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Structured Abstract
Background— Except in cardiac surgery, measuring quality with procedure-specific mortality
rates is unreliable due to small sample sizes at individual hospitals. Statistical power can be improved
by combining mortality data from multiple operations. We sought to determine whether this approach
would still be useful in understanding performance with individual procedures.

Methods— We studied eleven high-risk operations performed in the national Medicare population
(1996–1999). For each operation, we calculated 1) the risk-adjusted mortality rate for the procedure
and 2) the mortality rate with up to ten other operations combined (“other” mortality). To test for an
association between these mortality rates, we calculated the correlation coefficient adjusting for
random variation. We then collapsed hospitals into quintiles of other mortality and calculated
procedure-specific mortality rates within each of these quintiles.

Results— Mortality with specific operations was modestly correlated with other mortality:
coefficients ranged from 0.14 for pneumonectomy to 0.35 for esophagectomy. Despite small to
moderate correlations, other mortality was a good predictor of procedure-specific mortality for 10
of the 11 operations. Pancreatic resection had the strongest relationship, with procedure-specific
mortality rates at hospitals in the worst quintile of other mortality 3-fold higher than those in the best
quintile (15.2% vs. 6.3%, p<.001). Pneumonectomy had the weakest relationship, with no significant
relationship between other mortality and procedure-specific mortality.

Conclusions— Hospitals with low mortality rates for one operation tend to have lower mortality
rates for other operations. These relationships suggest that different operations share important
structures and processes of care related to performance. Future efforts aimed at predicting procedure-
specific performance should consider incorporating data from other operations at that hospital.
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Introduction
Because of widespread recognition that surgical quality varies widely, there is growing demand
from patients, providers, and payers for better measures of surgical outcomes (1,2). Risk-
adjusted mortality rates are a simple and reliable measure of surgical quality and have been
used to good effect in cardiac surgery (3,4). Unfortunately, most operations are not performed
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frequently enough to reliably discriminate quality among individual hospitals using this
approach (5,6).

One way to improve outcomes measurement in non-cardiac surgery is to combine several
operations together when assessing hospital mortality rates (7). However, this approach will
only be useful to the extent that hospital performance with different operations is correlated—
i.e., that hospitals good at one operation are also good at others. While previous studies show
relatively weak relationships between outcomes for different medical diagnoses, there is some
reason to believe these relationships may be stronger in surgery (8,9). Many high-risk
operations are dependent on the same hospital-level resources, staffing, and processes of care
(10). We conducted this study to examine relationships between mortality rates with different
non-cardiac procedures in the national Medicare population.

Methods
Study overview

We studied 11 high-risk operations in the national Medicare population over a four-year period,
1996–1999 (Table 1). We identified all patients aged 65 to 99 undergoing these operations
using appropriate combination of International Classification of Diseases, version 9 (ICD-9)
codes. The definition of these patient cohorts are described in detail in our previous work
(11).

The analysis was comprised of two main parts. First, we explored correlations between
procedure-specific mortality rates and mortality rates for up to 10 other operations combined
(“other” mortality). Second, we created five groups of hospitals (quintiles) based on their risk-
adjusted mortality with other operations and calculated procedure-specific mortality within
each of these groups. Although some hospitals did not perform all 10 procedures, we
determined other mortality based on those they did perform. We combined multiple operations
to increase sample size and create a more precise mortality measure for both of these analyses.
For this study, we defined operative mortality as a composite of in-hospital and 30-day
mortality.

Risk-adjustment
To calculate risk-adjusted mortality rates, we used logistic regression to predict the probability
of death for each patient based on demographics (age, gender, and race), type of operation,
urgency of admission, and comorbid diseases. We used the Charlson score to assess comorbid
diseases using secondary ICD-9 diagnostic codes (12,13). Our previous work based on these
datasets has shown no difference between this and other approaches to adjusting for coexisting
diseases (11). Predicted mortality probabilities were then summed for patients at each hospital
to estimate expected mortality rates. The ratio of observed to expected mortality was then
multiplied by the overall mortality rate to obtain the risk-adjusted mortality rate.

