

NIH Public Access

Author Manuscript

Clin Cancer Res. Author manuscript; available in PMC 2008 January 1.

Published in final edited form as: *Clin Cancer Res.* 2007 July 1; 13(13): 3789–3795.

Transcriptional Functionality of Germ Line p53 Mutants Influences Cancer Phenotype

Paola Monti¹, Yari Ciribilli¹, Jennifer Jordan², Paola Menichini¹, David M. Umbach³, Michael A. Resnick², Lucio Luzzatto⁴, Alberto Inga¹, and Gilberto Fronza¹

1 Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute, Genoa, Italy

2 Chromosome Stability Section, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina

3 Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina

4 Istituto Toscano Tumori, Florence, Italy

Abstract

Purpose— The *TP53* tumor suppressor gene encodes a sequence-specific transcription factor that is able to transactivate several sets of genes, the promoters of which include appropriate response elements. Although human cancers frequently contain mutated p53, the alleles as well as the clinical expression are often heterogeneous. Germ line mutations of *TP53* result in cancer proneness syndromes known as Li-Fraumeni, Li-Fraumeni – like, and nonsyndromic predisposition with or without family history. p53 mutants can be classified as partial deficiency alleles or severe deficiency alleles depending on their ability to transactivate a set of human target sequences, as measured using a standardized yeast-based assay (see http://www.umd.be:2072/index.html). We have investigated the extent to which the functional features of *p53* mutant alleles determine clinical features in patients who have inherited these alleles and have developed cancer.

Experimental Design— We retrieved clinical data from the IARC database (see http:// www.p53.iarc.fr/Germline.html) for all cancer patients with germline p53 mutations and applied stringent statistical evaluations to compare the functional classification of *p53* alleles with clinical phenotypes.

Results— Our analyses reveal that partial deficiency alleles are associated with a milder family history (P = 0.007), a lower numbers of tumors (P = 0.007), and a delayed disease onset (median, 31 versus 15 years; P = 0.007) which could be related to distinct tumor spectra.

Conclusions— These findings establish for the first time significant correlations between the residual transactivation function of individual *TP53* alleles and clinical variables in patients with inherited p53 mutations who develop cancer.

The *TP53* tumor suppressor gene (chromosome 17p13; OMIM no. 191170) encodes a protein involved in many pathways that control cellular responses to various stress signals (1–3). The p53 protein is a sequence-specific transcription factor constitutively expressed in most cell types and is activated by genotoxic stress, mainly at a posttranslational level, to transactivate effector genes from target response elements (REs). The disruption of the p53 pathway is found

Requests for reprints: Alberto Inga and Gilberto Fronza, Molecular Mutagenesis Unit, Department of Translational Oncology, National Cancer Research Institute (IST), Largo R. Benzi 10, 16132 Genoa, Italy. Fax: 39-10573-7237; E-mail: gilberto.fronza@istge.it and alberto.inga@istge.it.

P. Monti and Y. Ciribilli contributed equally to this work.

in almost all tumor types, predominantly through mutation of the *TP53* gene itself. In contrast with other tumor suppressor genes, *TP53* mutations are usually of the missense type in one allele, generally but not necessarily followed by loss of the second allele during tumor progression. About 50% of all tumor types harbor p53 mutations (4,5). The high number of somatic missense mutations found in the DNA-binding domain in tumors, and the high number of different single amino acid changes which they produce (~ 1,300), suggests that p53 function is extremely sensitive to perturbation and that there is selection for cells expressing a mutant protein by virtue of its specific functionality. The latter possibility could reflect either a dominant-negative effect produced by an abnormal *p53* allele due to the fact that p53 is a tetramer (1), or a gain of novel functional properties (6,7). Many cancer-associated p53 mutations do not result in complete loss of function. Instead, there is considerable heterogeneity, as individual mutant proteins may have lost some wild-type functions while still retaining (or acquiring) others (6–17).

Germ line p53 mutations have provided formal proof that p53 has a major role in the development of cancer. Based on the clinical expression of p53 mutations in heterozygotes, the following cancer proneness syndromes (in order of decreasing severity) have been identified: Li-Fraumeni syndrome (LFS), Li-Fraumeni–like syndrome (LFL), and nonsyndromic predispositions with or without family history (FH and noFH, respectively; refs. 18,19). The spectrum of p53 germ line mutations is wide, with 92 different missense alleles described in the IARC database (5).⁵ Based on their ability to transactivate a set of human target sequences, these missense p53 mutants can be classified as partial deficiency (PD) alleles or severe deficiency (SD) alleles (see details in Materials and Methods and in Results). In addition, 52 p53 mutants could be classified as obligate SD (O-SD) alleles by virtue of nonsense mutations, frameshifts, or other mutations that give rise to a truncated protein.

Several studies have indicated that specific mutations in p53 may affect the type of tumor and the age of onset, and that these effects may correlate with structure-based groupings of p53 mutations (19–21). On the other hand, the effect of the functional heterogeneity of p53 mutations on the severity of associated diseases has not been assessed. In contrast with other inherited cancer syndromes, which are predominantly characterized by site-specific cancers, LFS presents with a variety of tumor types (19). The seven most frequent tumor types (described below) account for ~ 72% of the reported cases.

We have investigated the extent to which a systematic functional classification of all germ line p53 alleles can predict clinical features in patients with inherited p53 mutations who develop cancer. Clinical data were retrieved from the IARC database (5).⁵ Our results, based on stringent statistical analyses, show a significant correlation between the residual transactivation function of individual p53 alleles and the development of cancer.

Materials and Methods

Data set of p53 transactivation capacities

We retrieved functional data from the literature.⁶ The data set contains a summary of transactivation capabilities towards eight different p53 REs (p21/WAF1, MDM2, BAX, 14-3-3 σ , p53AIP1, GADD45, NOXA, and p53R2) that are upstream of a common reporter. The EGFP or DsRed reporter genes provided quantitative analyses of the transcriptional capability for each mutant. We were given access to an early version of the database, in which transcriptional activity towards each RE was divided into four classes: class I >75%; class II \geq 50% and <75%; class III \geq 25% and <50%; class IV <25%; (see Acknowledgement).

⁵http://www.p53.iarc.fr/Germline.html

⁶http://www.umd.be:2072/index.html

Clin Cancer Res. Author manuscript; available in PMC 2008 January 1.

According to these results, we have classified a mutant as SD if there was <25% of wild-type activity on every RE. The PD alleles were defined as those that showed \geq 25% of wild-type activity toward at least one RE. A summary functional score for each of the 92 alleles on eight REs (or for just the three apoptotic REs) is provided in Supplementary Table S1A (SD alleles) and B (PD alleles). For some analyses, PD alleles were further divided based on the number of REs towards which they showed \geq 25% of wild-type transactivation activity (Supplementary Table S2A-C).

Clinical definitions

Classic LFS is defined as a proband with a sarcoma before the age of 45 years and a first-degree relative with any cancer before the age of 45 years plus an additional first- or second-degree relative in the same lineage with any cancer before the age of 45 years or a sarcoma at any age (18). This definition has been relaxed to define LFL cases (22). LFL syndrome is defined as a proband with any childhood cancer, or a sarcoma, brain tumor, or adrenocortical tumor before the age of 45 years, plus a first- or second-degree relative in the same lineage with a typical LFS tumor at any age, plus an additional first- or second-degree relative in the same lineage with any cancer before the age of 60 years. Twenty to 40% of LFL families harbor mutations in the *TP53* gene (22,23). FH refers to family history of cancer that does not fulfill LFS or any of the LFL definitions, and noFH refers to no family history of cancer.

