Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1986 Aug;167(2):562–569. doi: 10.1128/jb.167.2.562-569.1986

Relationship of shape to initiation of new sites of envelope growth in Streptococcus faecium cells treated with beta-lactam antibiotics.

M L Higgins, M Ferrero, L Daneo-Moore
PMCID: PMC212926  PMID: 3733671

Abstract

Exponential-phase cells of Streptococcus faecium were treated with concentrations of ampicillin and cephalothin which, over 60 min, had little effect on increase in culture mass but resulted in about a 65% inhibition of increase in cell numbers. The resulting drug-treated cells underwent about a doubling in cell mass and volume above that of the untreated cells. The newly divided cells produced in the presence of drugs were shown to be due to the division of central or primary sites of envelope growth present at the time of treatment. Sites that were newly initiated (secondary sites) at the time of treatment or sites initiated after treatment did not divide but enlarged in length and girth to give abnormally large cells. Although the increase in average total volume was the same after each interval of treatment with ampicillin and cephalothin, the primary growth sites of the cephalothin-treated cells grew somewhat more slowly, and their secondary sites grew somewhat more quickly, than did those of the ampicillin-treated cells. Cephalothin-treated cells initiated secondary sites at a rate similar to that of the untreated cells, whereas the ampicillin-treated cells exhibited reduced rates of secondary site initiation. Two models are presented that account for these results.

Full text

PDF
562

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coyette J., Ghuysen J. M., Fontana R. The penicillin-binding proteins in Streptococcus faecalis ATCC 9790. Eur J Biochem. 1980 Sep;110(2):445–456. doi: 10.1111/j.1432-1033.1980.tb04886.x. [DOI] [PubMed] [Google Scholar]
  2. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Competition of beta-lactam antibiotics for the penicillin-binding proteins of Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella aerogenes, Proteus rettgeri, and Escherichia coli: comparison with antibacterial activity and effects upon bacterial morphology. Antimicrob Agents Chemother. 1979 Sep;16(3):325–328. doi: 10.1128/aac.16.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edelstein E. M., Rosenzweig M. S., Daneo-Moore L., Higgins M. L. Unit cell hypothesis for Streptococcus faecalis. J Bacteriol. 1980 Jul;143(1):499–505. doi: 10.1128/jb.143.1.499-505.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gibson C. W., Daneo-Moore L., Higgins M. L. Analysis of initiation of sites of cell wall growth in Streptococcus faecium during a nutritional shift. J Bacteriol. 1984 Dec;160(3):935–942. doi: 10.1128/jb.160.3.935-942.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gibson C. W., Daneo-Moore L., Higgins M. L. Cell wall assembly during inhibition of DNA synthesis in Streptococcus faecium. J Bacteriol. 1983 Jul;155(1):351–356. doi: 10.1128/jb.155.1.351-356.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gibson C. W., Daneo-Moore L., Higgins M. L. Initiation of wall assembly sites in Streptococcus faecium. J Bacteriol. 1983 May;154(2):573–579. doi: 10.1128/jb.154.2.573-579.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higgins M. L., Gibson C. W., Daneo-Moore L. Analysis of nutritional shift-up of Streptococcus faecium. Ann Inst Pasteur Microbiol. 1985 Jan-Feb;136A(1):59–62. doi: 10.1016/s0769-2609(85)80022-3. [DOI] [PubMed] [Google Scholar]
  8. Hinks R. P., Daneo-Moore L., Shockman G. D. Cellular autolytic activity in synchronized populations of Streptococcus faecium. J Bacteriol. 1978 Feb;133(2):822–829. doi: 10.1128/jb.133.2.822-829.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Koch A. L., Higgins M. L. Control of wall band splitting in Streptococcus faecalis. J Gen Microbiol. 1984 Apr;130(4):735–745. doi: 10.1099/00221287-130-4-735. [DOI] [PubMed] [Google Scholar]
  10. LEDERBERG J. Mechanism of action of penicillin. J Bacteriol. 1957 Jan;73(1):144–144. doi: 10.1128/jb.73.1.144-144.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lorian V., Atkinson B. Effects of subinhibitory concentrations of antibiotics on cross walls of cocci. Antimicrob Agents Chemother. 1976 Jun;9(6):1043–1055. doi: 10.1128/aac.9.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pucci M. J., Hinks E. T., Dicker D. T., Higgins M. L., Daneo-Moore L. Inhibition of beta-lactam antibiotics at two different times in the cell cycle of Streptococcus faecium ATCC 9790. J Bacteriol. 1986 Mar;165(3):682–688. doi: 10.1128/jb.165.3.682-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwarz U., Asmus A., Frank H. Autolytic enzymes and cell division of Escherichia coli. J Mol Biol. 1969 May 14;41(3):419–429. doi: 10.1016/0022-2836(69)90285-x. [DOI] [PubMed] [Google Scholar]
  14. Spratt B. G. Penicillin-binding proteins and the future of beta-lactam antibiotics. The Seventh Fleming Lecture. J Gen Microbiol. 1983 May;129(5):1247–1260. doi: 10.1099/00221287-129-5-1247. [DOI] [PubMed] [Google Scholar]
  15. TOENNIES G., ISZARD L., ROGERS N. B., SHOCKMAN G. D. Cell multiplication studied with an electronic particle counter. J Bacteriol. 1961 Dec;82:857–866. doi: 10.1128/jb.82.6.857-866.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Williamson R., Hakenbeck R., Tomasz A. In vivo interaction of beta-lactam antibiotics with the penicillin-binding proteins of Streptococcus pneumoniae. Antimicrob Agents Chemother. 1980 Oct;18(4):629–637. doi: 10.1128/aac.18.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES