
Application of Information Technology j

The Syntax and Semantics of the PRO forma
Guideline Modeling Language

DAVID R. SUTTON, BA, PHD, JOHN FOX, BSC, PHD

A b s t r a c t PROforma is an executable process modeling language that has been used successfully to build
and deploy a range of decision support systems, guidelines, and other clinical applications. It is one of a number of
recent proposals for representing clinical protocols and guidelines in a machine-executable format (see
<www.openclinical.org>). In this report, the authors outline the task model for the language and provide an
operational semantics for process enactment together with a semantics for expressions, which may be used to query the
state of a task during enactment. The operational semantics includes a number of public operations that may be
performed on an application by an external agent, including operations that change the values of data items,
recommend or make decisions, manage tasks that have been performed, and perform any task state changes that are
implied by the current state of the application. Disclosure: PROforma has been used as the basis of a commercial decision
support and guideline technology Arezzo (Infermed, London, UK; details in text).

j J Am Med Inform Assoc. 2003;10:433–443. DOI 10.1197/jamia.M1264.

There is a growing body of research on the representation of
clinical guidelines in forms that are interpretable by computer
systems. The longest established representation is the Arden
Syntax,1,2 which sets out to provide a standard for capturing
condition-action rules and has been widely taken up by
industry. Although the Arden Syntax has been important and
influential, it is recognized that to formalize complex
decisions and care pathways or clinical workflow, a more
expressive formalism will be needed.

To address this, a number of newer languages have been
developed that typically embed logical rules in higher order
structures that represent tasks such as decisions, plans, and
actions, which can be composed into time-oriented networks
to represent protocols and guidelines. The most developed
examples of these ‘‘task network’’ formats are Asbru,3,4 EON,5

GLIF,6–8 GUIDE,9,10 PRODIGY,11,12 and PROforma.13,14

These and other representations are reviewed at <www.
openclinical.org>, and their features and expressiveness have
been compared by Peleg et al.,15 who have placed them in the
context of existing standards for workflow such as those
developed by the Workflow Management Coalition.16

This new family of languages is showing potential for devel-
oping a range of different types of applications and for

standardizing representations of clinical processes such as
guidelines and protocols. However, there are, as yet, few
practical tools available for authoring and implementing
applications using the languages, and where these exist they
have only been developed by the groups who designed the
languages. This is clearly unsatisfactory if we are to achieve
wider dissemination and independent assessment by the
medical informatics community.

To promote wider take-up of these promising new technol-
ogies, it would be highly desirable to provide a precise public
definition of the syntax and semantics for each of the
representations they use. A partial definition of the semantics
of Asbru has been created using Structured Operational
Semantics,17,18 and a formal semantics for an early version of
PROforma is discussed in detail by Fox and Das.33 However,
neither of these efforts provides sufficient information to
permit others to implement tools. A detailed public definition
would permit other groups to:

� Assess what each representation can and cannot capture.
The Peleg et al. study15 made an important start on this,
but their study was based on a limited review of syntactic
features of the representations without considering execu-
tion semantics.

� Carry out independent evaluations and comparisons of the
representations on their own clinical applications.

� Implement software tools for building applications based
on publicly defined formats (e.g., guideline authoring
tools) and field them in clinical use (‘‘enactment engines’’).

� Investigate the value of ‘‘open source’’ knowledge, in
which clinical guidelines, protocols, and the like can be
shared and enacted on software platforms from alternative
suppliers.

This article attempts to address this requirement for
PROforma by providing a full syntax in Backus Naur Form
(BNF) and an operational semantics for the language. Due to

Affiliations of the authors: Oxford Brookes University, Oxford,
England (DRS); Advanced Computation Laboratory, Cancer Re-
search, London, UK (JF).

PROforma has been used as the interchange format and guideline
specification language for a commercial decision support technology:
Arezzo from InferMed Ltd. The first author has no connection with
this company; the second is a stock-holder in the company but has
no day-to-day involvement in its commercial activities.

Correspondence and reprints: David R. Sutton, Oxford Brookes
University, Oxford, England; e-mail: <david.r.sutton@ntlworld.
com>.

Received for publication: 10/04/02; accepted for publication:
05/13/03.

433Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

limitations of space, we present only the core concepts and
interpretation of the syntax and semantics here, but the full
definition is available in a companion document, which can
be downloaded from our website.19 It is hoped that this
publication will facilitate use of the language as widely as
possible and proposals for continuing development.

Background
The PROforma Language and Method
PROforma has been used to develop a range of clinical appli-
cations, including:

� CAPSULE for supporting general practitioners (GPs) in
prescribing medications for common conditions.21

� ERA, which assists GPs in complying with urgent (two-
week) cancer referral guidelines (currently on trial in the
UK National Health Service, see <www.infermed.com/
era>).

� RAGs, a system for risk assessment in cancer genetics.22,23

� LISA, a decision support system embedded in a clinical
database system for helping clinicians comply with the
dosage rules for a trial protocol for children with acute
lymphoblastic leukemia.24

� A system that integrates decision support with Clinical
Evidence (in collaboration with BMJ Publishing).25

Two main implementations of a PROforma engine are
currently available, the Arezzo implementation, which is
available commercially from InferMed Ltd. (London, UK) and
the Tallis implementation from Cancer Research UK. The
Arezzo implementation’s behavior is closely similar, al-
though it is based on a somewhat earlier PROforma language
model (e.g., a larger set of control states, see text).

A commercial toolset for authoring and enacting guidelines
written in PROforma is available from InferMed Ltd.26 This
company has also developed clinical applications using this,
including Arno, a system to advise on the management of
pain in palliative care, and MACRO, a Web-based clinical trial
management system.

