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Abstract
We analyze the local structure of model and empirical food webs through the statistics of three-node
subgraphs. We study analytically and numerically the number of appearances of each subgraph for
a simple model of food web topology, the so-called generalized cascade model, and compare them
with 17 empirical community food webs from a variety of environments, including aquatic, estuarine,
and terrestrial ecosystems. We obtain analytical expressions for the probability of appearances of
each subgraph in the model, and also for randomizations of the model that preserve species' numbers
of prey and number of predators; their difference allows us to quantify which subgraphs are over- or
under-represented in both the model and the empirical food webs. We find agreement between the
model predictions and the empirical results. These results indicate that simple models such as the
generalized cascade can provide a good description not only of the global topology of food webs, as
recently shown, but also of its local structure.
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1. Introduction
Food web theory seeks to understand the functioning of ecosystems by studying the trophic
relations among its species (Cohen et al., 1990). To this end, in the last years great effort has
been devoted to the compilation of comprehensive empirical food webs (see for instance Dunne
et al., 2002). The statistical treatment of these data has revealed several regularities among
food webs belonging to quite diverse habitats, such as deserts, lakes and islands, suggesting
that some robust mechanism common to most ecosystems is at work (Williams and Martinez,
2000; Camacho et al., 2002b; Stouffer et al., 2005).

Several models have been proposed to describe the structure of food webs and clarify the origin
of these patterns. They differ in the mechanisms underlying them and in the level of description.
Some of them describe the dynamics of the network according to evolutionary rules (Amaral
and Meyer, 1999; Rossberg et al., 2005; Rossberg et al., 2006a,b), population biology (Yodzis,
1981), or mixtures of both (Caldarelli et al., 1998; Lassig et al., 2001). Other so-called static
models do not contain the explicit dynamics of the ecosystem, but provide some mechanistic
rules aiming to generate food webs with a statistically similar structure to the empirical ones
(Cohen and Newman, 1985; Williams and Martinez, 2000; Cattin et al., 2004; Stouffer et al.,
2005).
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Two of these static models, the niche model (Williams and Martinez, 2000) and the nested-
hierarchy model (Cattin et al., 2004), yield good predictions for a wide number of statistical
measures of empirical food webs. Indeed, it has been demonstrated analytically that the two
models yield the same distributions for the number of prey and number of predators (Stouffer
et al., 2005), which imply, for example, the same fractions of top and basal species or the
standard deviations of generality and vulnerability, just as observed numerically (Cattin et al.,
2004). Remarkably, these distributions are in good agreement with most of the highest quality
empirical food webs in the literature, providing a general pattern of food web topology
(Camacho et al., 2002a,b; Stouffer et al., 2005).

It has also been demonstrated that much of the success of these models relies in the fact that
they satisfy two basic conditions (Stouffer et al., 2005): (i) the species' niche values form a
totally ordered set, and (ii) each species has a specific exponentially decaying probability of
preying on a given fraction of the species with lower niche values. Any model which satisfies
these conditions will reproduce the distributions of number of prey and number of predators
observed empirically. For instance, the generalized cascade model (Stouffer et al., 2005)—a
generalization of Cohen and Newman's (1985) cascade model to satisfy condition (ii)—
exhibits the same distributions. Those two conditions can thus be interpreted as fundamental
mechanisms shaping food web structure.

Aside few exceptions (Melián and Bascompte, 2004; Bascompte and Melian, 2005), the studies
of these models, however, mainly characterize the global structure of food web topology. Here,
in contrast, we focus on the analysis of the local structure of food webs through the study of
the so-called food web subgraphs or motifs (Fig. 1). This methodology has been applied
successfully to a number of empirical networks, including biological, technological and
sociological systems, to uncover the underlying structure at a scale in between the entire
community and single or pairwise population dynamics (Milo et al., 2002, 2004). Let us note
that some authors have attempted to gain insight into the dynamics and stability of natural
ecosystems in terms of small sub-webs containing species strongly connected, the so-called
“community modules” (Holt, 1997; Holt and Hochberg, 2001). Our perspective is
complementary: whereas the latter approach is dynamical and considers only strong links, we
focus on structural properties of the food webs; to do so we consider all links, and not only the
strong ones. Our perspective is thus similar to the one followed by Bascompte and Melian
(2005), though it differs in several aspects, such as the theoretical approach and our systematic
analysis of all three-node subgraphs.

The purpose of this work is to study the statistics of subgraphs in model and empirical food
webs in order to check if the two basic ingredients for food web construction specified above
can satisfactorily describe not only the global properties of empirical food webs, such as the
distributions of number of prey, of predators and related quantities, but also its local structure.
Because it allows for analytical treatment, we will focus here on the generalized cascade model,
the simplest model obeying those ingredients. Specifically, we study analytically and
numerically the subgraph probabilities for the generalized cascade model and find agreement
between the analytical expressions and the empirical results. We conclude that the model is
able to capture the basic properties of the local structure of food webs. Therefore, simple static
models as the generalized cascade provide a good unifying description of food web structure
both at the global and local levels.

The paper is organized as follows. In the second section, we study the statistics of subgraphs
for the generalized cascade model. This analysis is twofold: we first evaluate the number of
appearances for each subgraph and secondly we study their patterns of over/under-
representation. In the third section, we perform the same analysis for the completely random
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model, as a basis for comparison. Section 4 compares the model predictions with the results
obtained for 17 empirical food webs.

2. The generalized cascade model
The original cascade model (Cohen and Newman, 1985; Cohen et al., 1990) is based on two
rules: (1) species make up an ordered set according to their niche value n drawn uniformly in
the interval [0, 1], and (2) any species j with nj<ni becomes a prey of i with fixed probability
x0 = 2CS/(S − 1); here S is the number of species in the food web, L the number of trophic
connections, and C ≡ L/S2 the directed connectance. Williams and Martinez (2000)
demonstrated that this model is not able to reproduce the properties of real food webs.

Stouffer et al. (2005) demonstrated, however, that it can be easily generalized to provide similar
agreement to the niche (Williams and Martinez, 2000) or the nested-hierarchy (Cattin et al.,
2004) models as compared to many empirical food webs. The generalization consists in that
the probability x with which a species i feeds on species j with nj≤ni is not the same for every
predator i, but it is drawn at random from a probability distribution p(x) given by

p(x) = β(1 − x)(β−1), (1)

the so-called beta-distribution (see Fig. 2). Parameter β is related with the directed connectance
of the empirical food web by C = 1/2(β + 1) (Williams and Martinez, 2000).

2.1. Subgraph probabilities
Neglecting cannibalism or self-links, there are two possible unique subgraphs comprising a
pair of species: (i) single links, A → B, i.e. species A eats species B but not conversely, and (ii)
double links, A↔B. With three species, there are 13 unique subgraphs possible. Since predators
in the generalized cascade model cannot feed on species having a larger niche value, no trophic
loops of any size can exist. As a consequence there is no mutual predation and none of the
eight unique motifs which contain double links will be observed in the generalized cascade
model. Therefore, our study focusses on the five subgraphs S1–S5 (Fig. 1), while the analysis
of the motifs containing double links will be dealt with elsewhere. The present analysis is
nonetheless meaningful since single connections account for the vast majority of the links in
empirical food webs (see Appendix A). Notice that these motifs have a clear ecological
relevance and are additionally related to some proposed community modules; in particular,
motif S1 describes the simple food chain, S2 simple omnivorism, subgraph S3 a trophic loop
involving three species, S4 isolated exploitative competition, and S5 isolated generalist
predation.

The probability pi of subgraph i is related to the number of appearances of the subgraph Ni by

p i = N i

S(S − 1)(S − 2) ∕ 6 , (2)

where the denominator is the total number of possible triplets of species. We choose the
probability p, instead of the number of appearances N because, as we will later demonstrate,
the probability is not a function of S, and instead depends on a single variable, the directed
connectance C. This property is a very interesting one because it allows a unified description
of food webs of different size.

Recall that no trophic loops are possible within the generalized cascade model. Motif S3 is
therefore forbidden and

pS3 = 0. (3)
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We next derive expressions for the remaining motifs, S1, S2, S4, and S5. The probability for
a given motif to appear is equivalent to the probability for three arbitrary species to be connected
in the specified fashion. Let us now consider three arbitrary species, A, B, and C, with
nA>nB>nC. We call xi the probability of species i consuming each species with lower niche
values. It then follows that

pS1 = pS4 = xA xB − xA
2 xB , (4)

p S2 = xA
2xB , (5)

and
pS5 = xA

2 − xA
2xB , (6)

where …  indicates the average over the probability distribution p(x). In addition, because
xA and xB are independent random variables, Eqs. (4)-(6) can be rewritten as

pS1 = pS4 = x
2
− x 2 x , (7)

p S2 = x 2 x , (8)

and
pS5 = x 2 − x 2 x . (9)