Correlation analysis
We assessed the relationship between each operation’s mortality rate and the mortality rate
with other operations using a Pearson’s correlation coefficient adjusted for random variation.
This adjustment was necessary because of the large amount of noise accompanying rates of
mortality with small numbers of cases. This adjustment resulted in slightly larger correlation
coefficients for all 11 operations compared to the correlations estimated without such an
adjustment. To perform this adjustment, we estimated the amount of random variation for each
of the mortality rates (procedure-specific mortality and other mortality) and rescaled the
correlation coefficient to provide an estimate of the underlying true correlation. See the
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technical appendix for a full description of the methods used to adjust for random variation in
this analysis.

Quintile analysis
We calculated a t-statistic for each hospital’s “other” mortality rate (observed minus expected
mortality with other operations divided by the standard error). We then divided patients into 5
equal sized groups (at the patient-level) based on their hospital’s t-statistics. Because all of the
patients at an individual hospital fall into the same quintile, this method effectively divides
hospitals into 5 groups but ensures equal patient sample sizes in each group. The use of t-
statistics, rather than raw mortality rates, statistically weights the hospital rankings to account
for the size of individual hospital caseloads and to further reduce the impact of random
variation. For example, a small hospital with a large difference between observed and expected
mortality will have a lower t-statistic (and appear closer to average) than a large hospital with
the same difference between observed and expected mortality. This type of analysis is desirable
when measuring mortality rates because the large differences between observed and expected
mortality rates seen in small hospitals are more likely to be due to chance than those at large
hospitals. After creating these quintiles of other mortality, we estimated risk-adjusted,
procedure-specific mortality within each quintile. This analysis was repeated 11 times, once
for each operation included in the study. We tested the statistical significance across quintiles
using a test of trend with logistic regression.

Results
During the years 1996 through 1999, 448,775 patients underwent one of the 11 high-risk
operations included in our study. Table 1 shows the number of each type of case performed,
the number of hospitals performing them, and the baseline mortality rate for each operation.
Correlations between procedure-specific mortality and the mortality rate for other operations
were small to moderate, even when adjusted for random variation (Table 2). The adjusted
correlation coefficients ranged from a low of 0.14 for pneumonectomy to a high of 0.35 for
esophagectomy.

Despite small to moderate correlations, other mortality was a strong predictor of procedure-
specific mortality for 10 of the 11 operations (Figure 1). Pancreatic resection demonstrated the
strongest relationship: hospitals in the worst quintile of other mortality had procedure-specific
mortality rates more than double than those in the best quintile (15.2% vs. 6.3%, p<.001).
Pneumonectomy had the weakest relationship, with no significant relationship between other
mortality and procedure-specific mortality. For all other operations other mortality was a
statistically significant predictor of procedure-specific mortality (Figure 1).

Discussion
We systematically evaluated the relationship between mortality rates for different non-cardiac
operations performed at the same hospital. Our findings suggest that procedure-specific
mortality is strongly related to a hospital’s mortality with other operations. In some cases,
mortality with other operations is a better predictor than other proxy measures of quality,
including hospital volume (11). The main result, that hospitals good at one operation tend to
be good at others, has important implications for measuring the quality of non-cardiac surgery.

Although our study is the first to examine non-cardiac surgery, previous studies have evaluated
correlations in hospital mortality rates between other populations. Most studies assessed the
relationship for different medical diagnoses (e.g., pneumonia and acute myocardial infarction),
and found weak correlations in mortality rates (8,9). There are two alternative explanations for
the lack of correlations found in these studies. First, they may be due to problems with
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methodology. In particular, the small sample sizes at each hospital may have prevented the
true relationships from being unmasked. Evidence from a prior simulation by Rosenthal et al.
supports this assertion. If the “true” correlations were perfect (r=1.0), it would require several
thousand cases in each hospital to identify them (8). Second, the relationships between
mortality with different medical conditions may truly be weak. Patients with different medical
diagnoses receive care in different parts of the hospital and are generally treated by different
groups of physicians with few shared processes of care.