IARC database

This relational database contains information on families with LFS/LFL syndromes and those that do not fulfill the clinical definitions of LFS/LFL (i.e., FH and noFH), although they carry a germ line mutation in the *TP53* gene. Data are available on family members with cancer that are either *TP53* mutation carriers or that have not been examined for their p53 allele status, as well as on family structure, tumor samples, details on the germ line mutation, mutation detection method, and the publication in which the family is described. Details of annotations can be found at the IARC web site.⁵ Clinical data were downloaded from the database without additional curating, with the exceptions noted in Supplementary Table S1A and B.

Statistical tests

Statistical comparisons were done with nonparametric tests (Fisher exact test) and with the within-cluster resampling approach (24). The P values are given in the text.

In the analysis of the data from the IARC database, it is necessary to take into account two key features of the data. The first is the lack of statistical independence among tumors (because individuals may have multiple tumors) and among individuals (because families may have multiple individuals). Because observations accrue to the database by voluntary submission, not by some defined probability-based sampling plan, subtle and unknown biases may be introduced that cannot be fully accounted for in any statistical analysis. One potential source of bias that we wanted to be especially cautious about, however, was the possibility that the number of affected members in a family or the number of distinct cancers affecting an individual (which could influence the chance that a family or individual might enter the database) might be associated with one of the clinical outcomes of bias is called "informative cluster size" (here, a family is a cluster).

We regarded families as statistically independent. For testing hypotheses about characteristics of families (e.g., clinical class, proportion of families in which at least one individual had multiple tumors), we used Fisher exact test which is appropriate when families are independent. To avoid dependence among tumors, we analyzed each individual's first tumor only. For testing hypotheses about the characteristics of individuals (e.g., age at diagnosis and tissue site of first

tumor), we used the within-cluster resampling approach (24), which uses data from every individual but gives equal weight to each family. This approach appropriately adjusts for within-family correlations and, in addition, protects against biases that might accrue from informative cluster size. The basic idea is to sample one individual from each family at random and compute the desired estimate (proportion, mean, etc.). The process is repeated many times allowing different individuals in the families represented by multiple individuals to all enter the analysis but in different repeated samples; individuals from families represented by only one individual enter in every repeated sample. The final estimate is the mean of the estimates from each repeated sample. The variance of this estimate is computed as previously described (24). This method can be adapted for estimation and testing with continuous variables like age or with categorical variables like tumor site. Test statistics were computed from within-cluster resampling estimates of differences in outcome (proportion, mean, etc.) between functional classes divided by the corresponding estimated standard error, and compared with the normal distribution for assessing P values.

Results

The functionality of p53 mutants has been extensively investigated using transactivation assays based in yeast, in which p53 REs were placed upstream of reporter genes (12,13,17,25,26). Overall, there was good agreement between the results obtained in yeast and in human cells for a large proportion of p53 alleles (27). The largest yeast-based systematic analysis examined >2,000 mutations, including all the germ line p53 alleles, using eight REs and quantitative fluorescent reporters (16,28).⁶ Based on that data set, we classified the germ line p53 mutants as PD alleles if trans-activation function was retained towards at least one target sequence. The remaining p53 mutants were classified as SD or O-SD alleles if the mutations resulted in truncations. According to this derived functional classification, 43 of the alleles were PD and 49 were SD. The 52 O-SD alleles were a control group in the sense that they were assumed to have a complete loss of transactivation activity.

p53 functionality was used to query clinical data including the site of the tumor, occurrence of multiple tumors in the same individual, and confirmed inheritance of a germ line p53 mutation in the public IARC germ line p53 mutant database.⁵ We limited the data set to the seven most frequent tumor types, i.e., soft tissue (connective) sarcomas and osteosarcomas (bones), breast cancer, brain tumors, hematopoietic tumors (leukemia + lymphoma), adrenocortical carcinoma, and bronchus/lung cancer. These account for ~ 72% of the reported cases. The remaining cases were heterogeneous with very few observed tumors in more than 20 different tissues and/or tumor types. This restriction on tissue targets excluded two PD *p53* alleles (N210Y and S227T) from consideration as they were associated with only five rare tumors according to the IARC database. We have also excluded from the analyses individuals with inherited R337H, a unique PD allele, which is unusually frequent in the Brazilian population and seems to predispose mainly to adrenocortical carcinomas in children. A complete summary of the data retrieved from the IARC database for SD and PD alleles is available in Supplementary Table S1A and B, respectively.

First, we examined whether p53 functional status correlates with the distribution of clinical classes. In FH families, the frequency of PD *p53* alleles was much higher than that of SD alleles (18 of 58 versus 15 of 119; P = 0.007, Fisher exact test). The opposite was found for families with full-blown LFS (13 of 58 versus 51 of 119; P = 0.009; Table 1A). The patterns were similar when the data were presented in terms of affected individuals and tumors. Because the PD group is heterogeneous, in that it comprises p53 alleles retaining some function toward at least one and up to eight REs, we also considered more homogeneous PD subgroups (see Supplementary Table S2A-C). PD alleles with lower functionality were more similar to the

SD group of alleles, whereas PD alleles with higher residual functionality were enriched in the less severe clinical classes.

Next, we inquired whether clinical expression correlates with the target-specific transactivating functions of p53. Because the induction of apoptosis is one of the key roles of p53 (1), we grouped alleles based on their activity on apoptotic REs (PDa and SDa; Table 1B). The resulting PDa group was enriched for highly functional PD p53 alleles (see "score" column in Supplementary Table S1B), whereas the SDa group contained weak PD alleles in addition to the SD alleles. Nevertheless, the previously observed differences in the distribution of clinical classes were maintained, particularly with respect to LFS.

Consistent with these findings, we observed that the incidence of individuals and their families that developed multiple tumors was lower with PD alleles than with SD alleles (Table 1C; Fig. 1). The difference was even more striking when the analysis was limited only to confirmed heterozygotes (designated as "carriers" in the IARC database; Supplementary Table S3; P = 0.002). Similar differences were also observed with the subgroups of PD alleles stratified according to the functional score (Supplementary Table S2C).

One of the features that most dramatically illustrates the cancer risk of subjects who have inherited a *TP53* mutation is the early age at which cancer appears, and this feature is also reflected in mouse models of LFS (20,21). In our analysis (Table 2; Fig. 2) we found a marked difference between patients carrying PD and SD alleles in terms of the age at which their first cancer was diagnosed (median, 31 versus 15 years; P = 0.0007). This result was confirmed with the various subgroups of PD alleles compared with the SD group (data not shown). Patients with O-SD alleles are intermediate between these two groups. If we further focus the analysis on p53 function as it affects proapoptotic genes, a similar pattern is found (Table 2).

A higher incidence of breast cancer (P = 0.05, within-cluster resampling; ref. 24) and lower incidence of connective tissue tumors (P = 0.0006, within-cluster resampling; ref. 24) and bone tumors (P = 0.07, within-cluster resampling; ref. 24) were observed with PD alleles (Fig. 3). This change in the tumor spectrum could be related to the differences in the age at diagnosis.

Discussion

There are 92 different p53 missense germ line alleles in the IARC database. These mutations are associated with clinically distinct syndromic and nonsyndromic cancer proneness. No clearcut association between pattern of mutations and clinical manifestations have been established thus far. In fact, mutations in different protein domains can result in the same clinically defined grouping; whereas in different families, the same mutation can give different clinical outcomes (see Supplementary Table S1A and B).⁶ For example, the Arg¹⁷⁵His allele is present in 14 families, of which 11 are LFS/LFL and 3 are FH/noFH. Similar results are seen with Arg²⁴⁸Trp (of 10 families, 9 are LFS/LFL). This may be explained by the fact that multiple genes and biological pathways as well as complex gene/environment interactions are involved in cancer development. Furthermore, within a particular pedigree, the time (or generations) after the appearance of a p53 germ line mutation could influence disease expression (29). Functional polymorphisms both in coding and in regulatory sequences of the *p53* gene itself, of p53 target genes and of genes involved in modulating p53 activity (e.g., *MDM2*) could also modify p53-related responses (30–33).

