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Abstract
Macroscopic ion channel current can be derived by summation of the stochastic records of individual
channel currents. In this paper we present two probability density functions of single channel records
that can uniquely determine the macroscopic current regardless of other statistical properties of
records or the stochastic model of channel gating (presented often with stationary Markov models).
We show that H(t), probability density function of channel opening events (introduced explicitly in
this paper), and D(t), probability density function of the open duration (sometimes has named dwell
time distribution as well), determine the normalized macroscopic current, G(t), through:

G(t) = P(t) − H (t) ∗ Q(t),

where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D
(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the
amplitude of single channel current and the number of single channel sweeps.

Compared to other equations for the macroscopic current, here the macroscopic current is expressed
only in terms of the statistical properties of single channel current and not the stochastic model of
ion channel gating or a conditioned form of macroscopic current.

Single channel currents of an inactivating BK channel were used to validate this relationship
experimentally too. In this paper we used median filters as they can remove the unwanted noise
without smoothing the transitions between open and closed states (compare to low pass filters). This
filtering leads to more accurate measurement of transition times and less amount of missed events.
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INTRODUCTION
The patch clamp technique for recording single ion channel current was demonstrated first by
Neher and Sakmann [1] and has been used extensively since. Today it is a standard technique
for studying cell electrophysiology. Ion channels exhibit discrete conductance levels, typically
fully open or fully closed [1,2]. Opening and closing of the ion channels as a function of
membrane voltage is a stochastic process. Recordings of the same ion channel under the same
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test conditions exhibit different opening and closing patterns, suggesting that they should be
characterized using statistical methods.

Single channel records can be considered as ensembles of a stochastic process that models the
channel gating and can be fully characterized from complete knowledge of this process. Direct
modeling of the stochastic process of channel gating requires a very detailed knowledge of the
mechanism of channel gating which is rarely available. Therefore, statistical properties of
single channel data are used to study, classify and compare different sets of single channel
records and also to estimate the underlying stochastic process of channel gating (also called
channel dynamics, channel kinetics, or mechanistic structure). Many different parameters can
be defined to describe the characteristics of single channel records. Because of the stochastic
nature of such records, these parameters assume random values among different records and
within the same record. Some examples of these parameters are: open duration, closed duration,
latency to first opening, duration of the first opening, time of opening event, number of
openings per record [3]. We term these parameters “statistical parameters” as they are random
variables that describe the statistical characteristics of single channel records. The probability
density functions (pdf) of these statistical parameters (random variables) provide quantitative
information about the characteristics of the records and help to estimate their underlying
stochastic rules. We use the term “statistical property” for the probability density function (pdf)
or the cumulative density function (cdf) of a statistical parameter of single channel records.
Any scaled (by a constant) pdf (or cdf) of a statistical property can also be considered a
statistical property.

Stationary Markov models are the accepted stochastic models in the literature for modeling
the stochastic process of channel gating [4]. Comprehensive analyses have been conducted to
define different statistical properties of single channel records generated by a known Markov
model [4,5]. Different calibration procedures (mostly numerical) have been developed to find
the transition rates between kinetic states of a particular Markov structure to optimally replicate
a set of single channel records. These procedures are based on maximum likelihood techniques
[6] for matching the statistical properties of the model to the single channel records [7] or the
macroscopic current [8,9] (The macroscopic current is the summation current through a large
ensemble of ion channels). There are in theory infinite number of stochastic models (including
many Markov structures) that can be calibrated to a set of single channel records to replicate
certain statistical properties of the records and/or the resultant macroscopic current. Assuming
that all ion channels in an ensemble have the same stochastic rules for gating, the macroscopic
current is equivalent to summation of a large number of records from one channel. Therefore,
it is proportional to the probability that a channel is open at time t (termed “open probability”).
The macroscopic current does not constitute a statistical parameter of ion channels as, unlike
the statistical parameters of single channel records that assume random values, it is the same
in all similar tests (excluding small fluctuations). The macroscopic current is also not
proportional to pdf or cdf (statistical properties) of any random statistical parameter of the
single channel records. We term such functions that are neither statistical parameters nor
statistical properties of single channel records “macroscopic features” associated with these
records; they provide information about the average behavior of the records, not about
characteristics of a single channel record. In general, the macroscopic features (including
macroscopic current) can be deduced from the relevant statistical properties of single channel
records. The macroscopic current, generated by a large ensemble of ion channels in the cell
membrane, determines the role of the ion channel in action potential generation and cell
electrophysiology. Therefore, it is important to understand the relationship between this current
and the statistical properties of its single channel components. The goals of this study are to
determine which statistical parameters of single channel records govern the shape of the
macroscopic current and to derive a quantitative formulation that relates the pdf of these
parameters to the macroscopic current. Such formulation will enhance our understanding of
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how changes in the statistical properties of channel gating caused by different structural or
environmental factors (e.g. mutation, phosphorylation, ligand binding, and ion concentration)
affect the macroscopic current and therefore the electrophysiology of the cell. The macroscopic
current can be calculated in terms of transition-rates between kinetic states of a known Markov
model of the channel gating [5], or directly from the statistical properties of single channel
records. The second approach does not require knowledge of the underlying stochastic process
of channel gating [3,10–12] and is the approach taken in this study.

Although the relationship between the statistical properties of single channel currents and the
macroscopic current is of great interest, many of its aspects have not yet been fully
characterized. For example, it has not been established whether two sets of single channel
records with different statistical properties can generate the same macroscopic current.
Conversely, can two sets of single channel records with the same commonly used statistical
properties generate different macroscopic currents? And if so, what identical statistical
properties give rise to identical macroscopic currents? In this work we identify the statistical
properties of single channel sweeps that uniquely determine the shape of the macroscopic
current.

The relationship between the macroscopic current and single channel records was first
explained by Anderson and Stevens [11]. They assumed that all channels open simultaneously
(single opening) with an exponentially distributed open duration and showed that the life time
of open duration is equal to the time constant of the exponentially decaying macroscopic
current. If ion channels all open at the beginning of the test (t = 0) and after the first closing
reopen and close multiple times (burst opening), then the burst openings may add another time
constant to the macroscopic relaxation curve, reflecting primarily the duration of bursting [3,
12].