There is reason to believe that correlations should be stronger in surgery. Different operations
share many elements of staffing and infrastructure. Structural characteristics important to all
high-risk operations include intensivist staffing of critical care units, high nurse to patient
ratios, and the presence of high-volume, specialty trained surgeons. They also depend on many
of the same processes of care. Shared processes of care related to patient outcomes include
preoperative cardiac evaluation, appropriate use of perioperative antibiotics, beta blockers, and
venous thromboembolism prophylaxis, and postoperative pain management. Indeed, a recent
study on different cardiac surgery operations by Goodney et al. found strong correlations
between mortality rates for coronary artery bypass grafting and mortality rates for both mitral
valve surgery (r = 0.54) and aortic valve surgery (r = 0.59) (10). Our current study extends
these findings to other non-cardiac surgical procedures.

We should consider our findings in the context of certain limitations. First, we used the
Medicare population, which includes only one-half of the cases for each operation. As a result,
our estimates of mortality may be less precise than those calculated from an all-payer sample.
Unfortunately, there are currently no all-payer databases inclusive of all US hospitals. If such
a dataset were used, the more precise hospital-level estimates of mortality would likely increase
the strength of the observed correlations. Our analysis is also limited by case-mix adjustment
with administrative data. However, imperfect case-mix adjustment would only threaten the
validity of our findings if patient severity was systematically correlated across operations. If
this were true, unmeasured case-mix differences would lead to an overestimate of the
correlations observed. Most likely, patient severity varies randomly within hospitals by year
and procedure type. If so, limitations in risk-adjustment would tend to bias our findings towards
the null hypothesis.

Our findings suggest mortality data for multiple operations can be combined to create more
precise measures of hospital-level quality. One such approach would be to rely on the overall
hospital mortality rate as a proxy for procedure-specific performance. This approach is already
used in one of the most high profile quality improvement programs in non-cardiac surgery, the
National Surgical Quality Improvement Program (NSQIP) (7). The NSQIP, present in Veterans
Affairs and a growing number of private-sector hospitals, uses an aggregate mortality (and
morbidity) rate as a hospital-level quality measure. However, our results should not be
considered a direct validation of this approach. The NSQIP combines a more heterogeneous
group of operations (both low-risk and high-risk) in their measure, whereas we considered only
high-risk operations. Correlations between overall mortality rates and procedure-specific
mortality rates are likely weaker when more heterogeneous procedures are aggregated.

Another approach would be to use the information from multiple operations to create so-called
integrative measures of procedure-specific performance. By this method, all information
available about quality for a given operation (e.g., mortality rates, morbidity rates, procedure
volume, and mortality rates with other operations) would be used to make a prediction about
each hospital’s “true” mortality rate (19). Explicit consideration is given to the degree of
relatedness between procedures, and the exact contribution of each operation to another
operation’s prediction is estimated using sophisticated weighting techniques. Methods that
integrate multiple domains of quality have yielded promising results for measuring quality of
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care after acute myocardial infarction (19) and neonatal intensive care (15), but could be readily
extended to surgery.

These integrative measures are a generalization of the standard empirical Bayes (or shrinkage)
estimator that places more weight on a hospital’s own mortality rate when the ratio of signal
to noise in the mortality estimate is high, but shrinks back toward the population mean when
the ratio of signal to noise is low (14). But where the usual shrinkage estimator is a weighted
average of a single outcome measure and its mean, the shrinkage estimator of an integrative
measure would be weighted average of all outcome measures and their means. This approach
would yield a generalized empirical Bayes estimator for the mortality rate of each procedure
that is a linear combination of the mortality and complications measures for all procedures in
each hospital. In principal, the key advantage of such estimates is that they would optimally
combine all available quality measures to form the best prediction of each hospital’s true
mortality rate.

