# A bacteriological investigation of two leisure centre swimming pools disinfected with ozone

BY T. D. WYATT AND T. S. WILSON

Northern Ireland Public Health Laboratory, The Laboratories, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD

(Received 6 July 1978)

## SUMMARY

A bacteriological study was carried out on the first Leisure Centre swimming pools in the United Kingdom to be disinfected with ozone/chlorine. Results suggested that a free chlorine concentration of approximately 0.8 mg/l was necessary to maintain the pools in a bacteriologically satisfactory condition. This amount of free chlorine was similar to that required when the pool was disinfected with chlorine alone. However, the associated amount of combined chlorine was much lower when disinfection was by ozone/chlorine and this gave more acceptable bathing conditions. Implications for the management of pools disinfected by this method are discussed.

## INTRODUCTION

In the United Kingdom there are some 1055 public indoor swimming pools, the majority of which rely on chlorine for disinfection of the pool water (Technical Unit for Sport, 1977). When chlorine dissolves in water it forms hydrochloric acid, hypochlorous acid and hypochlorite ions. The latter two compounds oxidize organic and inorganic matter in the water to form chloramines and nitrochloride compounds. Although this 'combined chlorine' has some antimicrobial activity it is much less than that of free chlorine. With the current practice of 'breakpoint' chlorination, more chlorine is added until all the organic and inorganic matter is oxidized and a free chlorine residual of between 1 and 2 mg/l is obtained. For more detailed accounts of the chemistry of chlorine in water see Department of the Environment (1975), Black et al. (1970). As the bathing load increases so does the amount of organic and inorganic matter added to the water and thus the amount of combined chlorine. It is the high concentration of combined chlorine which has been found (Eichelsdorfer et al. 1976) to be the cause of the irritation of eyes and mucous membranes frequently experienced by bathers in chlorinated swimming pool water. As some of the compounds comprising combined chlorine are volatile, they are also found in the atmosphere of the pool hall and are the main contributors to the 'swimming bath odour'. As well as the transient irritation to pool users and spectators, there are also a number of pool users, especially children, who suffer more serious effects such as sinusitis and rhinitis. Most of these undesirable side

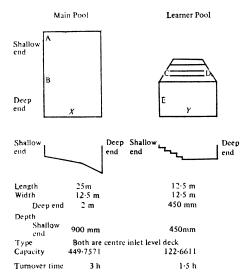



Fig. 1. Specification of the swimming pools at the Valley Leisure Centre. Diagrams are not to scale.

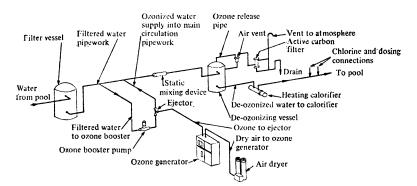



Fig. 2. The ozonization process at the Valley Leisure Centre.

effects of disinfection by chlorine would be eliminated if the amount of combined chlorine in the water were much reduced.

In Great Britain, ozone has been used to disinfect water for domestic supply and has been little used for the disinfection of swimming pool water (Holden, 1970), but it is much more widely used in Europe for the latter purpose. Evidence from Germany indicates that, in comparison with chlorine, ozone has both a higher antimicrobial activity (German Association of Gas and Water Companies, 1975) and a greater ability to assist in the removal of organic and inorganic compounds from swimming pool water (Heintz, 1975). German practice is that ozone must not be present either in the pool water or in the atmosphere of the pool hall for toxicological reasons (German Association of Gas and Water Companies, 1975; Herschman, 1976) and thus must be removed after treating the water. Chlorine is then added to provide continuing antimicrobial activity during the circulation time through the pool. However, because of the highly effective removal of organic and inorganic compounds by ozonization, the combined chlorine is much reduced and only a relatively small amount of chlorine is needed to achieve 'breakpoint' (Heintz, 1975).