Typically, the first openings of ion channels occur with variable latencies after the beginning
of the test. The effect of the latency to first opening on macroscopic current was first studied
by Aldrich et al. [10]. They defined F(t) as the probability density function of the latency to
first opening and introduced the function M(t) as the probability of finding a channel open t
seconds after its first opening. M(t) is proportional to the macroscopic current when all the
records are aligned so that their first openings all occur at time zero; it therefore represents a
conditioned macroscopic current. Similar to the macroscopic current, M(t) depends on
statistical properties of the single channel records, but is not a statistical property of these
records. If the first openings in different records occur after different latencies with a known
probability density function, F(t), then the probability that a channel is open at time t (a scale
of the macroscopic current) can be obtained from the convolution of M(t) and F(t) [10]. If
channels do not open more than once, then M(t) is equal to the probability density function of
open durations [10,13], a statistical property of single channel records. Using Markov
representation of channel gating, Colquhoun and Hawks [3] have shown that M(t) does not
represent a statistical property of a single channel and concluded that there is no simple
relationship between single channel distributions (statistical properties of single channel
records) and macroscopic current. M(t) has been termed burst open probability [14] or
conditioned open probability [3] in the ion channel literature.

Here we derive a mathematical relationship between the macroscopic current and statistical
properties of single channel records that uniquely determine the macroscopic current.
Specifically, we formulate the macroscopic current generated by a voltage clamp protocol in
terms of statistical properties of single channel recordings obtained from the same protocol
and determine which statistical properties uniquely define the macroscopic current. We then
use experimental data recorded from large conductance inactivating BK potassium channels
to validate our analysis.
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METHODS
Theoretical Methods

Macroscopic current is defined here as the summation of a large number of single channel
currents, recorded by repetitive testing of a single ion channel. The amplitude of the
macroscopic current depends on the number of records which is different from the number of
channels in the cell membrane. Therefore, the whole cell current of an ion channel can be
approximated as a scale of the macroscopic current of that ion channel. Regardless of the scale,
the shape of the macroscopic current can also be slightly different from the whole cell current
because individual ion channels of the same type may have slightly different characteristics.
Therefore the summation of currents recorded from one particular channel (macroscopic
current) may be slightly different from the summation of currents generated by many channels
of the same type (whole cell current). In addition, experimental limitations like imperfect block
of other types of channels in a cell may introduce errors in the recorded current, causing some
deviations from the whole cell current of a particular channel type.

We define the normalized macroscopic current, G(t), as the macroscopic current divided
(normalized) by the amplitude of the single channel current, Ios, and the number of records,
N. G(t) represents the macroscopic current where the scaling effect of both the number of
records and the amplitude of single channel current has been removed. Therefore G(t) depends
only on the statistics of channel gating. From a statistical point of view G(t) is the open
probability, however, as it is more a representative of the macroscopic current than the
statistical properties of channel gating we would rather to use the term normalized macroscopic
current. We also define the normalized single channel current, gi(t), as the current of a single
channel record normalized to its amplitude, Ios, meaning that gi(t)=1 in the conducting state
and gi(t)=0 in the nonconducting state. G(t) can be written in terms of gi(t) as:

G(t) = 1
N ∑

i=1

N
gi(t) (1)

where N is the number of records.

In this work we define the “time of opening events” as a new statistical parameter for single
channel records. This statistical parameter is the time (measured from the beginning of the test)
of any transition from the closed to the open state (an opening event). To quantify this statistical
parameter, we define H(t) by defining the probability that an opening event occurs between
time t and t+dt in a single channel record as H(t)dt. H(t) is a function that shows the probability
distribution of an opening event occurring at time t. It is obtained by dividing the number of
openings between t and t+dt (among all records) by the number of records. For inactivating
records, integral of H(t) over the time domain of records (generally speaking from zero to
infinity) is the expectation of the number of openings per record. Alternatively, the time of
opening events may be quantified by its probability density function, H*(t), obtained by
dividing the number of openings between t and t+dt by the total number of openings (in all
records). With this definition, the integral over the time domain of the distribution function,
H*(t) is one. Clearly H(t) is related to H*(t), the pdf of the time of opening events by:

H (t) = AH ∗(t) (2)

where A is the average number of openings per record in the ensemble. We termed H(t) the
probability density function (pdf) of opening events. Note that H(t) is a scale of the pdf of the
time of opening events, H*(t). Physiologically, H(t) is the expectation for the frequency of
opening events (number of openings per unit time) in a single channel record at time t.
Therefore, the expectation for the number of opening events before time t is:
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P(t) = ∫
0

t
H (ζ)dζ (3)

P(t) is the cumulative density function of opening events.

Although the exact underlying stochastic process of single channel records is not important for
the analysis of this paper, however, we put one limit on that and assume the open duration is
independent of the time that channel opens. Clearly this is meaningless (valid by nature) for
the single channel records that are recorded from nonzero steady state currents as the origin of
time is meaningless. This assumptions has been validated for many channels with an acceptable
level of accuracy [10,14,15] However for some inactivating channels under some special
conditions it has been observed that the open duration may have a small dependency on the
time that channel has opened [16]. We term the probability density function of the open duration
D(t). The cumulative density function of open duration is Q(t) where:

Q(t) = ∫
0

t
D(ζ)dζ (4)

Neglecting the small differences among individual channels of the same type, the whole cell
current of an ion channel can be estimated by multiplying the normalized macroscopic current
of the single channel data by the number of channels in the cell and the amplitude a single
channel current:

Ic(t) = Nch IosG(t) (5)

where Nch is the number of channels in the cell.

