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Abstract
Background—Post-hemorrhagic shock mesenteric lymph (PSML) has been shown to activate
pulmonary endothelial cells, and cause lung injury. Although multiple mediators may be involved,
most of these effects are mediated by NF-κB activation. Degradation of the inhibitor of kappa B
(IκB) is a key regulatory step in the activation of NF-κB. We therefore hypothesized that PSML
would cause IκB degradation with subsequent NF-κB phosphorylation and nuclear translocation.

Methods—Mesenteric lymph was collected from male rats before shock and each hour after shock
for up to 3 hours. (n=5) Buffer (control), buffer + 10% (v/v) lymph, or buffer + TNF (10ng/ml) was
incubated with human pulmonary endothelial cells for 30 minutes and then lysed. Immunoblots of
lysates were probed for IκB and phospho-p65. Immunohistochemistry was performed on cells grown
on glass slides, and then treated as above with the 3rd PSML sample. Cells were fixed and then probed
for p65. Statistical analysis was performed with student’s t-test and analysis of variance with
significance set at p< 0.05.

Results—Western blots of cell lysates for IκB demonstrated a steady decrease in total IκB with
each lymph sample. Phosphorylation of NF-κB, p65 component, steadily increased with each PSML
sample, with a maximum reached during the 3rd PSML sample, which also significantly increased
translocation of NF-κB to the nucleus.

Conclusion—Post-shock mesenteric lymph bioactivity is mediated by pathways which involved
IκB degradation. These pathways offer novel targets for clinical intervention to prevent the distal
organ injury caused by postinjury hemorrhagic shock.
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Introduction
Gut ischemia and reperfusion (I/R) is central to the pathogenesis of multiple organ failure after
hemorrhagic shock. Although early work focused on the portal circulation as the conduit for
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biological mediators, more recently, mesenteric lymph has been identified as the mechanistic
link between gut I/R and neutrophil-mediated acute lung injury.[1-3]

Both in vivo and in vitro work have focused on the role of neutrophils (polymorph nuclear
leukocytes [PMNs]) in mediating lung injury after hemorrhagic shock. We have shown that in
a rodent model of hemorrhagic shock, PMN adhesion molecule expression and PMN lung
accumulation are diminished with lymph diversion.[4]. Further corroborative work in vitro has
shown that isolated PMNs exposed to post-shock mesenteric lymph (PSML) increase surface
adhesion molecule expression and increase priming for superoxide production.[5]

Although PMNs play a key role in lung injury [6], activation of the pulmonary vascular
endothelium is an essential component.[6] Deitch et al. have found that human umbilical vein
endothelium (HUVECs) exposed to PSML undergoes cytotoxicitiy and increased
permeability.[2,7] We have shown that pulmonary microvascular endothelial cells (HMVECs)
profoundly up regulate surface expression of ICAM after exposure to PSML.[8]

This increase in ICAM-1 has prompted us to examine the role of NF-κB mediated pathways,
since NF-κB is a key regulator of the ICAM-1 gene as well as several other pro-inflammatory
genes.[9] Components of the active NF-κB are sequestered in the cytosol by specific proteins
of the IκB family.[10,11] Upon phosphorlyation of IκB, NF-κB components are released and
IκB is degraded.[12] Liberation of the NF-κB components allows the molecules to translocate
to the nucleus, where they dimerize and initiate transcription of key genes, including ICAM-1.
[9,12] Recently, phosphorylation of NF-κB, specifically phosphorylation at the serine 536 site
of p65 RelA, by IκK has emerged as a novel mechanism of transcriptional activation.[13]

We therefore hypothesized that endothelial activation by PSML would involve degradation of
IκB with subsequent phosphorylation and translocation of NF-κB to the nucleus in HMVECs.

Methods
Animals

Animal experiments were performed under a protocol approved by the Institutional Animal
Care and Use Committee at Denver Health Medical Center, Denver, Colorado. Adult male
Sprague-Dawley rats (Harlan Laboratories, Madison, WI) weighing 320-370 g were housed
under barrier-sustained conditions and allowed free access to chow and water before use. All
animals were maintained in accordance with the recommendations of the Guide for the Care
and Use of Laboratory Animals.