Recently, the first Leisure Centre swimming pools (Fig. 1) in the United Kingdom disinfected with ozone were opened at the Valley Leisure Centre, Newtownabbey, near Belfast, Northern Ireland. The system of disinfection follows that used in Germany and an outline of the process is shown in Fig. 2. Ozone is generated from oxygen in the air by electrical discharge and the mixture of air and ozone is passed into the stream of water coming from the main filters. Because of the limited solubility of ozone, the gas is vigorously mixed with the water to form an unstable suspension. After a contact time of 2 min, the treated water passes to a deozonizer where the gaseous ozone bubbles off and the small amount that has dissolved is catalytically converted to oxygen by means of a special filter medium. The ozone present in the gas mixture removed from the deozonizer is similarly converted to oxygen and then vented to the atmosphere. After the ozonization stage of the process the water is then dosed with chlorine in the normal way before being returned to the pool.

This paper reports the findings of two bacteriological surveys of the water quality in the pools of the Valley Leisure Centre. The second survey was found to be necessary to overcome certain problems which had become apparent in the earlier study.

## MATERIALS AND METHODS

# Sampling

Sites. In the first survey, measurement of water temperature and samples for the estimation of chlorine levels and pH were taken at the pool surface above the inlets to the pools at points X and Y (Fig. 1). Samples for bacteriological analysis were removed at points A, B, C, D and E. At points A, B and E the sample was taken underwater at the base of the wall whilst at points C and D, the sample was taken from the highest step completely covered with water.

Differences in the second survey included: measuring chlorine at points A, B, C and E as well as at points X and Y and the inclusion of an additional sampling point (BS) at the surface of the pool above point B. Point D was not used.

Times. In the first survey chlorine, pH and temperature were measured hourly, whilst samples for bacteriological examination were taken at four times during the day (Table 1).

In the second survey, temperature was measured twice daily, pH was measured at the time of bacteriological sampling (Table 2) and chlorine was measured hourly at the pool inlets and also at the times of bacteriological sampling (Table 3).

*Procedure.* Temperature was measured directly in the pool using a standard pool thermometer (Brannan, England).

In the first survey, samples of water for the measurement of pH and chlorine were removed from the pool surface in a wide necked polythene bottle.

| sults obtained from samples during the survey period of disinfection by chlorine alone | 44 ×<br>60 × | 3 1 2 3 1 2 3<br>Time It 2 3 1 2 3 1 2 3 1 2 3 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \begin{array}{c} \end{array}\end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}\end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}\end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 0 0 17 0 0 17 0 0 0 17 0 0 0 17 0 0 0 17 0 0 0 0   | organisms per 100 ml. (2) Most probable number of <i>E. coli</i> type 1 per 100 ml. (3) Plate count (org | :: (1) 09.30 h, (2) 16.00 h, (3) 20.00 h, (4) 21.15 h. On day 7 the times were 09.30 h, 14.15 h, 16.15 h and 18.15 h respectively. All times were |
|----------------------------------------------------------------------------------------|--------------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| tained fro                                                                             | ന∢           | 1                                              | $\begin{array}{c} 0.6 \ (F) \\ 0.4 \ (F) \end{array}$ | 0000                                                 | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                              | E)                                                   | 000    <br>000    <br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                      | 000<br>0<br>*<br>0                                   | -<br>able number c                                                                                       | <sup>,</sup> h, (2) 16.00 h <sub>i</sub>                                                                                                          |
|                                                                                        | 61 -         | 1 2 3                                          | 110                                                   | 0 0 47<br>0 0 140<br>0 0 1448<br>0 0 448             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                              | 0                                                    | $\begin{array}{c} 0.3 (F) \\ 0.3 (F) \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | , F                                                                                                      | ays 1–6 were: (1) 09.30                                                                                                                           |
| Table 1. Bacteriological re                                                            |              | 1 2 3                                          | 0 – – – – – – – – – – – – – – – – – – –               | 00000<br>000000<br>000000                            | $\begin{array}{c} 1.8 (F) \\ 1.6 (F) \\ 1.5 (F) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | ŇD                                                   | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>ND                                              | - ND - 0<br>0 0 14                                   | 0 1 <b>*</b> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | tes an 'Unsatis<br>rial counts are r                                                                     | The times of sampling for days 1-6 were                                                                                                           |
|                                                                                        | Day .        | count†<br>Sites                                | Inlet (L) <br>Inlet (M)                               | RODE                                                 | Inlet (L)<br>Inlet (M)<br>B<br>C<br>C                                                             |                                                      | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C EI                                                 | Inlet (L)<br>Inlet (M)<br>A                          | HOOR CO                                              | * +                                                                                                      | 4                                                                                                                                                 |

 $\pm$  45 min. § Positions in the pool from where samples were taken (Fig. 1). || (L) and (M) indicates the learner and main pools and (F) and (C) the free and combined levels of chlorine (mg/l).