Recording Single Channel Currents
To test the applicability of this model to experimental data, we use a set of 100 inactivating
sweeps of single channel records from inactivating BK potassium channels. Recordings were
made from inside-out patches from Oocytes expressing mSlo1 α subunits along with the
inactivating β2 auxiliary subunit [17]. Following a 100 ms step to −160 mV, channels were
activated by a step to +80 mV in the presence of 10 mM Ca2+ bathing the cytosolic face of the
membrane. Acquired currents were digitized by sampling every 10 microseconds with filtering
at 10 kHz. The capacitance effect was removed and the baseline was adjusted to zero in a
preprocessing procedure. At the open state, the currents of all records were of equal magnitude
verifying that these ion channels did not have multiple conductance levels and that there was
only one channel in the clamped region of membrane in the test protocol. Macroscopic
recordings of inactivating BK channels were also obtained under the same conditions. The
single channel currents and macroscopic current recorded under the above conditions from
Oocyte BK potassium channels (expressing mSlo1 α subunits along with the inactivating β2
auxiliary subunits) exhibited complete inactivation [17]. Therefore, the gating mechanism of
channels generating these data is different from that of the common noninactivating BK
channels and so are the statistical properties of the records [18].

Deriving the Statistical Properties of Records
For performing statistical analysis, the recorded data are transformed to an ideal rectangular
form which represents the original records. The converted sweeps assume the value one if the
channel is open or zero if the channel is closed, transition between open and closed states is
instantaneous.
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The recorded data were filtered to remove the high frequency noise superimposed on the
records and eliminate pulses of very short duration that are considered noise rather than true
openings or closings. Finite Impulse Response (FIR) or Infinite Impulse Response (IIR) digital
filters [19] remove the high frequency noise by removing high frequency components of the
records (low pass filtering), which also causes smoothing of the instantaneous transitions
between the open and closed states. Bessel filters and Gaussian filters are commonly used low
pass filters for removing noise from single channel records. A Gaussian filter tuned to cut off
frequency fc, causes a rise time (from 10% to 90% of open state current) of about 0.34/fc in
opening events and a similar decay time in closing events [20]. In addition to this delay in event
detection, when the pulse duration is close to cut off duration, Tc=1/fc, the amplitude of the
filtered current lies between zero and the open state current amplitude instead of obtaining the
ideal values of zero or the open state current amplitude.

In this work we used median filters [21], which remove the high frequency noise from the
signal but keep the sharp transitions of true openings and closings (Figure 1). Compared to low
pass filters; median filters perform better in preserving the amplitude and time of events for
pulses with duration longer than the cut off duration, and in suppressing pulses with duration
less than the cut of duration. The cut off frequency of the filter was tuned to 5 kHz to remove
pulses with durations smaller than 0.2 ms.

After removing the high frequency noise, we set a threshold at 35% of the single-channel
current amplitude. The normalized single channel current, gi, was set to one if the channel
current exceeded the threshold (open state) or zero where it was smaller (closed state).

Normalized single channel currents, gi, were used to find the single channel statistics. For the
purpose of this paper we need to find the two probability density functions, H(t) and D(t). The
common method for deriving such functions is to divide the variable domain (time domain)
into several intervals and count the number of events that their values (time of channel opening
for H(t) and open duration for D(t)) fall within each interval (among all records) to estimate
the average probability in that interval. These time intervals may be of variable length (e.g.
logarithmic binning) for a more uniform distribution of the number of events in each interval
[22]. Clearly, using this method the information of how the pdf varies within each time interval
can not be obtained. However, these estimated averages can be connected in a stepwise manner
or using first or higher order interpolation, to find a continuous estimate for the pdf. This method
requires a relatively large number of events to be accurate. For a limited number of events,
choosing the length of these time intervals involves a trade off for optimum accuracy. Reducing
the length of the time intervals increases their number, resulting in a better capture of the time
variation of the function. However, increasing the number of intervals reduces the number of
events in each interval, which in turn reduces the accuracy of estimating the average probability
by counting the events. This introduces an error in the derived probability density function,
causing sharp variations between adjacent intervals (Figure 2a). Increasing the length of the
time interval increases the number of events in each interval, leading to a more accurate
estimate of the average pdf in each interval. However, this decreases the number of intervals
and therefore increases the probability of loosing important pdf information because the
average pdf is estimated for fewer intervals.

If the number of recordings is not sufficiently large, it would be impossible to find an optimal
size for the time intervals that ensures smooth and accurate probability density function without
loosing considerable information. In order to cope with that problem we chose a slightly
different approach. First, we found the cumulative density functions P(t) and Q(t) by counting
the number of events before time t or of less than duration t, respectively. As these estimated
functions are stepwise functions, the derivative of each will be a series of delta functions spread
over the time domain. In order to obtain smooth derivatives, smooth curves were fitted to each
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cumulative density function. The derivatives of these fitted smooth curves were used where
the measured probability functions were needed. Fitting should be as perfect as possible to
reduce the estimation error.

In Figure 2 we show an estimate of H(t) using this method (black) in comparison with the time
interval method (grey). In Figure 2a a small time interval (0.4 ms) was chosen to capture the
time variations of the function. This led to an inaccurate estimate for the average pdf in each
interval. However, both estimates are qualitatively similar and show a fast initial increase
followed by a slow decreasing tail. The estimated H(t) with a longer 4.0 ms interval is shown
in Figure 2b (grey). For the tail part of H(t), it shows a perfect match with the derivative method
used in this paper. However, for this long interval the initial rise and fall of H(t) are completely
lost, as they occur within the first 4.0 ms.

RESULTS
In this section we first examine the ability of the commonly used statistical properties of single
channel data to determine the macroscopic current. We then derive the macroscopic current in
terms of a proper set of statistical parameters that can uniquely determine it. Finally, we test
and validate our analysis using experimental data recorded from inactivating BK channels.

Macroscopic Current and the Common Statistical Parameters of Single Channel Records
The most commonly used statistical parameters of single channel records are pdf of open
duration, D(t), pdf of the latency to first opening, F(t), pdf of closed duration, B(t), and the
distribution of the number of openings per record, E(n). The question is: can these statistical
properties determine the macroscopic current uniquely? In order to answer this question we
wrote a computer program to generate two sets of single channel sweeps (1000 sweeps in each
set) using two different stochastic processes. Both stochastic processes generate records with
the same statistical properties mentioned above. However, the two sets of sweeps are different
statistically and their other statistical properties are not all the same. Figure 3 shows the
statistical properties used to generate the data. These statistics are representative of single
channel records of inactivating channels, meaning that the probability that a channel transitions
to the open state, approaches zero after a certain time. Figures 4a and 4b show the first 20
sweeps of two different sets of data generated with these statistics and the normalized
macroscopic current for each data set. The difference between the two normalized macroscopic
currents is clear and considerably large, demonstrating that the commonly used statistical
parameters of single channel records do not uniquely determine the shape of the macroscopic
current. From this perspective, this is an improper choice of a parameter set.