In seeking possible correlations between p53 mutations affecting different structural domains and clinical features in LFS families, the IARC database curators (19) have shown that in individuals with a p53 mutation, brain tumors were associated with missense p53 mutations located in the DNA-binding loop that contact the minor groove of DNA (P = 0.01), whereas

adrenal gland carcinomas were associated with missense mutations located in the loops opposite to the protein-DNA contact surface (P = 0.003).

Our approach has been to consider the functional heterogeneity of p53 alleles, determined by standardized functional assays, as a means of addressing genotype-phenotype correlations in familial cancers. We used experimental functionality data available on all 92 reported missense germ line p53 alleles $(16,28)^6$ and simply divided mutants into two categories (PD and SD) using criteria described in Materials and Methods. The PD and SD alleles were distributed, with different frequencies, in all structural regions of the DNA-binding domains (Supplementary Fig. S1). We found that p53 mutant functionality identifies groups of familial cancer patients with different clinical features and outcomes. Overall, the PD p53 alleles are preferentially associated with a milder family history of cancer (P = 0.007, Fisher exact test; Table 1A), a lower risk of developing multiple tumors (Table 1C;Fig. 1), a tendency towards delayed disease onset (Table 2;Fig. 2), and a higher relative risk for breast cancer (P = 0.05, within-cluster resampling; ref. 24; Fig. 3). Within the PD group, alleles with a nearly total loss of function behave almost like SD alleles, whereas alleles with higher residual functions were associated with a milder family history (Table 1B; Supplementary Table S2B and C).

Two mouse models of LFS have been recently reported (20,21). One group (21) engineered p53^{R172H/+} and p53^{R270H/+} mice (corresponding to the SD human hotspots R175H and R273H, respectively). Interestingly, these two groups of animals developed allele-specific tumor spectra which were different from that seen in heterozygous p53^{+/-} mice. Allele-specific effects were also observed in experiments with derived primary cells. These differences cannot be attributed merely to the loss of transactivation (21). In contrast, in a different strain of mice, there was no difference in the tumor spectrum between p53^{R172H/R172H} and p53^{-/-} mice (20), indicating that the phenotype is highly dependent on the overall genetic background. The same must be true in humans because families with identical germ line mutations can present different clinical syndromes (e.g., LFS, LFL, FH, and noFH). The importance of p53 mutant functionality in determining clinical features can be inferred when the results with the p53^{R172P/R172P} knock-in mice are considered (34). In contrast with R172H, the R172P mutant is a PD allele. Using the survival of p53^{-/-} mice as a reference, p53^{R172P/R172P} mice showed a much higher survival due to reduced tumor burden [see Fig. 4A in ref. 34] than p53^{R172H/R172H} [see Fig. 2A in ref. 20]. Thus, the combined results obtained using the "knockin" mice models are clearly supportive of our observations on different factors, including the intrinsic functional heterogeneity of p53 mutants, modulating clinical outcomes in p53 germ line carriers.

The comparison between the clinical features of individuals and families having SD and O-SD p53 alleles may also help to clarify whether p53 mutants merely act as tumor suppressor genes. Our analyses revealed that SD and O-SD alleles were similarly distributed in the different clinical classes (P = 1; Table 1A). However, individuals (and families) with O-SD alleles tend to show a lower incidence of multiple tumors (for individuals, P = 0.0004; for families, P = 0.07; Table 1C) and a trend for a delayed disease onset (median, 25 versus 15 years; P = 0.07; Table 2; Fig. 2) with respect to those with SD alleles. These observations could be explained simply by the level of residual functional p53 tetramers (haploinsufficiency); however, they do not exclude the possibility that at least some p53 alleles may behave as oncogenes (7).

Compared with other inherited disorders, those associated with p53 mutations have an added level of complexity because somatic mutations must occur for the disease phenotype to develop. This work shows that, despite this complexity, genotype-phenotype correlations can be pinpointed, particularly if the functional features of mutant alleles are appropriately analyzed. Indeed, the functional characteristics of p53 germinal mutations seem to be a

predictor of disease expression in terms of age of onset and number of tumors. These findings have clinical implications because it is clear that regardless of their initial syndromic classification, subjects with SD alleles are at greater risk, suggesting a more cautious approach to clinical management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Dr. Thierry Soussi for granting access to an early version of the p53 database.

This work is dedicated to Olga Cattaneo Fronza with love.

Grant support: Associazione Italiana per la Ricerca sul Cancro, Allenza Contro il Cancro; FIRB, the Intramural Research Program of the NIH, and NIEHS. Yari Ciribilli was working under an FIRC fellowship. The research of M.A. Resnick and J. Jordan was supported by intramural research funds from the National Institute of Environmental Health Sciences, NIH.

References

- 1. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–10. [PubMed: 11099028]
- Soussi T, Lozano G. p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 2005;331:834–42. [PubMed: 15865939]
- Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005;24:2899–908. [PubMed: 15838523]
- Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–78. [PubMed: 8069852]
- Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 2002;19:607–14. [PubMed: 12007217]
- Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 2006;25:304–9. [PubMed: 16170357]
- Di Agostino S, Strano S, Emiliozzi V, et al. Gain of function of mutant p53: the mutant p53/NF-Yprotein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006;10:191–202. [PubMed: 16959611]
- Rowan S, Ludwig RL, Haupt Y, et al. Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBOJ 1996;15:827–38.
- 9. Ludwig RL, Bates S, Vousden KH. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol 1996;16:4952–60. [PubMed: 8756654]
- Monti P, Campomenosi P, Ciribilli Y, et al. Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene 2002;21:1641–8. [PubMed: 11896595]
- Monti P, Campomenosi P, Ciribilli Y, et al. Characterization of the p53 mutants ability to inhibit p73 β transactivation using a yeast-based functional assay. Oncogene 2003;22:5252–60. [PubMed: 12917626]
- Campomenosi P, Monti P, Aprile A, et al. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements. Oncogene 2001;20:3573–9. [PubMed: 11429705]
- Inga A, Monti P, Fronza G, Darden T, Resnick MA. p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene 2001;20:501–13. [PubMed: 11313981]