These expressions are valid for arbitrary distributions p(x). Substituting the beta-distribution,
Eq. (1) (see Appendix B) becomes

pS1 = pS4 = 4C 2 1 − 2C
1 + 2C , (10)

p S2 = 16C 3

1 + 2C , (11)

and
pS5 = 8C 2 1 − 2C

1 + 2C . (12)

In Fig. 3, we compare the analytical predictions, Eqs. (10)-(12), with simulations of the
generalized cascade model—in these simulations and throughout the paper, subgraphs have
been directly enumerated using dynamic programming, as in the mfinder software for network
motif detection. It becomes visually apparent that the expressions we derived compare quite
well with the model-generated data. Notice that the probabilities p only depend on the
connectance C.

2.2. Patterns of over/under-representation of subgraphs
As a second test of the generalized cascade model, we analyze which subgraphs are typically
over- or under-represented as compared to the corresponding randomized networks (Milo etal.,
2002,2004). The randomized networks are obtained by preserving the number of prey ki and
of predators mi of each species i as in the generalized cascade model, but rewiring their trophic
links randomly using the Markov-chain Monte Carlo switching algorithm (Maslov and
Sneppen, 2002; Itzkovitz et al., 2004).

By virtue of the randomization a species in the randomized network may feed on a species with
a higher niche value than itself, a possibility that is excluded in the model. However, because
of the formulation of the Markov-chain Monte Carlo switching algorithm, no double links are
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produced in the randomization and the resulting networks only contain subgraphs S1–S5
(Maslov and Sneppen, 2002; Itzkovitz et al., 2004). Notice, however, that, by construction, the
distributions of number of prey or of number of predators are the same ones as in the original
network. Then, one must not confuse these randomized networks with completely random
networks, whose distributions are different from the original ones. We deal with the latter ones
in the next section, as a null model for comparison with the predictions of the generalized
cascade model.

Note that, since randomized food webs possess the same degree distributions as the original
ones, the occurrence of patterns of over/under-representation of subgraphs in empirical food
webs would require an explanation. One can think of two principle arguments for their
existence: either they are a consequence of the mechanism generating the network (Artzy-
Randrup et al., 2004) or they provide some ecological advantage and have arisen as a result of
selection pressure. Here we show that the generalized cascade model yields well-defined
patterns of over/under-representation of motifs. If these predictions compare well with
empirical food webs, one might conclude that the second hypothesis is not required and all
patterns arise as the result of the food web generating mechanisms.

We thus next evaluate the probabilities of subgraphs in randomized networks of the generalized
cascade model. Itzkovitz et al. (2003) derived expressions for the mean number of appearances
of each subgraph for randomized networks with an arbitrary degree distribution. In Appendix
B, we calculate the probabilities for the three-species motifs in the randomizations of the
generalized cascade model yielding

prand
S1 = 4C 2 1 − 2C − 8C 2 ∕ 9

1 + 2C , (13)

prand
S2 = 178

9
C 3

1 + 2C , (14)

prand
S3 = 16

27 C 3, (15)

prand
S4 = 4C 2 1 − 14C ∕ 9

1 + 2C , (16)

and
prand
S5 = 8C 2 1 − 16C ∕ 9

1 + 2C . (17)

Fig. 4 compares the analytical predictions for the randomizations, Eqs. (13)-(17), with
simulations of the generalized cascade model finding good agreement. The small discrepancies
observed have their origin in that some of the expressions derived in Itzkovitz et al. (2003) are
approximate.

Finally, we obtain the differences by subtracting the probability of motifs appearing in the
model, Eqs. (10)-(12), and in their randomizations, Eqs. (13)-(17). Table 1 summarizes these
results. We show comparisons between the expressions for p − prand and simulations of the
generalized cascade model in Fig. 5. Our analytical derivations thus predict that food webs
generated by the generalized cascade model have over-expression of motifs S1 (a food chain)
and S2 (simple omnivorism) and under-representation of motifs S3 (a trophic loop), S4
(isolated exploitative competition), and S5 (isolated generalist predation). The percentage of
under/over-representation is, however, rather small, generally under 10%. These predictions
make up our second check of the generalized cascade model.
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3. The completely random model
In the following section, we will compare the analytical expressions derived for the generalized
cascade model with empirical data. However, we calculate them now for a different model, a
fully random network, in order to determine whether the probability functions for the subgraphs
depend significantly on the mechanisms underlying the generation of the network.