Macroscopic Current in Terms of Proper Statistical Properties of Single Channel Records
In this section we will express the normalized macroscopic current in terms of a proper set of
statistical parameters of single channel records. Normalized macroscopic current is defined by
Equation (1) of the Methods section. Summation of gi(t) is equivalent to summation of all
square pulses that exist in the data set. Each square pulse can be substituted by subtraction of
two unit step functions one at the pulse start (opening event) and one at the pulse end (closing
event):

G(t) = 1
N ∑

i=1

N
gi(t) =

1
N ∑

i=1

N
∑
j=1

Ki
o ji(t) − c ji(t) (6)

where Ki is the number of pulses in record i, oji(t) is the unit step function at jth opening of
record i and cji(t) is the unit step function at jth closing of record i. Combining the two
summations and assigning one index to each square pulse we may write:
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G(t) = 1
N ∑

j=1

T
o j(t) − c j(t) =

1
N ∑

j=1

T
o j(t) −

1
N ∑

j=1

T
c j(t) ≡ O(t) − C(t) (7)

Where T = ∑
i=1

N
Ki is the total number of pulses in the data set and N is the number of records.

O(t) is the average of the opening event unit steps and C(t) is the average of the closing event
unit steps. Figure 5 shows a schematic explanation of Equation (7). Note that in deriving
Equation (7) it is implicitly assumed that all the channels are in the closed state at time zero.
This is a valid assumption for many test protocols (especially for completely inactivating
channels). However, for cases that the cell has some initial current (before performing the test
protocol) some of the channels are in the open state at time zero. This effect can be compensated
for easily by adding the fraction of channels that are open at time zero to the right side of
Equation (1). We call this fraction Gi, which is a constant term proportional to the initial current
of cell (the normalized initial current). For channels with initial current Equation (1) can be
rewritten as:

G(t) = Gi + O(t) − C(t) (8)

O(t) and C(t) are defined through Equation (7), but in order to relate them to statistical properties
of single channel sweeps we need to find their statistical interpretations. In fact, G(t) is the
fraction of channels that are open at time t, or, from the statistical perspective (for a large
ensemble), the probability that a channel is open at time t (called open probability). Similarly
O(t) is the proportion of transitions from the closed to the open state before time t and C(t) is
the proportion of transitions from the open to the closed state before time t.

For a large ensemble, O(t) is equal to the expectation of the number of openings events before
time t in a record and therefore:

O(t) = P(t) (9)

Similarly, for large ensemble C(t) is equal to the expectation of the number of closing events
before time t. In order for a transition from the open state to the closed state to occur before
time t (closing event), an opening should have occurred at some time τ<t for a duration d<t
−τ. As the opening event and open duration are independent statistical variables, we can write
for the probability P:

P(opening eventbetween τ and τ + d τ for a durationd < t − τ) = P(opening eventbetween τ
and τ + dτ) • P(openduration ofd < t − τ)

(10)

But we know that:

P(opening eventbetween τ and τ + dτ) = H (τ)dτ, (11)

P(openduration ofd < t − τ) = Q(t − τ) (12)

Integrating over all possible range of τ (from zero to t), we conclude:

C(t) = ∫
0

t
H (τ)Q(t − τ)dτ = H (t) ∗ Q(t) (13)
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where * is the symbol of convolution integral. In deriving Equation (13) it is implicitly assumed
that no channel is open at time zero, as every closing event is associated with an opening event
between times zero and t.

However, a fraction of channels may be in the open state at time zero. The closure of these
channels should be included in C(t). The proportion of channels in the open state at time zero
is Gi and the proportion of these channels that close before time t is the proportion of channels
that stay open for less than t, or the cumulative density function of open duration, Q(t).
Therefore the general form of C(t):

C(t) = H (t) ∗ Q(t) + GiQ(t) (14)

Substituting for C(t) and O(t) in Equation (8), we obtain the following expression for G(t):

G(t) = P(t) − H (t) ∗ Q(t) + Gi(1 − Q(t)) (15)

For channels with zero initial current Equation (14) reduces to:

G(t) = P(t) − H (t) ∗ Q(t) = H (t) ∗ (1 − Q(t)) (16)

Equation (16) indicates that the two chosen statistical parameters of single channel records,
the probability density function of opening events, H(t), and the probability density function
of open duration, D(t), uniquely determine the normalized macroscopic current.

Calculating H(t) from a Known Markov Model
As stationary Markov models are accepted models in the literature for modeling the stochastic
process of channel gating, it is useful in the context of this paper to establish a relationship
between Markov structures and the statistical parameters used in our analysis. The pdf of open
duration of a known Markov model has been calculated in terms of the rate constants of the
model [4]. Here we calculate the probability of opening events, H(t), for a known Markov
model.

Assume that the states of a Markov model are divided into two groups: ky nonconducting states
(y states) and kz conducting states (z states) and so the total number of states is: k = ky + kz.
Also assume that qij is the transition rate from state i to state j and si(t) is the fractional
concentration of channels in state i. Defining Q and s(t) as:

s(t) = si(t) (17)

Q = qij (18)

where

qii = − ∑
j=1, j≠i

k
qij (19)

s(t) will be:

s(t) = s(0)eQt (20)

For an opening to exist between t and t + dt, the channel should be in one of the nonconducting
states at time t and transition to one of the conducting states during dt. Assume that states 1 to
ky are the nonconducting states and states ky + 1 to k are the conducting states. Also assume
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that i is the index showing an arbitrary nonconducting state at time t and j is the index showing
an arbitrary conducting state at t + dt (after opening transition). The probability of an opening
event between t and t + dt can be found by summation of the probabilities of all possible
transitions paths. Therefore:

H (t) = ∑
i=1

ky
∑

j=ky+1

k
si(t)qij (21)

By labeling the nonconducting states y and the conducting states z, Q and s can be written as:

Q =
Qyy Qyz
Qzy Qzz

(22)

s(t) = sy(t) sz(t) (23)

And the matrix form of Equation (21) is:

H (t) = sy(t)Qyzuz = s(0)eQt yQyzuz (24)

where uz is a column vector of size kz with all elements equal one.