- Inga A, Resnick MA. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants. Oncogene 2001;20:3409–19. [PubMed: 11423991]
- Inga A, Storici F, Darden TA, Resnick MA. Differential transactivation by the p53 transcription factor is highly dependent on p53 level and promoter target sequence. Mol Cell Biol 2002;22:8612–25. [PubMed: 12446780]
- Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A 2003;100:8424–9. [PubMed: 12826609]
- 17. Resnick MA, Inga A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci US A 2003;100:9934–9.
- Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res 1988;48:5358–62. [PubMed: 3409256]
- Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 2003;63:6643–50. [PubMed: 14583457]
- 20. Lang GA, Iwakuma T, Suh YA, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004;119:861–72. [PubMed: 15607981]
- Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004;119:847–60. [PubMed: 15607980]
- 22. Birch JM, Hartley AL, Tricker KJ, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res 1994;54:1298–304. [PubMed: 8118819]
- Evans DG, Birch JM, Thorneycroft M, McGown G, Lalloo F, Varley JM. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet 2002;39:941–4. [PubMed: 12471212]
- 24. Hoffman EB, Sen PK, Winberg CR. Within-cluster resampling. Biometrika 2001;88:1121-34.
- 25. Flaman JM, Robert V, Lenglet S, Moreau V, Iggo R, Frebourg T. Identification of human p53 mutations with differential effects on the bax and p21 promoters using functional assays in yeast. Oncogene 1998;16:1369–72. [PubMed: 9546439]
- 26. Di Como CJ, Prives C. Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Oncogene 1998;16:2527–39. [PubMed: 9627118]
- Kakudo Y, Shibata H, Otsuka K, Kato S, Ishioka C. Lack of correlation between p53-dependent transcriptional activity and the ability to induce apoptosis among 179 mutant p53s. Cancer Res 2005;65:2108–14. [PubMed: 15781620]
- Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T. The UMD TP53 database and website: update and revisions. Hum Mutat 2006;27:14–20. [PubMed: 16278824]
- 29. Brown BW, Costello TJ, Hwang SJ, Strong LC. Generation or birth cohort effect on cancer risk in Li-Fraumeni syndrome. Hum Genet 2005;118:489–98. [PubMed: 16284780]
- 30. Tomso DJ, Inga A, Menendez D, et al. Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation. Proc Natl Acad Sci US A 2005;102:6431–6.
- Bond GL, Hu W, Bond EE, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004;119:591– 602. [PubMed: 15550242]
- 32. Menendez D, Krysiak O, Inga A, Krysiak B, Resnick MA, Schonfelder G. A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network. Proc Natl Acad Sci U S A 2006;103:1406–11. [PubMed: 16432214]
- 33. Bougeard G, Baert-Desurmont S, Tournier I, et al. Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 2006;43:531–3. [PubMed: 16258005]
- 34. Liu G, Parant JM, Lang G, et al. Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 2004;36:63–8. [PubMed: 14702042]

Monti et al.

Fig. 1.

Effect of different functional subsets of p53 mutant alleles on the risk of multiple tumors. Percentage of families with at least one member that has developed multiple tumors over the total number of families (*hatched columns*); percentage of individuals that developed multiple tumors over the total number of individuals (*solid columns*) for each of the indicated p53 mutant classes (see the footnote to Table 1C for details). PDa* and SDa*, classification based on results with apoptotic REs: 1, P = 0.007; 2, P = 0.002; 3, P = 0.004; 4, P = 0.05. Monti et al.

Fig. 2.

p53 functionality and clinical variables: age at diagnosis for the overall tumor spectrum. The percentage of tumor-free individuals is plotted as a function of age up to age 65 (Kaplan-Meier method). The reported *P* values are the results of a within-cluster resampling analysis (ref. 24; see Materials and Methods). The analyses were restricted to confirmed germline carriers whose age at diagnosis was recorded in the database. For patients with multiple tumors, only the first tumor was considered because secondary malignancies might be influenced by the nature of the tissue, history, and therapeutic interventions on the first tumor. All p53 REs were considered. The number of individuals and families represented in the figure are provided in Table 2.

Monti et al.

Fig. 3.

p53 functionality and variation in tissue specificity. Variation in tissue specificity in relation to p53 functional status versus all, or versus the apoptotic REs. p53 mutant alleles were divided into two groups (PD and SD) and the distribution (%) of tumors in the seven most frequent tissue targets is shown (solid columns). For each tissue, estimates of tumor frequencies that are adjusted for family membership are also presented (hatched columns). These estimates give equal weight to each family. The family-based estimates can be larger or smaller than the individual-based estimates (first two columns). Statistical significance is provided only for comparisons of family-based estimates because those tests properly account for possible correlations between family members. Considering all p53 REs and family-based estimates, partial functionality is associated with higher incidence of breast cancer (*, P = 0.05) and with lower incidence of connective (*, P = 0.0006) and bone (*, P = 0.07) tumors (within-cluster resampling; ref. 24). These differences were confirmed considering apoptotic REs for connective (*, P = 0.05) and bone (*, P = 0.05) tumors but not for breast cancer (P = 0.27). A nonsignificant tendency for higher incidence of bronchus/lung tumors with partial functionality, observed with all REs (P = 0.18), approached statistical significance when apoptotic REs were considered (P = 0.08). Adrenal, brain, and hematopoietic tumors showed little evidence of differences across functional classes (minimum, P = 0.13).