In PROforma, a guideline is modeled as a set of tasks and data
items. The tasks are organized hierarchically into plans. The
PROforma task model divides tasks into four classes: Actions
represent some procedure that needs to be executed in the
external environment (e.g., administering a drug or updating
a database). Enquiries represent points in a guideline at which
information needs to be acquired from some person or
external system. Decisions are points at which some choice has
to be made, either about what to believe or what to do. Plans
are collections of tasks that are grouped together for some
reason, perhaps because they share a common goal, use a
common resource, or need to be done at the same time.

PROforma processes may be represented diagrammatically as
directed graphs in which nodes represent tasks and arcs
represent scheduling constraints. By convention, plans are
represented as rounded rectangles, decisions as circles,
enquiries as diamonds, and actions as squares. A guideline
itself contains a single root plan, which may be recursively
divided into sub plans.

Figure 1 illustrates a PROforma application in which an
enquiry ‘‘Presentation’’ gathers information about the patient

and is followed by a decision, ‘‘Overdose Type,’’ which may, in
turn, be followed by one of two plans: ‘‘Staggered Overdose’’
or ‘‘Normal Overdose.’’ These two plans could themselves be
displayed graphically using the conventions outlined here.

Properties of Tasks and Data Items
Each task can have a number of properties whose values
determine how it is to be interpreted. The value of a property
may be a scalar value (e.g., an integer), an expression, or it may
be an object, which, itself, has properties. We do not have
space here to describe all the properties that tasks or data items
may have. However, we present a number of examples. First,
all tasks and all data items have the following properties:
Caption and description: In PROforma anything that can have
any properties at all can have a text caption and a description,
which are used to provide short or long comments (e.g.,
explanations of the intended purpose of a task).

All tasks have the following properties: Precondition: a truth-
valued expression that must be true when a task is started.
Task scheduling constraints: logical constraints that prevent one
task from starting before another task or set of tasks has been
completed.

Particular subclasses of tasks have distinctive properties.
Decisions have the following properties: Candidates: objects
representing the options to be considered when a decision is
to be taken. Candidates have properties of their own, in-
cluding a recommendation rule, which is a PROforma expres-
sion used to express the conditions under which it would be
appropriate to commit to that candidate. Arguments: objects
representing arguments for, against, or simply relevant to
a particular candidate. An argument consists of a truth-
valued expression and a caption and description describing
that expression.

In addition, plans have the following control properties:
Termination and abort conditions: truth-valued expressions that
represent sufficient (though not necessary) conditions for
successfully terminating the current plan and continuing
enactment of successor tasks, or aborting the plan and
canceling downstream tasks.

PROforma Software
A number of software components have been written to
create, visualize, and enact PROforma guidelines. The Tallis
software suite developed by this group includes a set of
components written entirely in Java. The suite includes two

F i g u r e 1. A simple PROforma application.

434 SUTTON, FOX, Syntax and Semantics of PROforma

applications: the Composer, which supports creation, editing,
and graphical visualization of guidelines, and the Tester,
which enables a developer to step through and debug
a guideline. These applications access various other Tallis
components via their APIs. These other components include
a Parser, which reads and writes guidelines expressed as text
files, and an Engine, which enacts guidelines and allows them
to be manipulated by other applications. We also have
developed various Java Servlets that allow guidelines to be
published and enacted over the Web. Note that the PROforma
language definition does not address any data security issues
that may be raised by communication between components
using HTTP (e.g., patient data transmission); these are
regarded as implementation matters.

The parser and engine can be viewed respectively as concrete
implementations of PROforma’s syntax and operational
semantics.

Figure 2 illustrates how the Tallis components may be
deployed so as to allow guidelines to be developed and
tested on a standalone PC or workstation. The Composer
application is used to graphically create and edit the
guideline. This tool calls on the Parser to save the guideline
as a text file and to subsequently reload such text files. The
guideline is tested and debugged using the Tester application,
which calls on the Engine to enact the guideline.

Figure 3 shows how the Tallis components may be deployed
so as to allow guidelines to be enacted over the Web. A user
sitting at a client PC or workstation starts the guideline and
interacts with it through a Web browser. A Web server
processes HTTP requests from the browser by creating a Tallis
Engine and then using the Engine API to load and enact the
guideline. The Web server may obtain patient data from
a database server using a database connectivity protocol such
as JDBC.

We have developed a representation format that allows the
relationship between data items in a guideline and records in
a patient record system to be expressed as an XML file.
However, no implementation of this format currently exists.
Hence, Java code must be written to map the guideline onto
the patient record system.

An Example Guideline
We can illustrate the use of PROforma by looking at the simple
guideline shown in Figure 4. This guideline is an im-
plementation of a UK Government directive to the effect that
all patients presenting to their GPs with symptoms indicative
of breast cancer should be seen by a specialist consultant
within two weeks. The guideline consists of five tasks. The
enquiry Clinical Information describes the data needed by the
guideline, these data include the patient ’s age and sex and
various true/false data items such as whether the patient is
experiencing intractable pain. The decision, Referral Decision,
defines the arguments in favor of and against urgent referral
(within two weeks), nonurgent referral, and no referral at all.
The actions, Two week referral, Nonurgent referral, and No
referral have properties whose values describe what should be
done in these three possible cases.

Referral Decision has three candidates, which we shall imagine
have the same names as the three actions in the diagram. Each
candidate will be associated with a number of arguments,
which are logical conditions that influence whether the
candidate will be recommended. These arguments are
combined into a recommendation rule for the candidate.

The arrows in the diagram indicate scheduling constraints, for
instance, the constraint that Referral Decision must wait until
Clinical Information has been completed. A task also may have
preconditions, which are examined after its scheduling
constraints have been met and are used to determine whether
to proceed with the task. In this example only the three
actions have preconditions. These test whether Referral
Decision recommended the candidate corresponding to that
action. For instance, the precondition of Two week referral is
result_of(‘Referral Decision’) ¼ ‘Two week referral’.