**428** 

|          |                            |      | led amount<br>e chlorine |         |      |  |  |  |
|----------|----------------------------|------|--------------------------|---------|------|--|--|--|
|          | ate amount                 | ()   | (mg/l) pH                |         |      |  |  |  |
| 01 11 00 | e <b>chlorine</b><br>ng/l) | Free | Combined                 | Learner | Main |  |  |  |
| 0.2      | Max.                       | 0.3  | 0.3                      | 7.8     | 7.8  |  |  |  |
|          | Min.                       | 0.1  | < 0.1                    | 7.8     | 7.6  |  |  |  |
| 0.5      | Max.                       | 0.7  | 0.3                      | 8.2     | 7.6  |  |  |  |
|          | Min.                       | 0.3  | < 0.1                    | 7.6     | 7.4  |  |  |  |
| 0.8      | Max.                       | 0.9  | 0.2                      | 7.6     | 7.8  |  |  |  |
|          | Min.                       | 0.6  | < 0.1                    | 7.5     | 7.6  |  |  |  |
| 1.3      | Max.                       | 1.6  | 0.2                      | 7.6     | 7.6  |  |  |  |
|          | Min.                       | 0.8  | < 0.1                    | 7.5     | 7.5  |  |  |  |

# Table 2. The variation in pH and amount of chlorine in the pool water during the second survey

In the second survey the bottle was attached to a three foot length of rigid wire which enabled it to be plunged rapidly to the sampling site when necessary. It should be noted, however, that at point B, the bottle did not reach to the base of the wall and the sample was thus taken approximately 30 cm from the pool bottom. In all cases the bottle was rinsed twice with water from the site before removing the sample which was then analysed within 10 min.

Samples for bacteriological examination were collected in 250 ml glass stoppered bottles containing the amount of sodium thiosulphate and sterilized as recommended in Water Report No. 71 (Department of Health and Social Security, 1969). In the first survey samples were obtained by opening the sampling bottle underwater whilst in the second survey the polythene bottle attached to the length of wire as described earlier was used. In the latter case the water in the polythene bottle was transferred to the 250 ml bottle immediately on removing it from the pool. All bottles were then placed at 4 °C before being transported to the laboratory for examination. The maximum length of time samples were kept at 4 °C was 24 h.

# Analyses

All colorimetric measurements were made with a Lovibond 1000 Comparator by the same operator throughout each survey. Different operators, however, took part in surveys 1 and 2.

pH. One phenol red tablet (The Tintometer Ltd., Salisbury, England) was crushed into 10 ml of pool water and the colour intensity read immediately against Lovibond Disk 2/1J (pH range  $6\cdot8-8\cdot4$ ).

Free and combined chlorine. In the first survey, a standard DPD tablet method was used (Department of the Environment, 1975) for measuring both free and combined chlorine. A more precise method of measuring free chlorine was used in the second survey (Watts D., personal communication) in which 0.5 g of Palin DPD chlorine test powder (Wilkinson and Simpson Ltd., Low Friar Street, Newcastle-upon-Tyne, England) was mixed with 50 ml of pool water in a measur-

| survey            |
|-------------------|
| e second          |
| th                |
| during .          |
|                   |
| s obtained        |
| results           |
| . Bacteriological |
| 3                 |
| le le             |