It should be noted here that the assumption that the open duration is independent of the time
of opening event imposes a constraint on the rate constants of the Markov model.

Estimating the Number of Channels in the Cell
Another application of this analysis is obtaining an estimate of the number of ion channels in
a cell. To accomplish this, a priori knowledge of statistical properties of the ion channel is
required. Assume that the normalized macroscopic current generated by a particular ion
channel type during a specific patch clamp test is derived directly from single channel sweeps
(if available) using Equation (1), or computed using Equation (16) from the statistical properties
H(t) and D(t). Small differences among individual channels of the same type have negligible
effect on our estimation and we assume that the behavior of the channel in the patch clamp test
represents all channels of its type.

In principle, once G(t) is measured from a single channel test, the whole cell current of the ion
channel, Ic(t), can be measured experimentally for the same test protocol and substituted into
Equation (5) to compute the number of ion channels in the cell, Nch. However, the measured
whole cell current, Ic(t), and the normalized macroscopic current, G(t), are not exactly related
by a scaling factor (as Equation (5) suggests). Therefore Nch is estimated by the value that
minimizes the difference between the left and right sides of Equation (5); for root mean square
(RMS) minimization:

Nch =

∫
0

t
Ic(t)G(t)dt

Ios∫
0

t
G 2(t)dt

(25)
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Application to Measured Data
One hundred single channel sweeps, recorded from inactivating BK potassium channels were
used to evaluate the ability of the model to predict macroscopic current. These channels have
a clear opening and closing behavior and sample records are shown in Figure 6. In this section
we first derive the statistical properties of the single channel data. Then we show how accurately
Equation (16) predicts the macroscopic current from single channel statistics.

Filtered data are shown in Figure 7a (black curve) together with unfiltered recorded current
(grey curve). Filtering successfully removed the high frequency noise from the records without
loss of frequency information in the transition edges. In the filtered data, the times of transition
events and the durations of open and closed states are preserved. Figure 7b shows how closely
the square-pulse representation of the data (black) can represent the raw recorded data (grey)
and preserve the transition times and durations. The idealized single channel currents,
represented by the square pulses, can accurately regenerate the macroscopic current (Figure
7c) and are therefore adequate representation for studying the relationships between statistical
properties of single channel records and macroscopic current.

H(t) and D(t) are the probability density functions that are used to represent the single channel
records and are estimated from the measured data. As mentioned in the Methods section, it is
more accurate to first estimate the related cumulative density functions P(t) and Q(t).
Exponential functions were fitted to P(t) and Q(t), providing accurate fits. Figure 8 compares
P(t) and Q(t) estimated from the data (grey curves) with the fitted exponential curves (black
curves). Three exponential terms were needed to obtain a perfect fit to P(t). Q(t) is the
cumulative density function of open duration and could be fitted properly with a single
exponential function, indicating that BK channels open time behavior is similar to many other
ion channels that follow an exponential distribution function with one time constant. The
probability density functions H(t) and D(t) were estimated by the derivatives of the fitted curves
P(t) and Q(t), respectively (Figure 9).

After deriving the required statistical properties of the single channel data, we can test the
theoretical results of this study that relate channel statistics and macroscopic current. Equation
(16) shows that proper statistical properties of single channel records uniquely determine the
normalized macroscopic current, G(t). From G(t) the macroscopic current can be computed
through multiplication by the amplitude of the single channel current, Ios, and the number of
records, N. The experimentally measured value of Ios is 19.5 pA. Figure 10 shows the
macroscopic current of the data (grey curves) compared to the macroscopic current derived
from the statistical properties of records using Equation (16). It is evident that Equation (16)
accurately regenerates the macroscopic current from the statistics of single channel data.

A macroscopic current generated by the BK ion channels was measured for the same test
protocol (Figure 11). The number of channels contributing to this macroscopic current can be
estimated using Equation (25). The grey curve in Figure 11 is the normalized macroscopic
current of single channel records scaled to fit the measured macroscopic current (black curve)
using RMS optimization. The slight differences between the two curves could be related to
slight differences in the behavior of different individual channels. The optimal scaling factor
was 446, indicating that about 450 BK ion channels contributed to the measured macroscopic
current.

DISCUSSION
Relating Macroscopic Current to Channel Statistics

In the literature of ion channel analysis, macroscopic current has been related to single channel
properties using two different approaches and two different types of ion channel parameters.
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In one approach the macroscopic current is formulated in terms of the stochastic process of
channel gating (rather than the statistical properties of single channel records) and more
specifically, in terms of the transition rates of a stationary Markov model that represents the
channel. A complete formulation of the macroscopic current in terms of the transition rates
and initial distribution of states of a general Markov model can be found in the published work
of Colquhoun et al [5]. This formulation provides a scheme for studying the effects of altered
model rates on the macroscopic current.

While the Markov model can reproduce the statistical properties that it has been calibrated to
(for an accurate calibration), it can not reproduce all statistical properties of the single channel
records. Therefore, it is important to determine what statistical properties of single channel
records govern the shape of the macroscopic current. A Markov model can not provide a direct
relationship between the statistical properties of single channel records (that are directly
measurable) and the macroscopic current; it simulates the macroscopic current from a set of
transition rates that are neither unique nor directly measurable (must be estimated numerically
by fitting experimental data).

In a second approach, the macroscopic current has been formulated directly in terms of
statistical properties of single channel records. This approach has been limited to a few record
patterns including: single opening with or without latency to first opening, where the
macroscopic current has been formulated in terms of the distributions of latency to first opening
and open duration [3,10,11]; multiple openings without latency to first opening, where the time
constants of the macroscopic current were found to correspond approximately to the time
constants of the distributions of open duration and burst length [12]; a general case where the
relationship has been formulated in terms of the distribution of latency to first opening and a
conditioned form of the macroscopic current [10]. In this paper, we have formulated the
macroscopic current solely in terms of statistical properties of single channel records for the
general case, with the assumption that the channel open duration is independent of the time
when the opening has occurred, an assumption that is applicable to many channels.

