological theories, or validate existing ones for the

microbial case, access to diversity data and above all, to the

relevant associated environmental parameters, becomes a

central issue. It would thus be of great interest to make such

complex data sets publicly available, such as microbial

ecological databases, so that microbial diversity can be

studied in its environmental context. This would indeed be

a step toward making microbial ecology a central discipline

in Ecology.
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