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{bmatrix} \chi_{1} \\ \chi_{1} \\ \chi_{1} \\ \chi_{2} \\ \chi_{2} \\ \chi_{2} \\ \chi_{2} \\ \chi_{2} \\ \chi_{1} \\ \chi_{2} \\ \chi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |        |    | 1       |                  |            | N        |              |   | e        |        |            | 4   |                                        |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|----|---------|------------------|------------|----------|--------------|---|----------|--------|------------|-----|----------------------------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lorine (mg/l)<br>sterial count<br>(h) |        |    | 0.2     |                  |            | 0.5      |              |   | 0.8      |        |            | 1.3 |                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . (4) cm;                             | ::     | 1  | <br>  ~ | ,<br>,<br>,<br>, | -          | <br>  61 | °.           | - | <br>  01 | 60     | -          | 64  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | ites   |    |         |                  |            |          |              |   |          |        |            |     |                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Å      | 0  | 0       | 6                | 0          | 0        | 116          | 0 | 0        | ũ      | <b>*</b> T | 0   | e                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | в      | 0  | 0       | 61               | 0          | 0        | 15           | 0 | 0        | 11     | 0          | 0   | 4                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | BS     | 0  | 0       | æ                | 0          | 0        | 17           | 0 | 0        | 1      | 0          | 0   | 1                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | C      | 2* | 0       | 67               | 0          | 0        | ũ            | 0 | 0        | 67     | 0          | 0   | e                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Э      | 0  | 0       | 1                | 0          | 0        | 140          | 0 | 0        | 5      | 0          | 0   | 4                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | A      | 0  | 0       | 55               | 0          | 0        | er           | 0 | 0        | ~<br>1 | 0          | 0   | 67                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | в      | 0  | 0       | 124              | 0          | 0        | 5            | 0 | 0        | ũ      | 0          | 0   | v                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | BS     | 0  | 0       | 49               | 0          | 0        | 11           | 0 | 0        | 9      | 0          | 0   | 19                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | C      | 0  | 0       | 116              | <b>*</b> - | 1        | 23           | 0 | 0        | 12     | 0          | 0   | ~1                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | 田      | 0  | 0       | 212              | 0          | 0        | 172          | 0 | 0        | 61     | 0          | 0   | 1                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | A      | 0  | 0       | 144              | 0          | 0        | 11           | 0 | 0        | Ð      | *-         | 0   | 12                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | в      | 0  | 0       | 59               | 0          | 0        | e            | 0 | 0        | 32     | 0          | 0   | ~<br>1                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | BS     | 0  | 0       | 94               | 0          | 0        |              | 0 | 0        | -      | 0          | 0   | ũ                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | с<br>С | 0  | 0       | 672              | 0          | 0        | 50           | 0 | 0        | ŝ      | 0          | 0   | ი                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c} \square \ \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | E      | 0  | 0       | 89               | 0          | 0        | 37           | 0 | 0        | ero    | 0          | 0   | v                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | ¥      | 0  | 0       | 14               | 0          | 0        | ~            | 0 | 0        | ~<br>1 | 0          | 0   | ~<br>7                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $M_{12}$ <t< td=""><td></td><td>в</td><td>0</td><td>0</td><td>22</td><td>0</td><td>0</td><td>80</td><td>0</td><td>0</td><td>&lt;1</td><td>0</td><td>0</td><td>~<br/>1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | в      | 0  | 0       | 22               | 0          | 0        | 80           | 0 | 0        | <1     | 0          | 0   | ~<br>1                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | BS     | 0  | 0       | 27               | 0          | 0        | 9            | 0 | 0        | ~<br>1 | 0          | 0   | 61                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | C      | 0  | 0       | 19               | 0          | 0        | 17           | 0 | 0        | ~1     | 0          | 0   | -                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{bmatrix} A \\ B \\ C \\ C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | E      | 0  | 0       | Q                | 0          | 0        | e            | 0 | 0        | -<br>~ | 0          | 0   | e                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{bmatrix} \mathbf{R} \\ \mathbf{R}$ |                                       | A      | 0  | 0       | x                | 0          | 0        | 9            | 0 | 0        | 7      | 0          | 0   | 61                                     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{bmatrix} BS \\ C \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | в      | 0  | 0       | 9                | 0          | 0        | 94           | 0 | 0        | 4      | 0          | 0   | <ul> <li>1</li> </ul>                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | BS     | 0  | 0       | 9                | 0          | 0        | 4            | 0 | 0        | 61     | 0          | 0   | v                                      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | C      | 0  | 0       | 21               | 0          | 0        | 1            | 0 | 0        | 4      | 0          | 0   | ~<br>1                                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | E      | 1* | 0       | 13               | 0          | 0        | 10           | 0 | 0        | 9      | 0          | 0   | 1                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Y      | 0  | 0       | 26               | 0          | 0        | v<br>1       | 0 | 0        | 61     | 0          | 0   | e                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | B      | 0  | 0       | 17               | 0          | 0        | ~<br>7       | 0 | 0        | 1      | 0          | 0   | <b>-</b>                               |
| 0  0  21  0  0  2  0  0  13  0                        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | BS     | 0  | 0       | 7                | 0          | 0        | v<br>1       | 0 | 0        |        | 0          | 0   | v                                      |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | c      | 0  | 0       | 21               | 0          | 0        | 63           | 0 | 0        | 13     | 0          | 0   | <b>-</b>                               |
| 0 0 7 0 0 <1 0 0 <1 0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       | ы      | 0  | 0       | 7                | 0          | 0        | <del>.</del> | 0 | 0        | v      | 0          | 0   | ~<br>1                                 |