We introduced a new statistical parameter for single channel records, the time of opening events
and its corresponding statistical property, the probability density function of opening events,
termed H(t). H(t) together with D(t), the pdf of the open durations, determines the macroscopic
current uniquely, independent of other statistical properties of single channel records or their
underlying stochastic process. Two sets of single channel records may have different
probability distribution functions for latency to first opening, number of openings per record,
or closed duration, but as long as their probability density functions of opening events and open
durations are the same, their macroscopic current will be the same. H(t) is a statistical property
of single channel records that is directly related to the macroscopic current through Equation
(16) and in turn, to the electrophysiological properties of the cell.

Equation (16) is similar in form to equation (5) in Aldrich et. al. (1983) which can be rewritten
based on the terminology of this paper as:

G(t) = ∫
0

t
F (t − τ)M (τ)dτ = F (t) ∗ M (t)

However, the two equations are completely different. M(t) in equation (5) of Aldrich et al. is
the normalized macroscopic current when all the records are shifted so that their first openings
all occur at time zero. They show that the distribution of latency to first opening can be
convolved with M(t), a conditioned macroscopic current from which latency to first opening
has been eliminated, to generate the actual macroscopic current with latency restored. This
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relationship describes the effect of latency on the macroscopic current but does not express the
macroscopic current solely in terms of statistical properties of single channel records, as M(t)
is a manipulated form of the macroscopic current and not a statistical parameter of single
channel records. As such, M(t) does not provide a link between single channel statistical
properties and the channel’s role in macroscopic current generation and whole-cell
electrophysiology. Recognizing this limitation, Aldrich et al neglected reopening of sodium
channels and for this single-opening approximation substituted M(t) with “duration
distribution function, L(t)”, a statistical property of ion channels (with our definition L(t)=1
−Q(t), which is the proportion of channels that stay open for duration > t). From a Markov
model perspective, Colquhoun and Hawkes concluded that “Although the first latency
distribution is a single-channel quantity, P11(t) (same as M(t)) is not, and there is, therefore,
in general, no simple relationship between single channel distributions and macroscopic
current.” (page 453 in reference [3]). We show that a simple relation have not been found
because the commonly used distributions (statistical properties) of single channel records can
not uniquely determine the macroscopic current. We found a simple relationship by first
identifying two distribution functions that uniquely determine the macroscopic current.

An explicit relationship like Equation (16) can not be derived by calibrating a Markov model
to a set of statistical properties of single channel records (the “Markov approach”) for two
reasons. First, although the macroscopic current can be calculated for a known Markov model,
the transition rates of the Markov model are usually calibrated using numerical procedures and
can not be expressed explicitly in terms of statistical properties of single channel records.
Second, there are many Markov models capable of replicating a particular set of channel-
records statistical properties. These different Markov models may generate different
macroscopic currents if the chosen statistical properties can not determine the macroscopic
current uniquely.

Equation (16) assumes that the open duration is independent of the time of the channel opening
event (Equation (10)). The accurate match between the experimental macroscopic current
(derived by summation of experimentally measured single channel records) and the prediction
of Equation (16) validates this assumption for the data used in this study (Figure 10). Therefore,
we can conclude that the open duration of inactivating BK potassium channels, like that of
many other channels, is independent of the time of opening event (for similar test conditions).
Moreover, a two dimensional dwell time distribution shows that there is almost no correlation
between adjacent open and closed intervals of the single channel records used in this paper
(Figure 12), meaning that the open duration of inactivating BK potassium channels not only
is independent of the time of opening event but also is independent of the previous closed
duration.

Equation (16) can provide qualitative insights about the shape of the macroscopic current
associated with specific forms of single channel records. If single-channel opening events are
distributed over a long time interval from the beginning of the test with short open durations
compared to the length of this interval (burst opening), then the shape of the normalized
macroscopic current is almost proportional to the probability density function of opening events
H(t), which is the expectation of frequency of openings (number per unit time) at time t. In this
case, the mean open duration τ only scales the macroscopic current and the specific distribution
of open duration has a negligible effect on the shape of the macroscopic current. As τ increases,
the specific shape of the open durations distribution D(t) becomes more important in
determining the macroscopic current and the distribution of opening events becomes less
important. For a very long mean open duration (compared to the time interval over which the
opening events occur) the macroscopic current becomes almost proportional to the probability
of an open duration longer than t, (1−Q(t)), and the scaling factor is average H(t), the average
number of openings per record. Physiologically, this is the case when all channels open within
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a very short interval after beginning of the test (which causes a rapid rise in macroscopic
current) and stay open on average for a very long duration (which forms a slow decaying
macroscopic tail). In this case, most of the channels do not open more than once and the average
number of openings per record is less than one. The extreme case of this behavior is when all
channel openings occur at time zero.

Explaining Previous Observations
Using the derived relationship between macroscopic current and statistical properties of single
channel records, it is possible to explain previous observations about the relation between
macroscopic current and single channel statistics.

One example is the case of single channel opening that occurs at the beginning of the test. It
has been reported that for this case, the life time of open duration (with a single exponential
distribution) is equal to the time constant of an exponentially decaying macroscopic current
[11,23]. Here H(t) will be a Dirac delta function as all the openings occur at time zero:

H (t) = Aδ(t) (26)

and Equation (16) reduces to:

G(t) = A(1 − Q(t)) (27)

where A is the average number of openings per record and is less than or equal to one. Having
an exponential function for D(t),

D(t) = e−t/τ

τ (28)

Q(t) becomes:

Q(t) = 1 − e−t/τ (29)

and consequently:

G(t) = Ae−t/τ (30)

Therefore τ is both the time constant of the distribution function of open duration (Equation
(28)) and the time constant of the exponentially decaying macroscopic current (Equation (30)).