Not available 2 (2.5) 5 (1.3) noFH 7 (8.6) 20 (5.0) FH 23 (28.4) 43 (10.8)	Not available 2 (2.5) 5 (1.3)	Clinical classes Individuals 9		49 5 (4.2) 19 (16.0) 15 (12.6) 29 (24.4) 51 (42.9) 119 (100) 51 (42.9) 119 (100) 53 (11.4) 80 (26.0) 196 (5.2) 338 (100) 8 (1.9) 338 (100) 415 (100)	40* 40* 40* 40* 40* 2 (3.4) 8 (13.8) 18 (31.0) 17 (29.3) 13 (22.4) 58 (100) 17 (29.3) 13 (22.4) 58 (100) 17 (29.3) 13 (22.4) 58 (100) 17 (17.9) 60 (34.7) 72 (41.6) 173 (100) 173	Functional class No. of p53 alleles No. of p53 alleles Not available [≠] noFH [‡] LFL [‡] LFL [‡] LFL [‡] LFL [†] LFL LFS Clinical classes Not available noFH FH LFL LFS Total no. of individuals Clinical classes Not available noFH FH LFL LFS Total no. of undividuals Not available No. of p53 alleles No. of p53 alleles Not available H H
noFH 7 (8.6) 20 (5.0) FH 23 (28.4) 43 (10.8) 0.40 (10.8) 20 (5.0) 10.8		Not available 2 (2.5) 5 (1.3)	20 (5.0) 43 (10.8) 101 (25.2) 231 (57.8) 400 (100)		7 (8.6) 23 (28.4) 39 (48.1) 10 (12.3) 81 (100)	noFH FH LFL LFS Total no. Clinical classes
Clinical classes	Clinical classes Individuals ⁷		140 (100)		37 (100)	Total no.
Total no. 37 (100) 140 (100) 140 (100) 140 (100) 140 (100) 140 (100)	Total no. 37 (100) 140 (100) 140 (100) Individuals [¶]	Total no. 37 (100) 140 (100)	60 (42.9)		4 (10.8)	$ m LFS^{\#}$
LFS ^{7.7} 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100) Clinical classes Individuals [¶]	LFS T 4 (10.8)60 (42.9)Total no. $37 (100)$ $140 (100)$ Clinical classesIndividuals	LFS ^{7.7} 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100)	35 (25.0)		11 (29.7)	$\operatorname{LFL}_{**}^{**}$
LFL ^{**} 11 (29.7) 35 (25.0) LFS ⁴ ⁴ 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100) Clinical classes Individuals ⁹	LFL ** 11 (29.7) 35 (25.0) LFS ⁴ \ddagger 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100) Clinical classes Individuals [¶]	LFL * 11 (29.7) 35 (25.0) LFS 47 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100)	20(14.3)		13 (35.1)	FH^{TT}_{**}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			12 /25 17	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HOTA HOTA 20 (14.3) FH^{TT}_{+*} 13 (55.1) 20 (14.3) LFL_{-*} 11 (29.7) 35 (25.0) LFS^{44} 4 (10.8) 60 (42.9) Total no. 37 (100) 140 (100)	20 (0.c) c 20 (14.3)		(+.c) 2 7 (18.9)	Not available
Not available $2 < (3.5.4)$ $2 < (3.5.4)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (15.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (14.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (15.3)$ $2 < (12.3)$ $2 < (12.3)$ $2 < (12.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ $2 < (10.3)$ </td <td>Not available $2 \cdot (3 - 3)$ $2 \cdot (3$</td> <td>Not available $2 (3.54)$ $2 (3.54)$ noFH ** 7 (18.9) $20 (14.3)$ IFH^{+7}_{+7} 13 (35.1) $20 (14.3)$ LFL^{+*} 13 (35.1) $20 (14.3)$ LFL^{+*} 11 (29.7) $35 (25.0)$ LFS^{+7}_{+7} 4 (10.8) $60 (42.9)$ Total no. $37 (100)$ $140 (100)$</td> <td>5 (3 6)</td> <td></td> <td>2 (5 A)</td> <td>**</td>	Not available $2 \cdot (3 - 3)$ $2 \cdot (3$	Not available $2 (3.54)$ $2 (3.54)$ noFH ** 7 (18.9) $20 (14.3)$ IFH^{+7}_{+7} 13 (35.1) $20 (14.3)$ LFL^{+*} 13 (35.1) $20 (14.3)$ LFL^{+*} 11 (29.7) $35 (25.0)$ LFS^{+7}_{+7} 4 (10.8) $60 (42.9)$ Total no. $37 (100)$ $140 (100)$	5 (3 6)		2 (5 A)	**
Not available ** $2 (5.4)$ $5 (3.6)$ noFH ** $7 (18.9)$ $20 (14.3)$ $FH^{\dagger\dagger}$ $13 (35.1)$ $20 (14.3)$ $LFL **$ $11 (29.7)$ $35 (25.0)$ $LFL **$ $11 (29.7)$ $60 (42.9)$ $Total no.37 (100)140 (100)Clinical classesTindinals^{4}$	Not available ** $2(5.4)$ $5(3.6)$ $noFH$ H^{\dagger}^{\dagger} $7(18.9)$ $7(18.9)$ DFH H^{\dagger}^{\dagger} $7(18.9)$ $20(14.3)$ DFL EL $13(35.1)$ $20(14.3)$ LFL ES^{\dagger}^{\dagger} $11(29.7)$ $20(14.3)$ LFL ES^{\dagger}^{\dagger} $11(29.7)$ $5(25.0)$ $Dral no.$ $37(100)$ $60(42.9)$ Total no. $37(100)$ $Individuals^{6}$	Not available ** $2 (5.4)$ $5 (3.6)$ noFH ** $7 (18.9)$ $20 (14.3)$ $EH^{\dagger \uparrow}$ $13 (35.1)$ $20 (14.3)$ LFL ** $11 (29.7)$ $35 (25.0)$ LFS 44 $4 (10.8)$ $50 (42.9)$ Total no. $37 (100)$ $140 (100)$	Families#			Clinical classes
Clinical classes Families Not available ** $2(5.4)$ $5(3.6)$ Not available ** $2(5.4)$ $5(3.6)$ noFH ** $7(18.9)$ $5(14.3)$ FH^{\dagger} $1(3.5.1)$ $20(14.3)$ LFL * $13(35.1)$ $20(14.3)$ LFL * $11(29.7)$ $20(14.3)$ LFL * $11(29.7)$ $5(5.0)$ LFL * $11(29.7)$ $5(6(42.9))$ $Clastes$ $37(100)$ $60(42.9)$ Total no $37(100)$ $140(100)$	Clinical classes Families Not available ** 2 (5.4) 5 (3.6) Not available ** 2 (5.4) 5 (3.6) $\operatorname{FH}^{++}_{1+}$ 7 (18.9) 2 0 (14.3) $\operatorname{LFL}^{**}_{1+}$ 13 (35.1) 2 0 (14.3) LFL ** 11 (29.7) 2 0 (14.3) Total no. 3 7 (100) 60 (42.9) Total no. 3 7 (100) 140 (100)	Clinical classes Families Not available ** 2 (5.4) 5 (3.6) Not available ** 2 (5.4) 5 (3.6) $noFH$ 7 (18.9) 20 (14.3) $Hf^{\dagger}f$ 13 (35.1) 20 (14.3) LFL^{\pm} 11 (29.7) 20 (14.3) LSL^{\pm} 9 (10.8) 5 (2.6) Total no. 37 (100) 140 (100)	19		32	No. of po3 alleles
No. of p53 alletes 32 57 Clinical classes Families 5 (3.6) Not available ** $2 (5.4)$ $5 (3.6)$ Not available ** $2 (5.4)$ $5 (3.6)$ Not available ** $2 (5.4)$ $5 (3.6)$ IFH ** $7 (18.9)$ $20 (14.3)$ LFL ** $11 (297)$ $20 (14.3)$ LFL ** $11 (297)$ $20 (14.3)$ Lex * $11 (297)$ $20 (14.3)$ Table $37 (100)$ $60 (42.9)$ Total no. $37 (100)$ Individuals	No. of p53 alletes 32 57 Clinical classes Families 5 (3.6) Not available ** 2 (5.4) 5 (3.6) Not available ** 7 (18.9) 20 (14.3) $\text{NH}^{\#}$ 13 (35.1) 20 (14.3) $\text{LFL}^{\#}$ 11 (29.7) 35 (25.0) $\text{Les}^{\#}$ 37 (100) 60 (42.9) Total no. 37 (100) Individuals	No. of p53 alletes 32 57 Clinical classes Families 53.6 Not available ** 2 (5.4) 5 (3.6) Not available ** 2 (5.4) 5 (3.6) Not available ** 2 (5.4) 2 (14.3) IFI ** 1 (18.9) 20 (14.3) I.FL ** 1 (1.297) 20 (14.3) I.FL ** 1 (1.297) 35 (25.0) Total no. 37 (100) 140 (100)				