Materials
All materials were purchased from Sigma-Aldrich Corp. (St. Louis, Mo), unless otherwise
specified. All tubing was obtained from Fisher Scientific. Pentobarbital sodium was purchased
from Abbott Labs (North Chicago, IL) and heparin from American Pharmaceutical Partner
Inc. (Schaumburg, IL). Antibodies against IκBα (C-21) and p65 (C-20) were purchased from
Santa Cruz Biotechnology, Inc. Antibodies against actin (AC-40) were purchased from Abcam,
Inc. Antibodies against phosph-S536-p65 (93H1) were obtained from Cell Signaling
Technology, Inc.

Hemorrhagic shock model
Rats were anesthetized with pentobarbital 50 mg/kg intraperitoneally. The right femoral artery
and vein were cannulated with PE-50 tubing. Blood pressure was continuously monitored with
a Pro-Paq device (Protocol Systems, Beaverton, Ore). Core body temperature was measured
with a rectal thermometer and maintained at 37°C with a heating lamp. A midline laparotomy
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was performed to expose the common mesenteric lymphatic duct, which was cannulated with
0.02-in silicone tubing. The tubing was secured with a 7-0 prolene suture and exteriorized via
a right flank stab wound. The abdomen and groin were then closed with 4-0 monofilament
nylons.

Lymph was collected from rats for 60 minutes before (preshock), during nonlethal hemorrhagic
shock (mean arterial pressure 30 mm Hg × 40 min), and for each hour after shock up to 3 hours
(1st hour PSML, 2nd hour PSML, 3rd hour PSML). Animals were resuscitated during the initial
2 hours after shock with half shed blood volume + 4x shed blood volume as normal saline.
Lymph was centrifuged at 6,000 g × 10 minutes at 4°C to remove all cellular components. The
supernatant was removed, aliquoted and snap frozen for subsequent analysis.

Cell Culture
Human microvascular endothelial cells (HMVECs) were obtained from Cambrex Bio Science
Inc. (Rockland, ME) and cultured in endothelial growth medium. (Cambrex Bio Science, Inc.)
Cells were grown to near confluence at 37°C in 5% CO2. After achieving near confluence,
cells were incubated with medium, TNF (10ng/ml), or lymph (10% v/v) for 30 minutes at 37°
C. To minimize animal-to-animal variability, all post-shock mesenteric lymph samples were
compared to the same animal’s preshock sample. Supernatants were removed, and cells were
lysed in digestion buffer containing SDS. Cell lysates were heated at 100 °C for 10 minutes,
aliquoted and frozen for immunoblot analysis.

Immunoblot Staining
Equal amounts of whole cell lysates were loaded into 8-16% acrylamide gels (Pierce
Biotechnology, Inc.), fractioned with SDS-PAGE, and then electrotransferred onto a
nitrocellulose membrane (Bio-Rad Laboratories, Inc.). Membranes were blocked with 5%
nonfat milk solution and immunoprobed. Bound antibodies were detected with enhanced
chemoluminescence detection system (Pierce Biotechnology, Inc.). Densitometry was
performed using Image J software program (National Institutes of Health, Bethesda, MD). All
plots were normalized to actin and results expressed as a percent of control.

Immunofluorescent microscopy
HMVECs were grown on Lab-Tek Chamber Slides (Nalgene Nunc International, Rochester,
NY, USA) and treated with buffer, TNF (ng/ml) or 3rd hour PSML (10% v/v) for 45 minutes.
The slides were fixed and permeabilized with 70% acetone / 30% methanol solution at -20°C.
Non-specific antigen sites were blocked with 10% donkey serum (Jackson ImmunoResearch
Laboratories, West Grove, PA, USA) in PBS for 60 minutes at room temperature. Slides were
then probed with rabbit polyclonal anti-p65 antibody (C-20, Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA, USA) in 1%BSA/PBS for 1 hour. Negative control slides were incubated with
isotype (Jackson ImmunoResearch Laboratories, West Grove, PA, USA). Following three PBS
washes, the slides were incubated for 1hour at room temperature with donkey anti-rabbit Cy3-
conjugated antibody (Jackson ImmunoResearch Laboratories, West Grove, PA, USA) and bis-
benzimide nuclear stain (Sigma-Aldrich, St. Louis, MO, USA).