Figure 5 describes a concrete scenario illustrating the use of
the guideline. The diagram is relatively high level and shows
the user interacting directly with a PROforma engine, whereas
in reality this interaction would be mediated by some sort of
user interface.

During the enactment of a guideline, each task may undergo
state transitions. A task may be in one of four states: dormant,
in_progress, completed, or discarded. The meanings of these
states and the allowable transitions between them are set
out in ‘‘Task States’’ under ‘‘PROforma Components’’ in the
System Description, below.

At the start of the scenario illustrated in Figure 5 the guideline
has been loaded, and all five tasks are in the dormant state.
The engine then repeatedly examines the properties of the
tasks to determine what state changes and other actions
should occur. The sequence of events is as follows (numbers
in brackets refer to the numbering of the messages in the
figure):

(1) The engine infers that the Clinical Information enquiry can
enter the in_progress state. (2) The enquiry then marks all of its
data sources as being requested; this indicates that values need
to be supplied for these values. The asterisk before the
requestData() message indicates that the message is sent
several times because several data items are requested.
(3) The user then asks which data items are requested and
(4) supplies appropriate values for those items. (5) The engine
infers that Clinical Information can enter the completed state,
because all of its sources have been supplied with values. (6)

F i g u r e 2. Deployment of Tallis components in the guide-
line development environment.

435Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

Referral Decision now becomes in_progress because its sched-
uling constraint has been met. (7, 8) The user than asks for the
recommended candidate of Referral Decision. This candidate
is calculated by evaluating the decisions arguments and
combining them in ways described by the candidates’
recommendation rules. (9, 10) In this scenario, we imagine
that the recommended candidate was Two week referral. The
user commits to this candidate and (11) Referral Decision
enters the completed state. At this point the preconditions of
the actions Two week referral, Non urgent referral, and No referral
are examined and, as a result (12, 13, 14) the first of these
actions enters the in_progress state, and the other two enter the
discarded state. Finally, (15, 16) the user confirms that the
referral has been made, and Two week referral enters the
completed state.

Objectives
Why Does PROforma Need a Syntax
and Semantics?
Our aim is to provide a means by which centers of expertise
can exchange information about medical processes and to

permit different software producers to develop tools that are
capable of reading and processing applications written by
others. We see great potential for developing guidelines in an
‘‘open source’’ manner. To do this, PROforma must have a
defined, publicly available syntax and semantics so that the
meaning of guidelines is unambiguous, and it is possible to
determine whether any given piece of software is correctly
reading and processing PROforma.

What Criteria Should the Syntax
and Semantics Meet?
Before setting out the syntax and semantics of PROforma we
will set out some criteria that have guided their development.

1. The Syntax should, as far as possible, conform to or use
existing standards. These may be formal standards such
as XML or informal standards such as the standard
meaning and precedence of arithmetic operators.

2. The semantics should be specified in such a way that any
operation performed on a guideline has a precisely
defined and unambiguous effect. It should be noted that
this is not a ‘‘motherhood’’ statement. Many languages
contain deliberate and explicit ambiguities in their
semantics. For instance, the C language27 explicitly leaves
undefined the order in which most operators evaluate
their arguments.

3. The syntax should take into account that guidelines may
be viewed graphically in ways that hide certain details of
the guideline text. For instance, the order in which tasks
appear in the guideline text may not be apparent to a user
and consequently should not affect the semantics of the
guideline.

4. Where possible, the semantics should allow operations to
be performed in parallel without ambiguity. For instance,
it should be possible for a user to request that two data
items be updated without worrying that the effect of these
updates will depend on the order in which they occur.F i g u r e 4. A Simple PROforma guideline.

F i g u r e 3. Deployment of
Tallis components when enact-
ing a guideline over the Web.

436 SUTTON, FOX, Syntax and Semantics of PROforma

5. The syntax should include an expression language. The
semantics should define the value of expressions and
allow such expressions to be used to query the guideline.
The semantics also should guarantee that evaluation of
expressions does not have any side effects, i.e., that it does
not change the state of the guideline.

6. The description of the syntax and semantics should be
sufficiently formal to leave no ambiguity but should not
require the reader to have any more background
knowledge of mathematics than is necessary and should
not introduce any more specialist notation than necessary.

7. The semantics should make it easy to reason about the
behavior of a guideline, for instance, whether it will
terminate under some given set of conditions.

Approaches to the Definition of a Semantics
There are a number of possible ways in which the semantics
of a language may be defined. Ullman and Aho28 identify the
following approaches:

Mathematical (or denotational) semantics: in this approach,
a mapping is defined between sentences in the language and
mathematical objects that these sentences are said to denote.29

Axiomatic definition: rules are defined that relate the values
of data before and after the execution of each language
construct.30

Extensible definition: the semantics is defined in terms of a set
of primitive operations.

Translation: the semantics of a language are defined through
rules that specify how it may be translated into some other
language whose semantics are already known, such as the
lambda calculus.31

Operational semantics: an abstract machine is described and
the enactment and rules are provided for enacting programs
on this abstract machine.

The PROforma Specification provides an operational seman-
tics for the language. An abstract PROforma engine is
described (see The Abstract PROforma Engine Section) along
with a set of ‘‘public operations’’ (see Public Operations of the
Abstract Engines Section) that may be performed on the
engine by an external system. Rules are set out that describe
how the public operations change the state of the abstract
engines.

The style and notational conventions used in the PROforma
specification are in some ways similar to Z.32 However, we
have attempted to provide a definition of the semantics that
can be understood without the extensive background reading
that would be required to understand a definition written in Z.

System Description
The Syntax of PROforma
The syntax of PROforma is set out as a Backus Naur Form
(BNF) on our website.20 Guidelines that do not conform to
this syntax cannot be enacted. The BNF syntax can be divided
into two parts. The syntax of PROforma expressions defines
the forms that PROforma allows logical conditions and
mathematical expressions to take. This part of the syntax is
likely to be enhanced in the future as additional mathematical
and logical operators are added to the language. The rest of
the BNF defines how the definitions of tasks and other
guideline components should be arranged and separated. It is
likely that this part of the syntax will be redefined in XML.