Functional class PD for apoptotic REs SD for apoptotic REs No. of p53 alleles 32 32 57 No. of p53 alleles 32 57 57 No available** $2(5.4)$ $5(3.6)$ $5(3.6)$ Not available** $2(5.4)$ $5(3.6)$ $5(3.6)$ Interf** $7(18.9)$ $13(35.1)$ $20(14.3)$ LPL** $11(29.7)$ $20(14.3)$ $5(3.6)$ LPL** $11(29.7)$ $20(14.3)$ $5(2.6)$ Total no. $37(100)$ $57(10)$ $56(42.9)$ Chala classes $7(100)$ $100(100)$ $100(100)$	Functional classPD for apoptotic REsNo. of p53 alleles 32 57 No. of p53 alleles 32 57 No. of p53 alleles 57 57 No available* $2(4.3)$ $7(18.9)$ Not available* $7(18.9)$ $20(14.3)$ Not available* $7(18.9)$ $20(14.3)$ Inf H^+ $11(29.7)$ $20(14.3)$ Inf H^+ $11(29.7)$ $20(42.9)$ Inf H^+ $11(29.7)$ $11(29.7)$ Inf H^+ $11(100)$ $11(100)$ Inf H^+ $11(100)$ <t< th=""><th>Functional class PD for apoptotic REs SD for apoptotic REs No. of p53 alleles 32 57 57 No. of p53 alleles 32 57 57 No available* $5(3.6)$ $5(3.6)$ $5(3.6)$ Not available* $7(18.9)$ $5(3.6)$ $20(14.3)$ HP \uparrow^+ $11(29.7)$ $20(14.3)$ $20(14.3)$ LEL * $11(29.7)$ $3(5.1)$ $35(25.0)$ Total no $37(100)$ $140(100)$ $140(100)$</th><th></th><th></th><th></th><th></th></t<>	Functional class PD for apoptotic REs SD for apoptotic REs No. of p53 alleles 32 57 57 No. of p53 alleles 32 57 57 No available* $5(3.6)$ $5(3.6)$ $5(3.6)$ Not available* $7(18.9)$ $5(3.6)$ $20(14.3)$ HP \uparrow^+ $11(29.7)$ $20(14.3)$ $20(14.3)$ LEL * $11(29.7)$ $3(5.1)$ $35(25.0)$ Total no $37(100)$ $140(100)$ $140(100)$				
(b) Alleles classified with respect to transactivation of apoptotic ResFunctional classPD for apoptotic ResSD for apoptotic ResNo. of p53 alleles323757No. of p53 alleles325757No. of p53 alleles3220 (14.3)Inclutical classes7 (18.9)7 (18.9)5 (3.6)Not available **2 (5.4)7 (18.9)5 (3.6)Intel*11 (29.7)33 (5.1)50 (14.3)Intel*11 (29.7)36 (42.9)Ot at an obset37 (100)60 (42.9)Chal no.37 (100)Individuals*Individuals*	(b) Alleles classified with respect to transactivation of apoptotic genes onlyFunctional classPD for apoptotic REsSD for apoptotic REsNo. of p53 alleles3257No. of p53 alleles3257Including classes3253.60Not available**7 (18.9)7 (18.9) $noFH***$ 11 (29.7)20 (14.3) $LFL***$ 11 (29.7)35 (25.0) $LetL**$ 4 (10.8)37 (100)Total no.37 (100)1ndividuals	(b) Alleles classified with respect to transactivation of apoptotic REsFunctional classPD for apoptotic REsSD for apoptotic REsNo. of p53 alleles3257No. of p53 alleles3257Inical classes325(4)Not available* $2(5.4)$ $5(3.6)$ Not available* $7(18.9)$ $20(14.3)$ $\operatorname{HP}^{TL}_{11}$ $11(29.7)$ $20(14.3)$ $\operatorname{LPL}_{12}^{**}$ $4(10.8)$ $37(100)$ Total no. $37(100)$ $140(100)$	189 (60.0) 315 (100)	223 (53.7) 415 (100)	78 (39.2) 199 (100)	LFS Total no. of tumors
LFS 78 (39.2) 223 (53.7) 189 Total no. of tumors 199 (100) 415 (100) 315 B) Alleles classified with respect to transactivation of apoptotic genes only 15 (100) 415 (100) 315 Functional class PD for apoptotic genes only 223 (53.7) 57 57 No. of p53 alleles 32 32 57 57 No. of p53 alleles 32 7 57 57 No. of p53 alleles 32 7 57 57 No. of p53 alleles 32 57 57 57 Inical classes Not available ** 2 (54) 57 53.6) Not available ** 2 (54) 7 (18.9) 51 53.6) Infl ⁺⁺ 13 (35.1) 13 (35.1) 50 (14.3) 51 (14.3) Infl ⁺⁺ 11 (29.7) 100 50 (14.3) 51 (14.3) Infl ⁺⁺ 11 (29.7) 51 (10.8) 50 (14.3) 50 (14.3) Infl ⁺⁺ 11 (29.7) 51 (10.8) 50 (14.3) 50 (14.3) Infl ⁺⁺ 11 (29.7) 51 (10.8) 50 (14.2) 50 (14		LFS 78 (39.2) 223 (53.7) 189 (60.0) Total no. of tumors 199 (100) 415 (100) 315 (100) B) Alleles classified with respect to transactivation of apoptotic genes only 415 (100) 315 (100) Functional class PD for apoptotic genes only SD for apoptotic REs 315 (100) Functional class PD for apoptotic REs SD for apoptotic REs 57 No. of p53 alleles 32 2 57 No. of p53 alleles 32 53 53 No. of p53 alleles 32 53 53 No. of p53 alleles 32 53 57 Inical classes 33 53 53 53 Not available** 2 (54) 5 (36) 53 53 Inical classes 7 (18.9) 7 (18.9) 53 53 53 53 Intel** 11 (29.7) 33 (55.0) 53	20 (0.3) 28 (28.3) 89 (28.3)	41(9.9) 110(26.5)	37 (18.0) 70 (35.2)	LFL
$ \begin{array}{c} \label{eq:constraint} \mathbf{H} \ma$	$ \begin{array}{c} \label{eq:linear} \mbox{LFL} \\ \mbox{LFS} \\ \mbox{LFS} \\ \mbox{Total no. of tumors} \\ \mbox{R} (392) \\ \mbox{Total no. of tumors} \\ \mbox{R} (392) \\ \mbox{R} (332) \\ \mbox{R} (100) \\ \mbox{R} (3710) \\ \mbox{R} (100) \\ \$	$ \begin{array}{c} \label{eq:constraint} \mathbf{LF} \\ $	16 (5.1)	33 (8.0) 41 (0.0)	10 (5.1) 37 (18 6)	поРН ЕН
Incrut LF $0.0(3.5)$ LF $0.0(3.5)$ (35.2) $0.0(3.5)$ (35.2) $0.0(3.5)$ (35.2) $0.0(3.5)$ (38.3) $0.0(3.5)$ (38.4) $0.0(3.5)$ (37.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.5)$ (35.4) $0.0(3.2)$ (35.4) $0.0(3.2)$ (35.4) $0.0(3.2)$ (36.4) $0.0(3.2)$ (37.1) $0.0(3.2)$ (3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Her H H H H LF $37 (35.2)(0055)110 (26.5)(0055)30 (60.0)(000)20 (6.0)(000)LFLFData78 (39.2)(000)23 (33.7)(100)315 (100)(1000)315 (100)(1000)B) Allele classified with respect to transactivation of apoptotic genes onlyFunctional class109 (100)(100)415 (100)(100)315 (100)(100)B) Allele classified with respect to transactivation of apoptotic genes onlyFunctional class109 (100)(100)315 (100)(100)Functional classP) for apoptotic genes onlyNo. of p53 allele3232315 (100)(100)No. of p53 allele32323257No. of p53 allele32325757No. of p53 allele323257No. of p53 allele32335 (100)100 H^{**}57No. of p53 allele325757No. of p53 allele325757No. of p53 allele3253.1057.60No. of p53 allele335.1057.60No. of p53 allele37.1037.00No. of p53 allele37.0057.60$	1 (0.3)	8 (1.9) 22 / 0 ())	4 (2.0)	Not available
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tumors			Clinical classes
Innov Not available 10(5.1) 33 (8.0) 10 Not available 10 (5.1) 33 (8.0) 33 (8.0) 20 20 Not available 10 (5.1) 33 (8.0) 31 (100) </td <td>Immove Immove Not available $4(2.0)$ $8(1.9)$ $10(3)$ FH $37(8.6)$ $110(26.5)$ $20(6.3)$ FH $37(18.6)$ $110(26.5)$ $100(3)$ LES $70(35.2)$ $110(26.5)$ $100(26.5)$ Total no of umors $70(35.2)$ $110(26.5)$ $100(26.5)$ Total no of umors $70(35.2)$ $100(26.5)$ $100(600)$ Total no of umors $70(35.2)$ $100(26.5)$ $100(26.5)$ Model $99(100)$ $415(100)$ $415(100)$ $315(100)$ Model $99(100)$ $213(35.1)$ $20(610)$ $315(10)$ No of p53 alleles 32 32 57 57 No of p53 alleles $33(35.1)$ 57 57 No field $7(8.9)$ $7(8.9)$ 57 Inf¹/₁ $11(29.7)$ $53(50)$ $53(6)$ Inf¹/₁ $11(29)$ $11(29)$ $50(14.3)$ Inf¹/₁ $11(29)$ $11(29)$ $50(42.9)$<td>Tunors' Not available 10,51) 8(1.9) 10,651) noFH $37,(18,6)$ $41,(2,9)$ $36,(5,1)$ noFH $77,(18,6)$ $41,(2,9)$ $36,(5,1)$ LFL $70,(5,2,2)$ $110,(2,5)$ $38,(6,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ J Clatal no. of tumors $199,(100)$ $415,(100)$ $315,(100)$ B) Alleles classified with respect to transactivation of apoptotic genes only $223,(53,7)$ $130,(100)$ Clatal no. of tumors D for apoptotic REs SD for apoptotic REs No. of 553 alleles 32 SD for apoptotic REs No of 553 alleles 32 57 No of 553 alleles 32 57 No available ** $2,(18,9)$ $7(18,9)$ No for $13,3,5,1)$ $7,(18,9)$ $20,(14,3)$ Not available ** $2,(18,9)$ $20,(14,3)$ Hot $11,(29,7)$ $53,(50)$ Inf.