Images were acquired with a Zeiss Axiovert fitted with a Cooke CCD SensiCam using a
Chroma Sedat with single excitation and emission filters and a multiple bandpass dichroic and
Sutter filter control. The two channel images were then digitally processed using Intelligent
Imaging Innovations Slidebook 4.1 software (Intelligent Imaging Innovations, Inc., Denver,
CO). Nuclear stains were masked to measure the relative p65 mean fluorescence intensity
(MFI) within the nuclei. The MFI of at least 70 cells from each experimental group were
analyzed by ANOVA using JMP 5.0.1 software. Statistical significance was accepted as p less
than 0.001.
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Statistical Analysis
Data were analyzed by repeated measures ANOVA using Proc GLM, followed by the Tukey’s
multiple comparisons test (SAS Tutorials for Statistical Data Analysis at http://
www.stattutorials.com/SAS/). Contrasts were used to test for linear trends between hours pre/
post shock and IκB degradation as well as hours pre/post shock and the phosphorylation state
of the p65 component. A p-value of less than 0.05 is considered statistically significant.

Results
IκB Degradation

In the first set of experiments, PSML was incubated with HMVECs to determine its effects on
IκB degradation. (Figure 1.) The IκB degradation level varied significantly with the different
PSML samples (Repeated measures ANOVA p=0.0092); statistical significant differences
were detected between the pre-shock levels and the 2nd, 3rd and combined post-shock PSML
sample (Tukey’s multiple comparison test, p<0.05). The 3rd postshock hour demonstrated the
maximal degradation of IκB over control levels with approximately 40% reduction in IκB.
Interestingly, combining each hour of lymph and then adding this combined PSML
(“Postshock”) to HMVECs showed a similar amount of IκB degradation as the 3rd postshock
hour. A significant linear trend was detected between time (pre, post 1, post 2, post 3 hours)
and the IκB degradation level (contrast for linear trend, p=0.0051).

Phosphorylation of NF-κB
Phosphorylation of NF-κB at serine 536 by IκK is a novel pathway. Phosphorylation at Ser536
profoundly increases its translocation and activation.[13] We therefore measured the
phosphorylation of NF-κB by assessing the phosphorylation state of the p65 component.
(Figure 2.) TNF stimulation demonstrated a 2-fold increase in p65 phosphorylation over control
cells. The p65 phosphorylation level varied significantly with the different PSML samples
(Repeated measures ANOVA p=0.0057). The maximal phosphorylation of p65 occurred after
stimulation with the 2nd and 3rd hours of PSML (Tukey’s multiple comparison test, p<0.05).
In addition, the phosphorylation of p65 observed with the combined PSML sample was
significantly higher than the level observed with pre-shock, and the 1st, 2nd and 3rd post-shock
hour samples. A significant linear trend was detected between time (pre, 1st, 2nd and 3rd post-
shock hour samples) and the phosphorylation of p65 level (contrast for linear trend, p=0.0005).

NF-κB Translocation
Functional activity of NF-κB is dependent on translocation of NF-κB to the nucleus of cells.
[11] Using IHC, we were able to detect the amount of NF-κB in different compartments of the
cells. (Figure 3a and 3b.) We chose to focus solely on the 3rd hour PSML hour.

Control cells demonstrated a nuclear mean fluorescence intensity for p65 of 600. TNF
stimulated cell demonstrated a marked increase in p65 translocation with an MFI of
approximately 1500. The 3rd hour PSML at 10% also induced a significant translocation of
p65 to the nucleus, reaching an MFI of approximately 880. This represents a 45% increase in
nuclear p65 over control cells.

Discussion
The gut has been invoked as the mechanistic link between post-traumatic shock and ensuing
MOF, which remains a major cause of morbidity and mortality after major trauma. Work from
the Deitch lab [1,7,15-19] as well as work from our group [4,5,8,20,21] has confirmed that
PSML is the mechanistic link between gut I/R and MOF.
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Our investigation has focused primarily on the effects of PSML on neutrophils and
endothelium. In vitro, PSML primes neutrophils for an increased physiologic response to a
second activator.[5,20] PSML also increases PMN cell surface expression of the adhesion
molecule CD11b.[3] Although PMN priming is a critical component in development of lung
injury, microvascular endothelial cell activation plays an equally necessary role.[6,22] To that
end, PSML also has a diverse array of proinflammatory effects on endothelial cells. The Deitch
lab has demonstrated that in umbilical vein endothelial cells, PSML induces cytotoxicity as
well as increased permeability.[2,7,19] However, repeated evidence has shown that umbilical
vein endothelial physiology is quite different than pulmonary endothelial cells.[23] To that
end, endothelial work from our lab has focused on HMVECs. We have previously
demonstrated that PSML increases HMVEC ICAM-1 expression, increases in vitro PMN-
HMVEC adhesion and increases PMN-mediated HMVEC killing.[8]

Despite multiple attempts to identify the relevant mediators, isolation and identification of the
actual mediator remains elusive. Positive results to date suggest that the bioactivity of PSML
is likely due to either multiple mediators or an interaction of proteins and lipids. [16][20]. Since
the specific bioactive substance remains elusive, the next logical mechanistic targeting site for
therapy could be obtained by examining signaling pathways.