The PROforma specification also sets out a type inference
algorithm for PROforma expressions and imposes type
restrictions on expressions that are values of properties. For
instance, the value of the precondition property of a task must
be a truth-valued expression. The current implementation of
PROforma warns if an expression cannot be typed or has the

F i g u r e 5. Sequence diagram shows the use of the guideline shown in Figure 4.

437Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

wrong type but does not prevent guidelines containing such
errors from being loaded or enacted.

PROforma Components
The semantics of PROforma treats a guideline as a set of
objects, referred to as PROforma components. The classes that
are used to instantiate these objects are arranged in an
inheritance hierarchy as illustrated in Figure 6.

The semantics of PROforma does not impose any real world
interpretation of the classes shown in Figure 6. However, the
intended interpretation of most of these classes has been
sketched out above. The only classes not mentioned in that
section are warning conditions (which describe conditions
that should be checked when a value is supplied for a data
item), parameters (which are used to hold data specific to
a particular instance of a task), and sources (which are used to
describe the information that should be gathered by an
enquiry task).

As we previously mentioned, each class has a number of
named properties, and each class inherits all the properties of
its superclasses. An instance of a class will have values for
each of the properties of that class (including those inherited
from its superclasses). For example, when adding an instance
of the Task class to a guideline, we must specify what values
that instance has for each of the properties of the Task class
including those properties that it inherits from the Component
class, for example, the name and caption properties.

Each instance of any component has a Component Identifier
that is unique to that instance, i.e., no two instances have the
same identifier even if they are instances of different classes.

The value of a property must be a PROforma Value, that is, it
must be one of the following:

� A number (either real or integer).
� A text string.
� A PROforma expression (see The Semantics of PROforma

Expressions).
� A Component Identifier.
� One of a number of constants defined in the PROforma

specification. We shall not list all of these, but they include
the values unknown, true and false, as well as the task states
dormant, in_progress, discarded, and completed (see Task
States, below).

� A finite sequence of PROforma values. We use angle
brackets to denote sequences, e.g. h1,2,3,4,5i.

Task States
All tasks have a state property, which can take four different
values: dormant, in_progress, discarded, and completed. All tasks
initially are in the dormant state. The PROforma semantics

does not impose any real-world interpretation of task states,
but the usual interpretation would be (loosely speaking) that
a task is dormant if it has not been started, and it is not yet
possible to say whether it will be started, in_progress if it has
been started, discarded if the logic of the guideline implies
either that it should not be started or that it should not be
completed, and completed if it has been done.

Figure 7 illustrates the allowed transitions between task
states. The reason there are transitions out of the completed
and discarded states is that tasks may be cyclic, that is, that
they may be enacted many times during enactment of a plan.
The transition from completed to in_progress occurs when the
task itself cycles, and the transitions from completed and
discarded to dormant occur when its parent plan cycles.

The state transition diagram shown above is simpler than that
described by Fox and Das,33 which has 11 states. This is the
result of a deliberate attempt to reduce the number of states to
the minimum necessary to provide the required behavior
while keeping the semantics of the language as simple as
possible. Thus, statements about tasks that might be of
interest to the user are not described as ‘‘states’’ if they can be
inferred from the values of that task’s existing properties.

The Abstract PROforma Engine
The semantics of PROforma are defined in terms of an Abstract
PROforma Engine. An abstract PROforma engine is responsible
for the enactment of, at most, one guideline. Note that this
does not make it impossible to enact two or more guidelines
at the same time, it just means that we would have to describe
these guidelines as being enacted in separate engines.

The state of an abstract engine is defined by the following
four variables.

F i g u r e 6. The PROforma
component set.

F i g u r e 7. Task state transitions. An arrow between two
states indicates that a transition between those states is
possible. The circumstances in which the transition would
actually occur are too complex to show in the diagram.

438 SUTTON, FOX, Syntax and Semantics of PROforma

� The Properties Table. This is a three-column table containing
the current values of all the properties of all the
components in the guideline. Each row in the table is of
the form (C,P,V) where C is a unique identifier for some
component in the guideline, P is an identifier for some
property of that component, and V is the current value for
that property. The Properties Table cannot contain two
rows with identical values for C and P.

� The Changes Table. This is a table containing new values
that are to be assigned to properties of components as
a result of operations that have been performed on the
guideline. The rows of the Changes Table have a similar
form to those of the Properties Table. Each row in the table
is of the form (C,P,V) where C is a unique identifier for
some component in the guideline, P is an identifier for
some property of that component, and V is a new value
that should be assigned to that property. The Changes
Table may contain multiple rows with the same values for
C and P. However, when the engine attempts to process
these rows it will generally set the Exception flag (see
below) to true.

� A logical flag Exception, which is true if an abnormal event
has occurred in the processing of a guideline operation and
false otherwise.

� A real number known as the EngineTime. The value of the
EngineTime may only be changed by the Abstract Engine’s
setEngineTime operation (see Public Operations of the
Abstract Engine). The semantics does not require the
EngineTime to correspond to any measure of time in the
real world. However, the Tallis implementation of PRO-
forma attempts to make the EngineTime correspond as
closely as possible to the number of milliseconds that have
elapsed since midnight, January 1, 1970 UTC.

Figure 8 illustrates the state of an Engine running the
guideline shown in Figure 4 at the point just after a candidate
for the Referral Decision has been committed. The tasks
named No referral and Two week referral are currently in the
dormant state but will, respectively, enter the discarded and
completed states once the changes in the Changes Table are
enacted.