</td><td> + 257 (100)</td><td>308 (100)</td><td>173 (100)</td><td>Total no. of individuals</td></td>	Immove Immove Not available $4(2.0)$ $8(1.9)$ $10(3)$ FH $37(8.6)$ $110(26.5)$ $20(6.3)$ FH $37(18.6)$ $110(26.5)$ $100(3)$ LES $70(35.2)$ $110(26.5)$ $100(26.5)$ Total no of umors $70(35.2)$ $110(26.5)$ $100(26.5)$ Total no of umors $70(35.2)$ $100(26.5)$ $100(600)$ Total no of umors $70(35.2)$ $100(26.5)$ $100(26.5)$ Model $99(100)$ $415(100)$ $415(100)$ $315(100)$ Model $99(100)$ $213(35.1)$ $20(610)$ $315(10)$ No of p53 alleles 32 32 57 57 No of p53 alleles $33(35.1)$ 57 57 No field $7(8.9)$ $7(8.9)$ 57 Inf ¹ / ₁ $11(29.7)$ $53(50)$ $53(6)$ Inf ¹ / ₁ $11(29)$ $11(29)$ $50(14.3)$ Inf ¹ / ₁ $11(29)$ $11(29)$ $50(42.9)$ <td>Tunors' Not available 10,51) 8(1.9) 10,651) noFH $37,(18,6)$ $41,(2,9)$ $36,(5,1)$ noFH $77,(18,6)$ $41,(2,9)$ $36,(5,1)$ LFL $70,(5,2,2)$ $110,(2,5)$ $38,(6,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ J Clatal no. of tumors $199,(100)$ $415,(100)$ $315,(100)$ B) Alleles classified with respect to transactivation of apoptotic genes only $223,(53,7)$ $130,(100)$ Clatal no. of tumors D for apoptotic REs SD for apoptotic REs No. of 553 alleles 32 SD for apoptotic REs No of 553 alleles 32 57 No of 553 alleles 32 57 No available ** $2,(18,9)$ $7(18,9)$ No for $13,3,5,1)$ $7,(18,9)$ $20,(14,3)$ Not available ** $2,(18,9)$ $20,(14,3)$ Hot $11,(29,7)$ $53,(50)$ Inf.</td> <td> + 257 (100)</td> <td>308 (100)</td> <td>173 (100)</td> <td>Total no. of individuals</td>	Tunors' Not available 10,51) 8(1.9) 10,651) noFH $37,(18,6)$ $41,(2,9)$ $36,(5,1)$ noFH $77,(18,6)$ $41,(2,9)$ $36,(5,1)$ LFL $70,(5,2,2)$ $110,(2,5)$ $38,(6,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ LFS $78,(39,2)$ $223,(53,7)$ $139,(60,0)$ J Clatal no. of tumors $199,(100)$ $415,(100)$ $315,(100)$ B) Alleles classified with respect to transactivation of apoptotic genes only $223,(53,7)$ $130,(100)$ Clatal no. of tumors D for apoptotic REs SD for apoptotic REs No. of 553 alleles 32 SD for apoptotic REs No of 553 alleles 32 57 No of 553 alleles 32 57 No available ** $2,(18,9)$ $7(18,9)$ No for $13,3,5,1)$ $7,(18,9)$ $20,(14,3)$ Not available ** $2,(18,9)$ $20,(14,3)$ Hot $11,(29,7)$ $53,(50)$ Inf.	+ 257 (100)	308 (100)	173 (100)	Total no. of individuals
Total no. of individuals $173 (100)$ $308 (100)$ $173 (100)$ $308 (100)$ 257 Clinical classes $173 (100)$ $31 (10)$ $31 (10)$ $110 (26.5)$			152 (59.1)	169 (54.9)	72 (41.6)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76 (29.6)	80 (26.0)	60 (34.7)	LFL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\label{eq:relation} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19 (7.4)	35 (11.4)	31 (17.9)	FH
HIL $37(1.7)$ $35(1.1.4)$ $37(1.4)$ $56(0)$ 76 LFL $76(34.7)$ $80(56.0)$ $76(34.7)$ $80(56.0)$ 76 Clinical classes $72(41.6)$ $10(6(5.1))$ $30(100)$ $1173(10)$ 123 Clinical classes $173(106)$ $10(5.1)$ $30(10)$ $11000^{11}^{11}^{11}^{11}^{11}^{1111}^{111}^{11111}^{1111}^{1111}^{1111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{111111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{11111}^{111111}^{11111}^{111111}^{111111}^{11111}^{111111}^{111111}^{11111}^{111111}^{111111}^{11111}^{111111}^{111111}^{111111}^{111111}^{111111}^{111111}^{111111}^{111111}^{1111111}^{111111}^{1111111}^{11111111$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (0.4) 9 (3 5)	5(1.6)	2 (1.2) 8 (4 6)	Not available
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\label{eq:constraints} \mbox{Nutremainstering} \mbox$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Individuals'			Cliffical classes
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\label{eq:constraints} \mbox{Intratex} \mbox$	Intrividuals $2 (12)$ $5 (1,6)$ $10 (4)$ Not available $2 (1,2)$ $5 (1,4)$ $9 (5,3)$ H $17 (3,0)$ $3 (17) (3,0)$ $3 (1,4)$ $9 (5,3)$ LE $0 (3,4)$ $0 (3,6) (3,0)$ $9 (5,0)$ $9 (5,3)$ Le $7 (10)$ $17 (10)$ $3 (1,9)$ $9 (5,0)$ $9 (5,3)$ Total no of individuals $7 (2,1)$ $8 (1,9)$ $1 (0,3)$ $7 (5,3)$ $9 (5,3)$ Constraitable $1 (3, 0)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ $7 (5,3)$ Not available $1 (0, 0)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ $7 (2, 0)$ IFS $7 (10)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ IFS $7 (10)$ $7 (10)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ IFS $7 (10)$ $7 (10)$ $3 (1, 0)$ $3 (1, 0)$ $3 (1, 0)$ IFS $7 (10)$ $7 (10)$ $7 (10)$ $1 (0, 0)$ $2 (1, 0)$ IFS <td> · · · ⁺</td> <td>119 (100)</td> <td>58 (100)</td> <td>Total no. of families</td>	· · · ⁺	119 (100)	58 (100)	Total no. of families
Total Inco. of families 58 (100) 119 (100) Individuals 66 Clinical classes Not available $5 (1, 0)$ $9 (6, 2)$ $9 (6, 2)$ $9 (6, 2)$ Not available $8 (4, 0)$ $8 (4, 0)$ $9 (6, 2)$ $9 (6, 2)$ $9 (5, 0)$ Not available $8 (4, 0)$ $9 (6, 2)$ $9 (6, 2)$ $9 (5, 0)$ $7 (6, 0)$ $7 (6, 0)$ Text $0 = 3 (17, 9)$ $8 (10)$ $17 (10)$ $38 (10)$ $10 (5, 1)$ $9 (10)$ $7 (6, 0)$ 7	Total no. of families 58 (100) 119 (100) Inivitans, 68 (100) Total no. of mathemases 58 (100) 19 (100) Inivitans, 68 (100) Not available 11 38 (14.2) 9 (6.5) 19 (6.5) 10 (7.4) Not available 11 38 (1.0) 19 (6.5) 10 (6.5) 10 (7.4) 10 (7.4) Not available 17 (17.9) 38 (1.6) 9 (6.5) 10 (7.4) 10 (7.4) 10 (7.4) Not available 17 (17.9) 38 (1.6) 100 (6.5) 10 (6.5) 10 (7.4) 10 (7.4) 10 (7.4) Not available 17 (100) 38 (1.9) 10 (7.4) 10 (7.4) 10 (7.6)		29 (42.6)	51 (42.9)	13 (22.4)	LFS//
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20 (29.4)	29 (24.4)	17 (29.3)	$\operatorname{LFL}_{I_i}^{\mathcal{I}}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9 (13.2)	15 (12.6)	18 (31.0)	FH^{S}_{*}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 (13.2)	19 (16.0)	8 (13.8)	$^{t}_{s}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1(1.5)	5 (4.2)	2 (3.4)	Not available I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\label{eq:constraints} \mbox{Non-angle f} & 2 (3,4) & 3 (4,2) & 1 (1,2) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Families †			Clinical classes $\frac{1}{4}$
			52	49	40*	No. of p53 alleles
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Functional class