Prior work from our lab has demonstrated that PSML in HMVECs induces ICAM-1 expression.
[8] In endothelial cells, ICAM-1 is an NF-κB driven gene.[9] We therefore conjectured that
signaling would converge onto NK-κB through the IκB proteins. Work from Sasaki et al. has
demonstrated that phosphorylation of specific sites of the p50 and p65 component lead to
changes in transcriptional activity of NF-κB driven proteins.[13] They have also demonstrated
that specific IκK complexes not only phosphorylate IκBs, but also function to specifically
phosphorylate NF-κB. The serine 536 residue, for example, is specifically phosphorylated by
Iκkα, and is independent of IκB activity.

In this study, we have demonstrated that PSML profoundly induces degradation of IκB. This
degradation is followed by translocation of free NF-κB to the nucleus with subsequent gene
transcriptional activation. We therefore probed further evidence of IκK activation and found
that phosphorylation of NF-κB at the serine 536 site is also enhanced after PSML. This suggests
that the signaling pathway of PSML is an noncanonical NF-κB pathway.

In this study, the individual PSML lymph time point with the greatest bioactivity was the 3rd

hour. This is congruent with prior work demonstrating that the 3rd postshock hour primed
PMNs for an increased response to a second stimulus.[5] This is also congruent with prior work
in HUVECs demonstrating the greatest decrease in cell viability after application of 2nd and
3rd hour of PSML.[17] Of interest, combining samples of PSML from each hour has greater
bioactivity than any single time point alone. This suggests that there are different mediators
acting as the primary inflammatory signal at different time point. Although the specific
mediators have not been fully elucidated, this would suggest that different mediators are acting
as the primary pro-inflammatory signal during different time points. Previous work has
demonstrated that both proteins and lipids act as bioactive mediators in PSML.[16,20,21] The
tremendous increase seen in the phosphorylation of NF-κB with the combined PSML suggests
that there may be a synergistic action by combing lymph samples, such as combining protein
carriers for stabilization of the lipid component.

In summary, this study demonstrates that hemorrhagic shock provokes the release of bioactive
agents in PSML, which induce degradation of IκB, phosphorylation of RelA/p65 and NF-κB
translocation. This study narrows the specific receptors down to those receptors acting via
IκK as mediators of the cytotoxicity of lymph.
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Figure 1. PSML induces IκB degradation in HMVECs
Mesenteric lymph was collected from rats during each hour before and after shock. Lymph
was incubated with HMVECs and cells were lysed to determine activation of IκB via IκB
degradation. Data are expressed as mean +/- SEM. * p < 0.05 vs. control group. # p < 0.05 vs.
preshock group. All PSML induces IκB degradation with maximal degradation occurring after
stimulation with lymph from the 3rd hour and combined PSML. a) Representative blot. b)
Densitometry analysis of multiple blots.
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Figure 2. PSML induces NF-κB phosphorylation
Lymph was incubated with HMVECs for activation. Cells were subsequently lysed and
immunoblotted for phospho-p65. * p < 0.05 vs. control group. # p < 0.05 vs. preshock group.
PSML increased phosphorylation of NF-κB with maximal phosphorylation occurring after
stimulation with 3rd hour PSML and combined PSML. a) Representative blot. b) Densitometry
analysis of multiple blots.
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Figure 3. PSML induces nuclear translocation of NF-κB
The 3rd hour of PSML was incubated with HMVECs and probed for p65. (a)
Immunoflourescence of NF-κB (RelA/p65, red) nuclear translocation. The nuclear stain is
removed in the bottom row. (b) Histogram of p65 nuclear mean fluorescence intensity. * p <
0.05 vs. control group. PSML increased translocation of p65 to the nucleus in HMVECs by
30%.
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