In a completely random (Erdos–Renyi) network, each species has the same probability x to be
connected to any other species in the network. According to this definition, the average number
of prey per species is z ≡ L/S = Sx, and the directed connectance yields C ≡ z/S = x.

Let us consider three arbitrary species in = the network, say A, B, and C. They are connected
through subgraph S1 if, for instance, A eats B, and B eats C with no further links among them;
this happens with probability x2(1 − x)4. Of course, there exist other options to build this
subgraph by A, B, and C exchanging their roles, which amounts to a total of six different
configurations. As a consequence, we have

pS1 = 6C 2(1 − C)4. (18)

Similarly, considering the number of configurations for every subgraph and the probability for
each of them, one finds

pS2 = 6C 3(1 − C)3, (19)

p S3 = 2C 3(1 − C)3, (20)

and
pS4 = pS5 = 3C 2(1 − C)4. (21)

Finally, since these networks are completely random, their randomization provides equally
random networks, so that the probabilities for subgraphs S1–S5 in the randomized networks
of this model are exactly the same ones, namely Eqs. (18)-(21). The differences between them
are obviously zero.

4. Subgraphs statistics in empirical food webs
One interesting observation from Figs. 3-5 is that the probabilities generated by model food
webs depend on a single variable, the directed connectance C, and very weakly on the size of
the food web. This indicates that our representation of the probabilities versus C can be
adequate to provide a unified description of empirical data, since it allows us to include in the
same plot food webs with different sizes. If empirical food webs behave as model food webs,
one expects a common trend for the probabilities as functions of C despite having different S
values.

In this section we compute the fraction of appearances for each subgraph S1–S5 for 17
empirical food webs (see Appendix A for details). Figs. 6-8 show the results for the empirical
food webs, their randomizations, and the differences, and also the comparison with the
generalized cascade and the fully random models. One observes that the analytical expressions
obtained for the generalized cascade model provide a reasonable agreement with empirical
data for p and prand with no adjustable parameters; in contrast, the completely random model
provides remarkably poorer fits to the empirical values in most cases.

In the plots for the differences, the data generally appear more noisy. This is due to the fact
that the empirical values for p and prand are in general quite similar in magnitude; they
commonly differ by less than 10%, in agreement with the model predictions. The general trend,
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however, is that motifs S1 and S2 are typically over-represented and motifs S3–S5 are under-
represented, in agreement with the qualitative predictions of the model as expressed in Table
1. Quantitatively, the theoretical curves generally over-estimate the empirical values, while the
numerical simulations of the model provide reasonable estimates.

There exists, however, more noise in the empirical data than exhibited by the model, in
particular for motif S2. To explore this issue further, let us note that it is the same two food
webs which seem to deviate from the general trend in the plots of Fig. 8: they are Bridge Brook
(with C = 0:17) and Skipwith Pond (C = 0.32). Why exactly those two food webs behave
differently from the others is interesting but unclear. We can note that they are the smallest
food webs of the ones studied, each with 25 trophic species (see Table 2). Although statistical
fluctuations grow with decreasing size, they do not seem enough to explain this behaviour.
Note, on the other hand, that they match rather well with the predictions for p and prand
separately (Figs. 6 and 7).

In summary, the behaviour of the two models indicates that the behaviour observed in the
empirical data is not a trivial one: not any model would yield a similar behaviour for the
quantities analyzed. Furthermore, we observe remarkable agreement between the local
structure in the generalized cascade model and the empirical data.

5. Concluding remarks
The predictions of the generalized cascade model for the appearances of subgraphs S1–S5
provide good comparison to the empirical results, in contrast to those for a completely random
model. This generalized cascade model was recently shown to fit empirical data for a number
of global quantities, including the distributions of the number of prey and predators. Here we
show that it also describes the local structure of empirical food webs. This suggests that many
features of food web structure could be explained by considering the two principle ingredients
inside the model, namely (i) the species' niche values form a totally ordered set, and (ii) each
species has a specific exponentially decaying probability of preying on a given fraction of the
species with lower niche values. These could then be considered as basic mechanisms actually
shaping food webs.

It is an interesting ecological question to determine why these appear to be such important
ingredients to explain food web structure. Recently, Rossberg et al. have devised a couple of
dynamic models, the speciation model (Rossberg et al., 2005, 2006a) and the matching model
(Rossberg et al., 2006b) that seem to provide the dynamical explanation. By starting from an
ordered set of species, the dynamic evolutionary rules of speciation, extinction, and migration
lead to distributions of number of prey and number of predators similar to the ones obtained
through the static models. Indeed, the matching model fits remarkably the empirical data,
improving in some cases the predictions of the niche model at the expense of a number of
adjustable parameters. From the result of an extensive analysis, the authors conclude that the
tendency of newly created species to avoid competition with their relatives is indeed the
fundamental mechanism responsible of food web structure.