ing cylinder. An aliquot was immediately transferred to a cuvette and the colour intensity determined in the Comparator.

The amount of total chlorine present in the sample was then determined with tabletted reagents by the standard method in both surveys and the amount of combined chlorine found by subtraction.

Bacteriology. The following tests as described by Water Report No. 71 (Department of Health and Social Security, 1969) were performed on each water sample: a presumptive count of coliform organisms determined by the multiple tube method with McConkey Broth, a faecal coliform count determined by the indole and Eijkman tests and a plate count.

The categorization of bacteriological findings was as follows: (A) 'Satisfactory' – no coliform organisms in 100 ml of water and a plate count of < 10 organisms per ml. (B) 'Unsatisfactory' – the presence of coliform organisms in 100 ml. (C) Samples showing no coliform organisms but plate counts of > 10 organisms per ml were not classified as 'Satisfactory' or 'Unsatisfactory' but were commented on individually.

## RESULTS

The pools at the Valley Leisure Centre were opened on 1 April 1977 and disinfected with chlorine alone until the 29 May 1977. Subsequently, ozone in conjunction with chlorine was used as the disinfecting agent.

## Survey 1

This survey compared the quality of the water in the two pools during the final week of disinfection with chlorine alone (23-29 May 1977) with that obtained during the first week when ozone/chlorine was used (30 May-5 June 1977).

## Pool temperature

The temperature of the water in the main and learner pools during the two sampling periods was measured hourly and no large fluctuations were seen. The temperature in the learner pool during both sampling periods varied between 28.5and 30 °C, whilst that in the main pool during the periods of disinfection with ozone/chlorine varied between 27.5 and 29 °C and during the period when only chlorine was used varied between 27 and 28.5 °C.

# pH

This was also measured hourly in both pools. In the learner pool the pH varied between 7.8 and 8.4 during the period when chlorine alone was used for disinfection and between 7.1 and 8.3 when ozone/chlorine was used. In the main pool the variations were between 7.4 and 8.3 and between 7.2 and 7.9 respectively (Table 4).

## **Bathing** loads

These were determined by counting the number of people in the two pools at hourly intervals (Figs. 3, 4). During the two surveys the loads were broadly