Public Operations of the Abstract Engine
The PROforma specification defines a number of public
operations that an external system may request the engine to

perform. An operation may receive certain values as inputs,
may yield certain values as outputs, and may change the
contents of the Properties Table or Changes Table or the
values of the Exception or EngineTime variables.

An implementation of the PROforma engine should imple-
ment all of the public operations and should not allow
external agents to change its state in ways that cannot be
achieved by performing the above operations in some order.

The reason for imposing these restrictions is that they will
enhance our ability to reason about what changes in the state
of the engine can occur under what conditions. Table 1 gives
informal descriptions of the engine’s public operations. A
more precise definition may be found in the Appendix.

Note that an implementation is free to implement any other
operations as long as they do not change the state of the
guideline. In general, an implementation should implement
methods allowing complete read access to the Properties
Table.

The Semantics of PROforma Expressions
The PROforma specification also defines the value of any
expression when evaluated over any guideline. The value of
an expression is defined recursively over the syntax of
expressions. The full definition may be found on our website.20

It is an important feature of the evaluation of expressions that
it is completely side effect free. By this we mean that evaluating
an expression does not in any way change the state of the
guideline over which it is evaluated.

Status Report
In a previous section we set out a number of criteria that the
syntax and semantics of a guideline modeling language
might be expected to meet. The current PROforma specifica-
tion meets these criteria in most respects. However, there are
certain points that would merit further work.

Conformance with Existing Standards
During the period in which the PROforma language and
associated tools have been developed, a number of standards
have emerged for the storage and interchange of structured
information of various kinds. These include HL7 RIM,34

XML,35 RDF,35 and DAML.36 Currently, the specification of
PROforma does not make use of these standards. However, an

F i g u r e 8. Example of engine state.

439Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

XML specification of PROforma is being developed, and the
latest generation of PROforma software has been constructed
in such a way as to minimize the effort required to adapt to
emerging standards.

Precision and Unambiguity
The semantics of PROforma provides an unambiguous
definition of the response of the abstract engine when any
of its public operations are performed. However, because it is
abstract, the specification of the engine does not impose any
restrictions on how data must be represented in a concrete
implementation. For instance, it does not describe how many
bytes should be used to represent integers or real numbers. It
currently is unclear whether these decisions should form part
of the PROforma specification or whether they should be left
to implementers of the language.

Discussion
The primary goal of defining the semantics of PROforma is
to facilitate wider discussion of the language and to allow it
to be refined in light of the experience and different
viewpoints of others in the medical informatics community.
We see this as conferring a number of benefits, including
building on the experience of others to improve the language
and associated technologies; contributing experience with
PROforma to general discussions of clinical knowledge inter-
change formats and standards; and facilitating discussion of
technologies for disseminating knowledge, particularly dis-
cussion of open source knowledge repositories.

Technical issues on which we seek input from the medical
informatics community include, but are by no means
limited to:

� Approaches to bringing PROforma into line with relevant
standards established by prominent standards organiza-
tions, such as HL7, the workflow management coalition,
and others.

� Integration with other knowledge representation technol-
ogies, such as medical language and ontology representa-
tion systems.

� The definition of standard interfaces to external data and
knowledge sources.

� Requirements for extending PROforma’s expression lan-
guage, e.g., the standardization of PROforma’s first order
logic features, and the introduction of operators allowing
more flexible reference to guideline state.

� Improved temporal reasoning, including the ability to
represent temporal constraints and abstractions about the
state of tasks (e.g., when a task was completed or a data
value was acquired) and the evolution of values, e.g., the
ability to define temporal predicates such as ‘‘increasing’’
or ‘‘decreasing.’’37

As with other work on modelling clinical guidelines (e.g.,
Arden Syntax, GLIF) we see an important potential role of
PROforma as an interchange format for capturing guidelines
and care pathways in a form that may be enacted on different
software platforms or customized using different authoring
and editing tools. We believe there is an indefinite number of
different classes of application in which standard PROforma
guidelines or other applications may need to be edited
and enacted in different ways for different environments.
Examples from our own work include a project (REACT)38

which is developing planning tools for customizing generic
PROforma guidelines into individualized patient care plans,
the adaptation of cancer treatment protocols to permit
different tasks within the protocol to be enacted by a number
of distributed PROforma agents,39 and tools for integrating
applications written in XML PROforma with multimedia
documents and other XML resources.40

Finally, we see the new generation of task-oriented guideline
modeling technologies as a major vehicle for disseminating
medical knowledge.41 We believe that an important future
development will be the creation of repositories of enactable
guidelines, which complement the repositories of conven-
tional (natural language) guidelines to be found at such sites
as the National Guideline Clearing House in the United States
and the National Electronic Library for Health in England.
In effect, these will be repositories of ‘‘open source’’ knowl-
edge of best clinical practice, which will permit guideline
developers to download a published guideline and adapt it
for local use.

This idea is being explored by the Institute for Knowledge
Implementation based in Boston, MA <www.imki.org> and
OpenClinical <www.openclinical.org> who are both devel-
oping repositories, focusing on rule-based representations at
IMKI and task-based representations at OpenClinical. The
two organizations are working together to explore methods
for open source knowledge publishing in a format-indepen-
dent manner, looking particularly at the need to develop
editorial methods for this new form of knowledge publishing,

Table 1 j Public Operations

Operation Description

loadGuideline Load a guideline represented by a text string conforming to the PROforma syntax.
evaluateExpression Determine the value of a given PROforma expression
addDataValue Change the value of a given data item.
confirmTask Inform the engine that a given task has been performed.
commitCandidate Commit to a particular candidate or candidates of a decision.
sendTrigger Send a trigger to the engine. Triggers provide a means of explicitly starting tasks without waiting for their

scheduling constraints to be satisfied.
setEngineTime Set the engine time. As mentioned above the semantics does not require the engine time to correspond to any measure

of ‘‘real world’’ time, but implementations of the engine will in general establish some such correspondence.
runEngine Informally, the effect of the runEngine operation is to update the Properties Table so as to reflect the consequences

of any previous operations that have been performed. For instance, if a task has been confirmed then the
runEngine operation may cause other tasks to enter the in_progress state as a result of their scheduling
constraints being satisfied. A more precise definition of this operation is given in the appendix.