Another example is the case of channel bursting (multiple openings) with all first openings at
time zero [3,12]. The duration of burst opening is a random variable, commonly modeled with
a single exponential pdf. It was concluded that in this case the burst openings add another time
constant to the macroscopic current relaxation curve, which reflects primarily the duration of
bursting. Assuming a uniform probability density function for opening events within all bursts
and an exponential pdf for the duration of the bursts, we write the following probabilities, P:

P(opening eventwithin a burst between t and t + dt) = βdt (31)

P(burst duration less than t) = 1 − e
−t/τb (32)

Also:
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H (t)dt = P(opening eventbetween t and t + dt) = P(burst duration larger that t) • P(opening
eventwithin a burst between t and t + dt)

(33)

and therefore:

H (t) = βe
−t/τb (34)

substituting in Equation (16):

G(t) =
βτbτ

(τb − τ) (e
−t/τb − e−t/τ) (35)

In this case, the macroscopic current shows a two time constant exponential behavior. One
time constant is equal to the mean channel open duration (τ) and the other is equal to the mean
burst duration (τb). If the mean burst duration is considerably longer than the mean channel
open duration (which usually it is), then for the macroscopic current of Equation (35), the time
constant of the decaying tail current is equal to the mean burst duration, rather than to the mean
channel open duration. Equation (35) is the general form of a function that is formulated as the
convolution of two single exponential functions. For example, for the special case where single
channel sweeps have only single openings with variable latencies, the equation developed by
Aldrich et al [10] has a similar form but the time constants are associated with open duration
and latency to first opening.

Number of Channels
We propose a method for estimating the number of channels that contribute to measured
macroscopic current (e.g. the whole cell current) as an application of the presented analysis.
This method has advantages and disadvantages compared to other methods of estimation
including channel labeling, gating current measurement, fluctuation analysis, and computation
of the ratio between the peak cell current and the amplitude of single channel current [24]. The
labeling method requires knowledge of the specificity and stoichiometry of binding of the
labeling agent for an accurate estimate. However, this is a direct approach that provides
information about the distribution of the channels as well. Estimating the number of channels
by measuring gating current is only applicable for channels with steep voltage dependence and
requires isolating the gating current of one channel type. Estimating the number of channels
using fluctuation analysis [25] is not applicable for channels with transient current. The ratio
method gives the number of channels that are open at peak current (a lower limit for the number
of channels) and the actual number of channels can be much greater. To obtain a reasonably
accurate estimate of the number of channels using this method, the fraction of open channels
contributing to the peak current must be known.

The method suggested in this paper requires certain knowledge of the statistical properties of
single channel data. Fortunately, the statistical behavior of a particular ion channel is
determined by channel properties that are consistent among different cells of the same type.
Therefore, it is not necessary to repeat the single channel recordings each time the number of
channels is estimated. Note that this method estimates the number of channels by fitting the
entire waveform of the macroscopic current, not only its peak value, thus providing a more
accurate estimation.

The Inverse Relationship
In this paper we show how the macroscopic current can be computed from certain statistical
properties of single channel records. The next question is: is it possible to compute any of the
statistical properties of single channel gating from measured macroscopic current? and if so,
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what statistical properties and how? Importantly, is it possible to generate the single channel
sweeps from these estimated statistical properties? These are addressed in the accompanying
paper [26].

Acknowledgements

The authors would like to thank Professor Christopher J. Lingle for providing the experimental data for this study.
Many thanks go to Dr. Leonid Livshitz, Dr. Gregory Faber, Jonathan Silva, Thomas O'Hara, Keith Decker, Namit
Gaur and Niloufar Ghoreishi for useful advice and discussions. This research was supported by NIH-NHLBI Merit
Award R37-HL 33343 and RO1-HL 49054 (to Y.R.). Yoram Rudy is the Fred Saigh Distinguished Professor at
Washington University in St. Louis.

References
1. Neher E, Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle

fibres. Nature 1976;260:799–802. [PubMed: 1083489]
2. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. Improved patch-clamp techniques for high-

resolution current recording from cells and cell-free membrane patches. Pflugers Arch 1981;391:85–
100. [PubMed: 6270629]

3. Colquhoun, D.; Hawkes, AG. The Principles of the Stochastic Interpretation of Ion-Channel
Mechanism. In: Sakmann, B.; Neher, E., editors. Single-Channel Recordings. Plenum Press; New
York: 1995. p. 409-482.

4. Colquhoun D, Hawkes AG. Relaxation and fluctuations of membrane currents that flow through drug-
operated channels. Proc R Soc Lond B Biol Sci 1977;199:231–62. [PubMed: 22856]

5. Colquhoun D, Hawkes AG, Merlushkin A. Properties of single ion channel currents elicited by a pulse
of agonist concentration or voltage. Phil Trans R Soc Lond A 1997:1743–1786.

6. Horn R, Lange K. Estimating kinetic constants from single channel data. Biophys J 1983;43:207–23.
[PubMed: 6311301]

7. Colquhoun D, Hawkes AG. On the stochastic properties of single ion channels. Proc R Soc Lond B
Biol Sci 1981;211:205–35. [PubMed: 6111797]

8. Milescu LS, Akk G, Sachs F. Maximum likelihood estimation of ion channel kinetics from macroscopic
currents. Biophys J 2005;88:2494–515. [PubMed: 15681642]

9. Celentano JJ, Hawkes AG. Use of the covariance matrix in directly fitting kinetic parameters:
application to GABAA receptors. Biophys J 2004;87:276–94. [PubMed: 15240464]

10. Aldrich RW, Corey DP, Stevens CF. A reinterpretation of mammalian sodium channel gating based
on single channel recording. Nature 1983;306:436–41. [PubMed: 6316158]

11. Anderson CR, Stevens CF. Voltage clamp analysis of acetylcholine produced end-plate current
fluctuations at frog neuromuscular junction. J Physiol 1973;235:655–91. [PubMed: 4543940]

12. Neher E, Steinbach JH. Local anaesthetics transiently block currents through single acetylcholine-
receptor channels. J Physiol 1978;277:153–76. [PubMed: 306437]

13. Vandenberg CA, Horn R. Inactivation viewed through single sodium channels. J Gen Physiol
1984;84:535–64. [PubMed: 6094704]