# Table 4. The variation in pH of the pool water during the first survey periods

|               |                  | Chlo | rine alo | ne  |             |     |     |     |
|---------------|------------------|------|----------|-----|-------------|-----|-----|-----|
| $\mathbf{pH}$ | Day no           | 1    | 2        | 3   | 4           | 5   | 6   | 7   |
| Learner pool  | Maximum          | 8·1  | 8·2      | 8·2 | 8·1         | 8∙1 | 8∙3 | 8·4 |
|               | Minimum          | 7·9  | 7·9      | 8·1 | 7·8         | 7∙9 | 7∙9 | 8·1 |
| Main pool     | Maximum          | 7·7  | 8·3      | 8·3 | 7·7         | 8·1 | 7·9 | 7·9 |
|               | M <b>in</b> imum | 7·4  | 7·5      | 8·1 | 7·5         | 7·7 | 7·7 | 7·5 |
|               |                  | Ozon | e/chlor  | ine |             |     |     |     |
| Learner pool  | Maximum          | 8·3  | 7∙9      | 8·3 | 8·1         | 8∙0 | 8·1 | 8·1 |
|               | Minimum          | 7·8  | 7∙1      | 7·7 | 7·8         | 7∙8 | 7·8 | 7·9 |
| Main pool     | Maximum          | 7·7  | 7∙6      | 7∙9 | $7 \cdot 5$ | 7∙9 | 7∙5 | 7∙5 |
|               | Minimum          | 7·5  | 7∙4      | 7∙6 | $7 \cdot 2$ | 7∙5 | 7∙3 | 7∙2 |

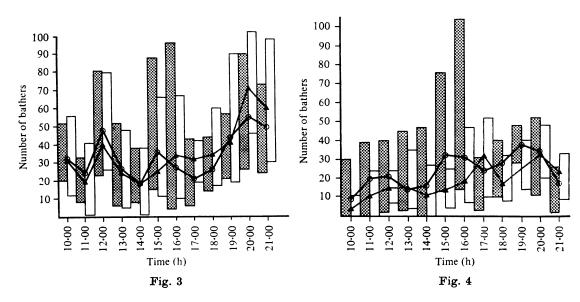



Fig. 3. Bathing loads in the main pool during the first survey periods.  $\bigcirc - \bigcirc$  represents the mean and  $\boxplus$  the range of the hourly counts taken over the 7-day period of disinfection by chlorine alone.  $\blacktriangle - \bigstar$  and  $\square$  represent the same figures for disinfection by ozone/chlorine.

Fig. 4. Bathing loads in the learner pool during the first survey periods. See Fig. 3 for explanation of symbols.

comparable, consisting of mainly school groups during the day and the general public in the evening.

## Chlorine concentrations

Free and combined chlorine were measured hourly at the inlets to the pools, but only those measures made at the bacteriological sampling times have been recorded (Tables 1 and 5). During the period when chlorine alone was used for disinfection, free chlorine varied during the week between 0 mg/l (learner pool, 09.30 h day 4) and 2.8 mg/l (main pool, 20.00 h day 4; Table 1). The maximum variation in amount of free chlorine in one day occurred in the main pool on day 4 when it varied between 0.8 and 2.8 mg/l. Smaller variations in the amount of free chlorine were obtained during the period when ozone/chlorine was used for disinfection (Table 5). The maximum variation was between 0 mg/l (learner pool, 09.30 h day 4) and 1.3 mg/l which was obtained in the learner pool on three occasions during day 7. The maximum daily fluctuation of between 0.1 and 0.7

# **Bacteriological results**

mg/l occurred in the learner pool on day 3.

These are also shown in Tables 1 and 5 and those found to be 'Unsatisfactory' (i.e. containing coliform organisms) have been asterisked. In the main pool during the period of disinfection with chlorine alone, two out of 56 results (3.6%) were 'Unsatisfactory' (Table 1). In both cases a large number of bathers (90 and 96 respectively) had been in the water before the sample was taken and in the former case a low value for free chlorine (0.4 mg/l) was present in the inlet water. Unfortunately, chlorine values were not available for the latter 'Unsatisfactory' sample. By contrast, in the learner pool, 16 out of 82 results (19.5%) were 'Unsatisfactory' (Table 1). These generally correlated with the higher bathing loads present in the evening on days 1, 2, 3 and 7 and where results were available, with low levels of free chlorine. Very high plate counts (>1000 organisms/ml) in the absence of coliform organisms were obtained on a further ten occasions in the learner pool during this period and again were usually associated with the above factors.