Empirical and model food webs predict over-representation of motifs S1 and S2, and under-
representation of motifs S3–S5. Empirical data are rather noisy, and the over-representation
of subgraph S2 predicted by the generalized cascade model is unclear in the empirical data.
This is also the result found by Bascompte and Melian (2005), who also analyzed the under/
over-representation of a number of ecologically relevant subgraphs, among them, our motifs
S1 (food chain) and S2 (simple omnivory). Our methodology, however, differs from theirs in
several aspects. On the one hand, we consider trophic species instead of taxonomic ones; on
the other hand, we count motifs only once (for instance, we do not count the food chains
included in motifs S2 in the evaluation of S1). Despite the different analysis, we still do not
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find an unambiguous over-representation of omnivorism, in contrast to what one may expect
according to its stabilizing role in trophic interactions (McCann and Hastings, 1997).

Finally note that, from the quantitative point of view, the percentage of under/over-
representation of motifs is generally small, usually less than a 10%; curiously, this is also the
order of magnitude predicted by the generalized cascade model. This high similarity between
the number of subgraphs in empirical food webs and in their randomizations indicates that
there may be no overwhelming evolutionary trend toward under/over-representation of any
motif, and that the small differences observed are more likely a consequence of the mechanisms
generating the food web.
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Appendix A. Empirical food webs
Table 2 provides the list of food webs analyzed as well as some topological parameters
characterizing them. They range between 25 and 92 trophic species, and the average
connectivity varies from 2.19 to 17.72. It also contains the number of single links, double links,
and cannibal links for each empirical food web. One observes that the frequency of double
links is generally small, with only one case, Coachella Valley, close to 10%.

Appendix B. Motif probabilities in the generalized cascade model
We calculate here the subgraph probabilities for the randomizations of the generalized cascade
model. Itzkovitz et al. (2003). derived general expressions for the average number of
appearances Ni of motifs in randomized networks. The fraction of motifs prand

i  is obtained
dividing Ni by the total number of possible triplets of species, ST ≡ S(S-1)(S-2)/6. For subgraphs
S1–S5, these can be cast as

prand
S1 = p1 − prand

S2 − 3prand
S3 ,

prand
S4 = p4 − prand

S2 ,

prand
S5 = p5 − prand

S2 ,

(22)

with
p1 = S

ST
kimi ,

p4 = S
2ST

mi(mi − 1) ,

p5 = S
2ST

ki(ki − 1) ,

prand
S2 = 1

z 3ST
ki(ki − 1) kimi mi(mi − 1) ,

prand
S3 = 1

3z 3ST
kimi

3

,

(23)
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where z ≡ L/S is the average connectivity, ki and mi denote the number of prey and number of
predators of species i, respectively, and …  is the average over all species in the randomized
network. Since these networks have the same distributions of in- and out-links that the original
networks, these averages can be calculated directly from the latter ones.

From expressions (23), prand
S2  and prand

S3  can be rewritten as

prand
S2

=
4ST

2

S 3z 3
p1p4p5,

prand
S3

=
ST
2

3S 3z 3
p1
3.

(24)

Therefore, prand
i  can be evaluated if one knows p1, p4, and p5. In order to calculate these

quantities, let us note that they have a direct interpretation. (i) N 1 = Σi=1
S kimi is the number

configurations where species A eats B, and B eats C, independently if there is a trophic
connection between species A and C (i.e. it is like a generalization of motif S1); therefore, p1
= N1 / ST is just the probability for this configuration, namely xAxB  = x 2 , since xA and xB
are independent random variables. (ii) N 2 = Σi=1

S mi(mi − 1) is the number of configurations
where species A feeds on C and species B feeds on C, independently if A and B are connected
(i.e. like a generalization of motif S4); then, p4 is the probability xAxB  = x 2 . (iii) Similarly,
p5 is the probability of A eating species B and C, independently of the eventual connection of
B and C, namely xA

2 = x 2 .

By replacing these results in Eqs. (22)-(24), one finds

prand
S1 = x 2 − x

4
x 2

9C 3 − x 6

36C 3 ,

prand
S2 = x

4
x 2

9C 3 ,

prand
S3 = x 6

108C 3 ,

prand
S4 = x

2
− 16C

9 x 2 ,

prand
S5 = x 2 (1 − 16C

9 ).