14. Horn R, Vandenberg CA. Statistical properties of single sodium channels. J Gen Physiol 1984;84:505–
34. [PubMed: 6094703]

15. Gibb AJ, Colquhoun D. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells
dissociated from adult rat hippocampus. J Physiol 1992;456:143–79. [PubMed: 1293277]

16. Correa AM, Bezanilla F. Gating of the squid sodium channel at positive potentials: II. Single channels
reveal two open states. Biophys J 1994;66:1864–78. [PubMed: 8075324]

17. Xia XM, Ding JP, Lingle CJ. Molecular basis for the inactivation of Ca2+- and voltage-dependent
BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 1999;19:5255–
64. [PubMed: 10377337]

18. Rothberg BS, Magleby KL. Kinetic structure of large-conductance Ca2+-activated K+ channels
suggests that the gating includes transitions through intermediate or secondary states. A mechanism
for flickers. J Gen Physiol 1998;111:751–80. [PubMed: 9607935]

Nekouzadeh and Rudy Page 16

Math Biosci. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



19. Oppenheim, AV.; Schafer, RW.; Buck, JR. Discrete-Time Signal Processing. Prentice Hall;
Englewood Cliffs, N.J: 1989.

20. Colquhoun, D.; Sigworth, FJ. Fitting and Statistical Analysis of Single-Channel Records. In:
Sakmann, B.; Neher, E., editors. Single-Channel Recording. Plenum Press; New York: 1995. p.
483-588.

21. Pratt, WK. Digital image processing. John Wiley & Sons; New York: 1978.
22. Sigworth FJ, Sine SM. Data transformations for improved display and fitting of single-channel dwell

time histograms. Biophys J 1987;52:1047–54. [PubMed: 2447968]
23. Colquhoun D. How fast do drugs work. Trends Pharmacol Sci 1981;2:212–217.
24. Hillie, B. Ion Channels of Excitable Membranes. Sinauer Associates, Inc; Sunderland: 2001. p.

377-404.
25. Sigworth FJ. The variance of sodium current fluctuations at the node of Ranvier. J Physiol

1980;307:97–129. [PubMed: 6259340]
26. Nekouzadeh A, Rudy Y. Statistical properties of ion channel: II. Estimation from macroscopic current.

Math Biosci. 2006Submitted

Nekouzadeh and Rudy Page 17

Math Biosci. Author manuscript; available in PMC 2008 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Comparison of the performance of a median (solid black) and a FIR filter (dashed black) for
removing noise and unwanted pulses from single channel current recordings (grey). Both filters
are tuned to a cut off duration of 0.5 ms to remove pulses with pulse duration, d, less than 0.5
ms and pass the pulses with duration greater than 0.5 ms. The duration of the left pulse is
slightly less that 0.5 ms (should be suppressed by the filter) and the duration of the right pulse
is slightly more than 0.5 ms (should pass through the filter).
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Figure 2.
Probability density function (pdf) of opening events. Black curve is the derivative of the smooth
curve fitted to P(t), the cumulative density function of opening events. Grey curves were
derived by counting the events in time windows of 0.4 ms (panel a) and 4.0 ms (panel b).
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Figure 3.
The statistical properties used in generating single channel records. a) Probability density
function (pdf) of open duration D(t)=0.25*exp(−t/4). b) pdf of closed duration B(t)=4/(π
(t2+4)). c) pdf of latency to first opening F(t)=0.05*(exp(−t/20)− exp(−t/4)). d) Distribution of
the number of openings per record, E(n), with up to five openings per channel.
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Figure 4.
Two sets of single channel sweeps that have the same statistical properties (statistical properties
are shown in figure 3). Each panel a or b, shows 20 randomly selected sweeps (from 1000
computer generated sweeps) on top and the average of all 1000 sweeps on bottom. gi(t) is the
normalized current of a single channel and G(t) is the normalized macroscopic current.
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Figure 5.
a) Representation of pulses of the normalized single channel current as the subtraction of two
unit step functions. gi(t) is the normalized single channel current, and oj(t) and cj(t) are unit
step functions at the opening and closing events respectively.
b) Representation of summation of normalized single channel currents as a difference of
summations of unit steps functions at opening and closing events. G(t) is the summation of all
gi(t), and O(t) and C(t) are the summation of all oj(t) and cj(t) respectively.
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Figure 6.
Samples of single channel currents recorded from BK channels.
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Figure 7.
Processed single channel data. a) Black is the filtered data (median filter) and grey is the
recorded current. Filter removed the high frequency noise without smoothing the transition
edges. b) Black is the rectangular pulse representation of the recorded data (grey). c)
Summation of the rectangular-pulse representation of channel currents (black) compared to
the summation of recorded single channel currents (grey).
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Figure 8.
Cumulative density functions (cdf) of recorded data. Grey curves are measured directly from
rectangular-pulse representation of single channel sweeps and black curves are fitted to these
measured curves. a) P(t), cdf of opening events fitted with three terms exponential function.
b) Q(t), cdf of the open duration fitted with a single exponential function.
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Figure 9.
Probability density functions: a) H(t), opening events b) D(t), open duration, derived by taking
derivatives of the fitted curves of Figure 8.
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Figure 10.
Macroscopic current. Grey curve is the summation of single channel currents, and black curve
is the macroscopic current derived using Equation (16).
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Figure 11.
Black curve is the experimentally measured macroscopic current and grey curve is its scaled
optimal fit. The scaling factor is 446, which is an estimate of the number of channels.
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Figure 12.
Two-dimensional (joint) probability density function (pdf) of adjacent open and closed
durations. The two random variables are a closed duration and the open duration following it.
a) Two-dimensional pdf of adjacent open and closed duration measured from the experimental
data by binning the durations. b) Two-dimensional pdf of adjacent uncorrelated open and closed
duration. The pdf of open duration and closed duration were measured from the data. The
expectation value for the pdf of uncorrelated adjacent open and closed durations was calculated
analytically for the same binning intervals as in panel a. c) Difference between b and a. The
small difference between the measured two-dimensional pdf and the expectation for the
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uncorrelated pdf is within the measurement error, indicating that the open duration is not
correlated to the previous closed duration.
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