Although creating more precise hospital quality rankings using these techniques may help
identify the best hospitals, our findings also have important implications for improving care
where it already occurs. The relationships between other mortality and procedure-specific
mortality imply shared structures and processes of care across high-risk surgery. Identifying
and promoting wide implementation of these shared characteristics and best practices could
improve care at all hospitals. Because an aggregate measure of mortality allows precise
identification of the “best” and “worst” hospitals, these hospitals can be targeted further
research in evaluating which characteristics are most important. But we should note that the
correlations between different operations are not perfect. There no doubt remain other
important structures and processes of care specific to each type of operation. Subsequent efforts
at improving the quality of surgical care at all hospitals also depend on isolating and
disseminating these procedure-specific factors.
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Technical Appendix
Our adjustment of correlation coefficients for random variation is motivated by a hierarchical
model in which data at the first (patient) level provides noisy estimates of an underlying true
mortality observed at the second (hospital) level. The adjusted covariance matrix captures the
(true) underlying correlations between procedure-specific mortality rates and mortality rates
with other procedures, net of the estimation error. At the first level, the distribution of the
estimates conditional on the underlying true mortality is:

E(Yi ∣ μi) = μi, andVar(Yi ∣ μi) = Vi, (1)

where Yi is a 2×1 vector of the mortality rate for the procedure under consideration and the
mortality rate for patients with all other procedures for hospital i; μi is the corresponding 2×1
vector of (true) underlying mortality that represents the average mortality that a typical patient
could expect at this hospital; and Vi is the 2×2 sampling variance-covariance matrix for the
estimates in Yi. Note that the hierarchical nature of the data allows us to estimate Vi for each
hospital (i) in a straightforward manner, since this is simply the sampling variance of a vector
of estimates derived from a sample of patients at hospital i. In particular, the diagonal (variance)
terms of Vi are the square of the standard errors for the two mortality rates at hospital i (Yi),
while the off-diagonal (covariance) term is zero because the two mortality rates are estimated
from different samples of patients and therefore independent (conditional on μi).

At the second level, the distribution of the underlying true mortality rates across hospitals is:

E(μi) = μ andVar(μi) = ∑, (2)
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where μ is a 2×1 vector of mean mortality rates in the entire population and Σ is the 2×2
variance-covariance matrix in mortality rates summarizing the relationship between the
mortality rate for the procedure under consideration and the mortality rate for other procedures.

To estimate of the variance-covariance matrix of mortality rates (Σ), we calculate the
covariance matrix of the risk-adjusted mortality rates (Yi), and adjust for sampling variability
by subtracting the average sampling-error covariance matrix (Vi), so that:

∑̂ = Var (Yi) − Mean (Vi), (3)

where  Var (Y i) =
1

N − 1 ∑
i=1

N
(Y i − Ȳ )(Y i − Ȳ )′ and Mean (V i) =

1
N ∑

i=1

N
V i

The correlation coefficients that we report were derived from this estimate of the variance-
covariance matrix of the risk-adjusted mortality rates (Σ̂), and in this way were adjusted for
random variation. These estimators are those proposed by Morris in his 1983 review article on
parametric empirical Bayes (14), and have been used to estimate the correlation across quality
measures in a number of prior applications (15–18).
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Figure 1.
Procedure-specific mortality rates within quintiles of mortality for all other operations
combined. P<.001 for the comparison of the best (quintile 1) to the worst (quintile 5) for all
operations except pneumonectomy.
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Table 1
Number of Medicare cases, number of hospitals performing operation, and baseline mortality rates for the 11
high-risk operations (1996-1999).

Operation Medicare Cases (1996–
1999)

Hospitals Performing Operation Baseline Mortality Rate

Colon resection 97,560 4,002 6.6%
Pancreatic resection 3,634 1,090 10.3%
Gastric resection 9,574 2,449 11.5%
Esophageal resection 1,988 832 15.%
Nephrectomy 19,738 2,686 3.0%
Cystectomy 7,430 1,729 5.3%
Abdominal aneurysm repair 45,282 2,344 5.7%
Carotid endarterectomy 156,635 2,629 1.8%
Lower extremity bypass 78,947 2,717 5.5%
Pneumonectomy 3,066 1,133 14.3%
Pulmonary lobe resection 24,921 2,221 5.5%
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Table 2
Correlation between procedure-specific mortality and the mortality rate for other high-risk operations combined.

Operation Correlation Coefficient

Colon resection 0.22
Pancreatic resection 0.31
Gastric resection 0.34
Esophageal resection 0.35
Nephrectomy 0.32
Cystectomy 0.17
Abdominal aneurysm repair 0.32
Carotid endarterectomy 0.20
Lower extremity bypass 0.12
Pneumonectomy 0.14
Pulmonary lobe resection 0.19
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