(25)

Finally, the beta-function (1) yields
x = 2C,

x 2 = 8C 2

1 + 2C .
(26)

The substitution of these expressions into (25) supplies Eqs. (13)-(17).
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Fig. 1.
Three-species motifs containing only single links. Notice that each of these motifs has a clear
ecological relevance and is additionally related to some community modules. Motif S1
describes the simple food chain, S2 simple omnivorism, S3 a trophic loop involving three
species, S4 isolated exploitative competition, and S5 isolated generalist predation.
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Fig. 2.
The generalized cascade model of Stouffer et al. (2005). In the generalized cascade model
species make up an ordered set according to their niche value n, 0<n<1. Each species i then
consumes species j with nj≤ni with a probability x drawn at random from a probability
distribution p(x) given by the beta-distribution Eq. (1). In this example the predator (the yellow
species) can consume any of the species to its left on the axis, including itself. In this case, x
≈ 0.2 and the yellow predator consumes itself and three other species.
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Fig. 3.
Comparison between analytical expressions, Eqs. (10)-(12), and simulations of the generalized
cascade model for motifs S1, S2, S4, and S5. We exclude motif S3 because, by definition,
pS3 = 0. It is visually apparent that the analytical predictions agree with the model-generated
data. Filled circles are for food webs with S = 50 and open squares for food webs with S = 100.
Each data point represents an average over 1000 model-generated food webs.
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Fig. 4.
Comparison between analytical expressions, Eqs. (13)-(17), and randomizations of the
generalized cascade model for motifs S1–S5. It is visually apparent that the analytical
predictions compare well with the model-generated data. Filled circles are for food webs with
S = 50 and open squares for food webs with S = 100 Each data point represents an average over
1000 model-generated food webs.
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Fig. 5.
Comparison between analytical expressions for p − prand and simulations of the generalized
cascade model for motifs S1–S5. The model predicts over-representation of motifs S1 and S2
and under-representation of motifs S3–S5. The analytical predictions compare well with the
model-generated data, though they generally overestimate the differences due to the
approximate character of the expressions used to evaluate prand. Filled circles are food webs
with S = 50 and open squares food webs with S = 100. Each data point represents an average
over 1000 model-generated food webs.
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Fig. 6.
Fraction of appearances of motifs for empirical food webs (symbols) compared to the analytical
predictions for the generalized cascade model (solid lines) and the random model (dashed
lines). Numerical simulations for the generalized cascade model with S = 50 are shown by the
dotted line where the error bars are two standard deviations. It is visually apparent that the
generalized cascade model fits rather well the empirical data for all the motifs, whereas the
random model provides much poorer fits. Note that there are no fitting parameters in model
estimates.
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Fig. 7.
Fraction of appearances of motifs for randomizations of the empirical food webs (symbols)
compared to the analytical predictions for the generalized cascade model (solid line) and the
random model (dashed lines). Numerical simulations for the generalized cascade model with
S = 50 are shown by the dotted line where the error bars are two standard deviations. It is
visually apparent that the generalized cascade model fits rather well the empirical data for all
the motifs, whereas the random model provides much poorer fits. Note that there are no fitting
parameters in model estimates.
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Fig. 8.
Differences between actual appearances of motifs and the corresponding randomized food
webs for 17 empirical food webs (symbols) as compared to the analytical predictions for the
generalized cascade model (solid line) and the random model (dashed lines). Numerical
simulations for the generalized cascade model with S = 50 are shown by the dotted line, where
the error bars are two standard deviations. Motifs S1 and S2 are typically over-represented and
motifs S3–S5 are under-represented, in agreement with the qualitative predictions of the model.
The two noticeable deviations correspond to Bridge Brook (C = 0:17) and Skipwith Pond (C
= 0:32). Quantitatively, the analytical curves generally overestimate the differences at larger
values of C for both the empirical values and the numerical simulations of the generalized
cascade model.

Camacho et al. Page 19

J Theor Biol. Author manuscript; available in PMC 2007 December 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Camacho et al. Page 20

Table 1
Analytical expressions for appearance probability of motifs S1–S5 in the generalized cascade model

Three-node motif p – prand Representation

S1 32
9

C 4

1 + 2C
Over

S2 16
9

C 3

1 + 2C
Over

S3 − 16
27 C

3 under

S4
− 16

9
C 3

1 + 2C
under

S5
− 16

9
C 3

1 + 2C
under

The right column states the prediction of over- or under-representation of each motif according to the model.
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