440 SUTTON, FOX, Syntax and Semantics of PROforma

which support high standards of knowledge quality, opera-
tional safety, and ethical practice in the creation and dis-
semination of medical knowledge.42,43

We are strongly committed to making the results of this work
available to others to use and to build on the experience of
other communities in the development of PROforma technol-
ogy. For this purpose, the Tallis toolset (PROforma and HTML
authoring environment, enactment engine, and publishing
package for making applications available over the Web) and
documentation are available for research purposes and may
be obtained by application to the authors.

References j

1. Hripcsak G, Ludemann P, Pryor TA, Wigertz OB, Clayton PD.
Rationale for the Arden Syntax. Comput Biomed Res.
1994;27:291–324.

2. Hripcsak G. Tutorial on how to use the Arden Syntax. Writing
Arden Syntax medical logic modules. Comput Biol Med.
1994;24:331–63.

3. Miksch S, Shahar Y, Johnson P. Asbru: A task-specific, intention-
based and time-oriented language for representing skeletal
plans. In: Motta E, van Harmelen F, Pierret-Golbreih C, Filby I,
Wijngaards NJE (eds). Proceedings of the 7th Workshop on
Knowledge Engineering: Methods and Languages (KEML’97),
Open University, Milton Keynes, January 22–24, 1997.

4. Shahar Y, Miksch S, Johnson P. The Asgaard project: a task-specific
framework for the application and critiquing of time-oriented
clinical guidelines. Artif Intell Med. 1998 Sep–Oct;14(1–2):29–51.

5. Musen MA, Tu SW, Das AK, Shahar Y. EON: A component-
based approach to automation of protocol-directed therapy. J Am
Med Inform Assoc. 1996;3:367–88.

6. Ohno-Machado L, Gennari JH, Murphy SN, et al. The guideline
interchange format: a model for representing guidelines. J Am
Med Inform Assoc. 1998;5:357–72.

7. Peleg M, Boxwala A, Ogunyemi O, et al. GLIF3: the evolution of a
guideline representation format. Proc AMIA Symp. 2000:645–9.

8. Peleg M, Ogunyemi O, Tu S, et al. Using features of Arden
Syntax with object-oriented medical data models for guideline
modeling. Proc AMIA Symp. 2001:523–7.

9. Quaglini S, Stefanelli M, Cavallini A, Micieli G, Fassino C, Mossa
C. Guideline-based careflow systems. Artif Intell Med. 2000;
20(1):5–22.

10. Dazzi L, Fassino C, Saracco R, Quaglini S, Stefanelli M. A patient
workflow management system built on guidelines. Proc AMIA
Annu Fall Symp. 1997:146–50.

11. Purves IN, Sugden B, Booth N, Sowerby M. The PRODIGY
project—The iterative development of the release one model.
Comput Methods Programs Biomed. 1997 Sep;54(1–2):59–67.

12. Johnson PD, Tu S, Booth N, Sugden B, Purves I. Using scenarios
in chronic disease management guidelines for primary care. Proc
AMIA Symp. 2000:389–93.

13. Fox J, Johns N, Rahmanzadeh A. Disseminating medical know-
ledge—The proforma approach. Artif Intell Med. 1998;14:157–81.

14. Bury J, Fox J, Sutton D. The PROforma guideline specification
language: progress and prospects. Proceedings of the First
European Workshop, Computer-based Support for Clinical
Guidelines and Protocols (EWGLP 2000), 2000.

15. Peleg M, Tu S, Bury J, et al. Comparing computer-interpretable
guideline models: a case study approach. J Am Med Inform
Assoc. 2003;10:52–68.

16. The Workflow Reference Model. <www.wfmc.org>. Accessed
July 11, 2003.

17. Balser M, Duelli C, Reif W. Formal semantics of Asbru.
Technical Report. <http://www.protocure.org/Documents/
Deliverables/D2-formal-semantics.pdf>. Accessed Sept 2002.

18. Aceto L, Fokkink W, Verhof C. Structural operational semantics.
In: Bergstra JA, Ponse A, Smolka SA, (eds). Handbook of Process
Algebra. Amsterdam: Elsevier, 2001.

19. Syntax and Semantics of PROforma. <http://www.acl.icnet.uk/
lab/proformaspec.html>. Accessed July 11, 2003.

20. Reference deleted.
21. Walton RT, Gierl C, Yudkin P, Mistry H, Vessey MP, Fox J.

Evaluation of computer support for prescribing (CAPSULE)
using simulated cases. BMJ. 1997;315:791–5.

22. Emery J, Walton R, Murphy M, et al. Computer support for
recording and interpreting family histories of breast and ovarian
cancer in primary care: comparative study with simulated cases.
BMJ. 2000;321:28–32.

23. Coulson A, Glasspool D, Fox J, Emery J. RAGS: a novel ap-
proach to computerised genetic risk assessment and decision
support from pedigrees. Methods Inf Med. 2001;40:315–22.

24. Bury JP, Hurt C, Bateman C, et al. LISA: a clinical information
and decision support system for collaborative care in childhood
acute lymphoblastic leukaemia. Proc AMIA. 2002:988.

25. <http://www.openclinical.org/BMJDemo/jumpstart.htm?
bmj,bmj.pf>. Accessed July 11, 2003.

26. <www.infermed.com>. Accessed July 11, 2003.
27. Kernighan BW, Ritchie DM. The C Programming Language

(ed2). Englewood Cliffs, NJ: Prentice Hall, 1988.
28. Aho AV, Ullman JD. Principles of Compiler Design. Menlo Park,

CA: Addison-esley, 1977.
29. Stoy J. Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory. Cambridge, MA: MIT Press,
1977.