Clin Cancer Res. Author manuscript; available in PMC 2008 January 1.

Monti et al.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

	all tara
	ŝ
7	neoptimetion
=	0.4
T	-
÷	÷
5	
-	5
\geq	2
⊆	
5	7
0	2
<u> </u>	
\leq	2
ല	9
2	
5	Ę
õ	
Ξ.	3
ਰੂ	
• •	

NIH-PA Author Manuscript

(A) Alleles classified with respect to transactivat	tion of all target genes				
Functional class	Gd	SD		O-SD	
No. of p53 alleles	40*	49		52	
Clinical classes FH LFL LFS Total no. (C) Risk of multiple tumors	27 (27.6) 47 (48.0) 11 (11.2) 98 (100)		Families [†] 51 (133 (290 (516 (9.9) 25.8) 56.2) 100)	
Functional class (no.)	Gd	SD	0-SD	PDa ^{§§}	${ m SDa}^{\S\S}$
Families Families in which at least one individual has $\frac{1}{10000000000000000000000000000000000$	58 19	119 66	68 28	37 12	140 73
nutupte turnors" Individuals Individuals with multiple turnors III	173 20	308 84	257 45	81 13	400 91
$\overset{*}{Of}$ Of the 43 PD alleles, three were excluded bec	cause they were associated with	only five rare tumors (N210)	Y, S227T) or seemed to predist	ose only to pediatric adrenoco	rtical carcinomas (R337H).

f Numbers (and percentages) of families, individuals, and tumors carrying germ line PD, SD, and O-SD p53 alleles. Rounding off may prevent percentages from summing exactly to a value of 1.

clinical class. Consequently, families are the appropriate units for statistical analyses of how the distribution of the clinical classes may depend on mutation functional class. We report P values only Clinical class is a characteristic of families in that the class definition may depend in part on the number of affected family members and every affected individual in a family is assigned the same for analyses based on families, but display the distributions for individuals and for tumors for completeness.

 \mathbf{F} Percentage of families in clinical classes NA, noFH, and LFL did not differ significantly among those carrying PD, SD, or O-SD alleles (all $P \ge 0.42$).

 $\frac{8}{8}$ significantly higher percentage of FH families carried PD alleles than carried SD or O-SD alleles (P = 0.007 versus SD; P = 0.02 versus O-SD; Fisher's exact test) but the percentage of FH families that carried SD and O-SD alleles did not differ significantly (P = 1.0). H significantly lower percentage of LFS families carried PD alleles than carried SD or O-SD alleles (P = 0.009 versus SD; P = 0.03 versus O-SD; Fisher's exact test) but the percentage of LFS families that carried SD and O-SD alleles do not differ significantly (P = 1.0).

rNumbers (and percentage) of families, individuals, and tumors carrying germ line PD and SD p53 alleles. Rounding off may result in percentages not summing precisely to a value of 1. Clinical class is a characteristic of families in that the class definition may depend in part on the number of affected family members and every affected individual in a family is assigned the same clinical class. Consequently, families are the appropriate units for statistical analysis of how the distribution of the clinical classes may depend on mutation functional class. We report P values only for analyses based on families, but display the distributions for individuals and for tumors for completeness.

** Percentage of families in clinical classes NA, noFH, and LFL did not differ significantly between those carrying PD alleles for apoptotic REs and those carrying SD alleles for apoptotic REs (all $P \ge 0.61$).

 t^{+} A significantly higher percentage of FH families carried PD alleles for apoptotic REs than carried SD alleles for apoptotic REs (P = 0.008).

 \ddagger A significantly lower percentage of LFS families carried PD alleles for apoptotic REs than carried SD alleles for apoptotic REs (P = 0.0003)

§§ PD or SD alleles for apoptotic REs.

IIII Families in which at least one individual had multiple tumors more commonly carried SD than PD alleles (P = 0.007) and more commonly carried SD alleles for apoptotic REs than PD alleles for apoptotic REs (P = 0.05; Fisher's exact test). Comparisons between O-SD and either PD (P = 0.36) or SD (P = 0.07) were not statistically significant. # Individuals with multiple tumors more commonly carried SD than PD or O-SD alleles (P = 0.002 and 0.0004, respectively; within-cluster resampling test; ref. 24). The comparisons between PD and O-SD alleles (P = 0.80) and between SD alleles for apoptotic REs and PD alleles for apoptotic REs (P = 0.12) were not statistically significant.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Monti et al.

Effect of p53 functional statu	us on age at diagnosis in	confirmed carriers conside	rring only the first tumor p53 functional status		
•	Gł	ß	0-SD	PDa*	SDa *
No.					
Individuals	80	151	104	40	191
Families	48	106	57	30	124
Mean					
All individuals	29.8	19.0	23.1	30.2	21.2
Adjusted for family †	26.9	18.2	21.8	26.1	19.7
95% confidence limits $^{\hat{t}}$	21.6–32.3	15.6 - 20.9	18.3–25.4	18.0 - 34.1	17.2 - 22.1
Median					
All individuals	31	15	25	31.5	22
Adjusted for family †	29	14	24	27	17
95% confidence limits ^{t}	21.5 - 36.4	9.9 - 18.1	15.3–32.7	13.0-41.0	11.8–22.2
P values † (above diagonal for cc	omparison of means and below for	or comparison of medians)			
PD	1	0.004	0.12	Ι	Ι
SD	0.0007	I	0.11	0.07	Ι
0-SD	0.36	0.07	Ι	0.34	0.33
PDa	1	0.10	0.81	I	0.14
SDa	I	I	0.18	0.19	I
NOTE: Age at diagnosis was	s available for only a subset of in	ndividuals in the IARC database and	1 the missing data could bias these	comparisons.	
*					
For apoptotic REs.					

Clin Cancer Res. Author manuscript; available in PMC 2008 January 1.

 $\dot{\tau}_{
m Calculated}$ using the within-cluster resampling method (24).