30. Hoare CAR. An axiomatic basis for computer programming.
Comm of the ACM. 1969;12:576–80.

31. Peyton Jones SL. The Implementation of Functional Program-
ming Languages. Englewood Cliffs, NJ: Prentice Hall, 1987.

32. Potter B, Sinclair J, Till D. An Introduction to Formal Speci-
fication and Z. Prentice Hall, 1996.

33. Fox J, Das S. Safe and Sound: Artificial Intelligence in Hazardous
Applications. Cambridge, MA: MIT Press, 2000.

34. <http://www.hl7.org/library/data-model/RIM/modelpage_
non.htm>. Accessed July 11, 2003.

35. <www.xml.org>. Accessed July 11, 2003.
36. <www.daml.org>. Accessed July 11, 2003.
37. Shahar Y, Musen MA. Knowledge-based temporal abstraction in

clinical domains. Artifi Intell Med. 1996;8:267–98.
38. Glasspool DW, Fox J. REACT—a decision-support system for

medical planning. Proc AMIA Symp. 2000:911.
39. Black E, Fox J. Breast cancer referral system with queuing

strategies. ACL Technical Report no. 385, Advanced Computa-
tion Laboratory, Cancer Research UK, 2002.

40. Steele R, Fox J. Enhancing conventional web content with
intelligent knowledge processing. ACL Technical Report no.
384, Advanced Computation Laboratory, Cancer Research UK,
2002.

41. Fox J, Johns N, Lyons C, et al. PROforma: a general technology
for clinical decision support systems. Comput Methods Pro-
grams Biomed. 1997 Sep;54(1–2):59–67.

42. Fox J, Thomson R. Clinical decision support systems: a discus-
sion of quality, safety and legal liability issues. Proc AMIA
Symp. 2002:265–9.

43. Fox J, Bury J, Humber M, Rahmanzadeh A, Thomson R.
Publets: clinical judgement on the web. Proc AMIA Symp.
2001:179–83.

441Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

Appendix: Public Operations
In this appendix we give more detailed definitions of the
public operations that were introduced in Public Operations
of the Abstract Engine. For each operation we specify its
input, its output, and the change that occurs in the engine
state when it is performed. The purpose of this Appendix is
to give an explanation of the semantics that is sufficiently
detailed to show its most important properties.

� loadGuideline.
� Input: a text string conforming to the syntax of

PROforma guidelines.
� Output: none.
� Engine State: The Properties Table is updated so as to

contain those components defined by the input guide-
line. The Changes Table is set to empty. A fuller des-
cription of this operation explaining how the properties
of components are initialized can be found on our
website.20

� evaluateExpression.
� Input: a text string conforming to the PROforma expres-

sion syntax (see The Syntax of PROforma).
� Output: The value of the input expression, as defined by

PROforma’s expression semantics (see The Semantics of
PROforma Expressions).

� Engine State: unchanged.

� addDataValue.
� Input: a component identifier D, which must identify

a data item, and a PROforma value V, which must be
a type correct value for that data item (see The Syntax of
PROforma).

� Output: none.
� Engine State: the operation adds row (D,value,V) to the

Properties Table after removing any other row whose
first two columns have the values D and value.

� confirmTask.
� Input: a Component Identifier C, which must identify

a task.
� Output: none.
� Engine State : the operat ion adds the row

(C,confirmed,true) to the Properties Table after removing
any other row whose first two columns have the values
C and confirmed.

� commitCandidate.
� Input: a Component Identifier D, which must identify

a decision, and a nonempty list of component identifiers
hC1; . . . ;Cniwhichall identify candidates of thedecisionD.

� Output: none.
� Engine State: the operation adds the row (D,result,
hC1; . . . ;Cni) to the Properties Table after removing any
other row whose first two columns have the values D
and result.
It also adds the row (D,confirmed,true) to the Properties
Table after removing any other row whose first two
columns have the values D and confirmed.

� sendTrigger.
� Input: a text string T.
� Output: none.
� Engine State: The engine state is updated as follows:

For each component identifier C such that the Properties
Table contains the row (C,trigger,T) add the row
(C,trigger_active,true) to the Properties Table after re-

moving any other row whose first two columns have the
values C and trigger_active.

� setEngineTime.
� Input: a real number V.
� Output: none.
� Engine State: the value of the EngineTime variable is set

to V.
� runEngine.
� Input: none.
� Output: none.
� Engine State: The Engine State is updated by perform-

ing the following operations:
1. Perform the burst operation (see The Burst and

Enactchanges Operations in this appendix)
2. If the Changes Table is empty then stop, otherwise,

perform the enactChanges operation (see The Burst
and EnactChanges Operations in this appendix) and
repeat from step 1.

Informally, the effect of the runEngine operation is to
update the Properties Table so as to reflect the
consequences of any previous operations that have been
performed. For instance, if a task has been confirmed,
then the runEngine operation may cause other tasks to
enter the in_progress state as a result of their scheduling
constraints being satisfied.

Burst and enactChanges are not public operations. That is,
an implementation of PROforma does not allow them to
be performed at the direct request of an external system.
In fact, a PROforma implementation need not perform
these operations at all, it simply has to ensure that the
runEngine operation updates the engine state in the same
way as it would if these operations were performed.

The Burst and EnactChanges Operations
The runEngine operation updates the Properties Table so as to
reflect the consequences of any previous operations that have
been performed. It is defined in terms of a number of Private
Operations. A private operation is one that is introduced to set
out the semantics of PROforma but which a PROforma
implementation will not make available to external systems.

As described above, the public runEngine operation is
defined in terms of the private operations burst and
enactChanges. These operations are defined as follows.

� burst.
� Input: none.
� Output: none.
� Engine State: the Engine State is updated as follows:

1. Let T1; . . . ; Tn be the identifiers of all the tasks in the
guideline.

2. For i = 1 to n
� Perform the reviewTask operation (See The Review

Task Operation in this appendix) with identifier Ti
as input.

As we shall see in The Review Task Operation Section,
reviewTask is defined in such a way that it does not
matter in what order tasks are reviewed.

Informally speaking, the burst operation examines each
task in turn and determines whether any changes to the
guideline are implied by the state of that task.

442 SUTTON, FOX, Syntax and Semantics of PROforma

� enactChanges.
� Input: none.
� Output: none.
� Engine State: The Engine state is updated as follows:

1. Let n be the number of rows in the Changes Table.
2. For i = 1 to n

� Let (C,P,V) be the contents of the ith row in the
Changes Table.

� If the Changes Table contains a row (C,P,V9) where
V9 6¼ V then set the Exception flag to true.
Otherwise add the row (C,P,V) to the Properties
Table having first removed any other row whose
first two columns have the values C and P.

3. Empty the Changes Table.

The ReviewTask Operation
The burst operation is defined in terms of the operation
reviewTask. The definition of reviewTask refers to the following
private operations:

� initialiseConditions, startConditions, discardConditions, and
CompleteConditions are operations in which input is
a component identifier identifying a task, in which output
is either true or false, and which do not change the state of
the engine.

We shall use the expression initialiseConditions(C) to denote
the output from the initialiseConditions operation when it is
passed the component identifier C as input. We shall use
the same convention to denote the output from the other
operations mentioned above.

� initialise, start, discard, and complete are operations in which
input is a component identifier identifying a task, which
have no output, and which may add rows to the Changes
Table but may not change the Engine State in any other way.

The reviewTask operation then may be defined as follows:

� reviewTask.
� Input: a Component Identifier C that identifies a task.
� Output: none.
� Engine State: The engine state is updated as follows:

n If initialiseConditions(C) = true then perform the initi-
alise operation with input C.

n Else if startConditions(C) = true then perform the start
operation with input C.

n Else if discardConditions(C) = true then perform the
discard operation with input C.

n Else if completeConditions(C) = true then perform the
complete operation with input C.

ReviewTask in More Detail
In this report we do not give complete descriptions of the
private operations that are used in the definition of the
reviewTask operation. There is not enough space for such
definitions to be set out here and, in addition, it is these
operations whose definitions are most likely to change as the
PROforma semantics is refined.

However, we will make the following remarks:

1. As one might expect, the complete operation with input C
will add the row (C,state,completed) to the Changes
Table. Similarly, the initialise, start, and discard operations,

respectively, add the rows (C,state,dormant), (C,state,
in_progress), and (C,state,discarded) to the Changes
Table. Note that these are not the only rows added to
the Changes Table by these operations.

2. The initialise, start, discard, and complete operations may
alter the contents of the Changes Table but do not cause
any other change in the engine state.

3. The initialiseConditions, startConditions, discardConditions,
and completeConditions operations do not cause any
change in the engine state.

4. The value output from the initialiseConditions, startCondi-
tions, discardConditions, and completeConditions operations
is independent of the contents of the Changes Table.

5. When defining the burst operation, we asserted that it
does not matter in what order tasks are input to the
reviewTask method. We justify this assertion as follows:

n Let T1 and T2 be component identifiers that identify
tasks.

n The operation reviewTask when performed with T1 as
input may alter the contents of the Changes Table but
cannot alter the contents of the Properties Table. This
follows directly from points 2 and 3 above and from
the definition of the reviewTask operation.

n The effects of the reviewTask operation when performed
with task T2 as input are independent of the contents
of the Changes Table. This follows directly from point 4
above and from the definition of the reviewTask
operation.

n Consequently, the changes in the Engine State that
result from applying reviewTask to T1 can make no dif-
ferencetowhathappenswhen reviewTask isapplied toT2.

n It can be seen readily from this argument that when
performing the burst operation it does not matter in
what order we apply reviewTask to the tasks in the
guideline.

Motivation
The reason point 5 above matters is that if the effects of the
burst operation did depend on the order in which tasks
where passed to reviewTask then the definition we have
given for Burst would be ambiguous. Furthermore, to resolve
the difference, we would have to impose some sort of
ordering on the tasks in the guideline, which would
inevitably depend on some ‘‘trivial’’ property of those tasks
such as the order in which they appear in the guideline text
or the lexicographic ordering of their names. We would
thus have departed from the criteria that we suggested for
the semantics in the section on What Criteria Should the
Syntax and Semantics Meet?

The observations leads us to suggest a criterion that we
should observe when considering possible modifications to
the detail of the PROforma semantics:

We may (and frequently do) consider modifying the
definitions of the initialise, start, discard, complete,
initialiseConditions, startConditions, discardConditions, and com-
pleteConditions operations. When doing this we should take
care to ensure that points 2, 3, and 4, and hence point 5 above
remain true. In this way we will ensure that the semantics
retains the desirable characteristics mentioned above.

443Journal of the American Medical Informatics Association Volume 10 Number 5 Sep / Oct 2003

	Outline placeholder
	Abstract
	Background
	The PRO
	Properties of Tasks and Data Items
	PRO

	pdf
	Outline placeholder
	An Example Guideline

	pdf
	Objectives
	Why Does PRO
	What Criteria Should the Syntax �and Semantics Meet?

	pdf
	pdf
	Outline placeholder
	Approaches to the Definition of a Semantics

	System Description
	The Syntax of PRO

	pdf
	Outline placeholder
	PRO
	Task States

	The Abstract PRO

	pdf
	pdf
	Outline placeholder
	Public Operations of the Abstract Engine
	The Semantics of PRO

	Status Report
	Conformance with Existing Standards

	pdf
	Outline placeholder
	Precision and Unambiguity

	Discussion

	pdf