Compared with a total of 18 'Unsatisfactory' results obtained when chlorine alone was used for disinfection, 47 out of 140 results (28.6%) were 'Unsatisfactory' and a further four samples had very high plate counts when ozone/chlorine was used (Table 5). Again, these usually correlated with high bathing loads and low levels of free chlorine although high bathing loads could not account for the 14 'Unsatisfactory' results obtained at 09.30 h.

## Survey 2

In view of the many 'Unsatisfactory' results obtained during both sampling periods, a second survey was carried out in which the main deficiencies of the first survey were overcome. These deficiencies were, firstly, that the amount of free chlorine in the inlet water fluctuated widely, and secondly that the operator taking the samples had several readings to take at similar times and thus found it difficult to maintain precision and accuracy. As the pool for administrative reasons could not be returned to disinfection using chlorine alone, the second survey was confined to disinfection with ozone/chlorine.

|                                                                                          |                  | ee l    | 0.6 (C)<br>0.4 (C)<br>62<br>124<br>204<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.4 (C)<br>0.3 (C)<br>188<br>132<br>116<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5 (C)<br>25 (C)<br>83 49 49<br>83 66<br>83 66<br>84<br>85<br>85<br>86<br>86<br>86<br>86<br>87<br>86<br>87<br>86<br>87<br>86<br>87<br>86<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87 | 0-4 (C)<br>0-5 (C)<br>15<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125<br>125    |                                    |
|------------------------------------------------------------------------------------------|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|
|                                                                                          | 5                | 2       | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 000                                                                                                                                                                                                                                                                                                                               | 1 00000                                                                                    |                                    |
| hlorine                                                                                  |                  | [       | 0.9<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \begin{array}{c}     1.3 \\     1.3 \\     0.3 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\     0 \\ $ | 1.3 (F)<br>0.3 (F)<br>0<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 1.3(F)\\ 0.3(F)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$   |                                    |
| ozone/c]                                                                                 |                  | ຄ       | 0.1<br>0.3<br>(C)<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88<br>88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9 (C)<br>0.2 (C)<br>16<br>92<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-1 (C)<br>0-2 (C)<br>83<br>152<br>176<br>176                                                                                                                                                                                                                                                                                       | 0.3 (C)<br>0.2 (C)<br>116<br>20<br>184<br>178                                              |                                    |
| by c                                                                                     | 9                | 8       | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11000-0                                                                                                                                                                                                                                                                                                                             | 100000                                                                                     |                                    |
| fection                                                                                  |                  | [-      | 0.5 (F)<br>0.2 (F)<br>0 0 1 * * (F)<br>0 0 0 1 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4<br>0.3<br>1<br>1<br>4<br>0<br>0<br>0<br>0<br>1<br>4<br>0<br>0<br>0<br>1<br>4<br>0<br>0<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 (F)<br>0.3 (F)<br>0<br>1<br>1<br>0<br>1<br>*                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 1.0(F)\\ 0.3(F)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$  |                                    |
| f disin]                                                                                 |                  | 3       | 0.3 (C)<br>0.2 (C | 0-2 (C)<br>154<br>154<br>154<br>76<br>71<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4 (C)<br>0.3 (C)<br>85<br>92<br>178<br>81<br>81                                                                                                                                                                                                                                                                                   |                                                                                            |                                    |
| ò pa                                                                                     | ŝ,               | < e1    | 100581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1100000                                                                                                                                                                                                                                                                                                                             | ND<br>000121                                                                               |                                    |
| ey peric                                                                                 | ι <b>σ</b> -     | [-      | 0-1 (F)<br>5*<br>0<br>11*<br>8**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 (F)<br>0.3 (F)<br>35*<br>35*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1 (F)<br>0.1 (F)<br>0<br>1*<br>1*<br>1*                                                                                                                                                                                                                                                                                           | 001±                                                                                       |                                    |
| results obtained from samples during the survey period of disinfection by ozone/chlorine | 4                | အ       | $\sim 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000 \ 1000\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2 (C)<br>0.5 (C)<br>90<br>148<br>118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>&lt;01 (C) 0.2 (C) &gt;1000 &gt;1000 74 260 126</pre>                                                                                                                                                                                                                                                                          | 000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>00                          |                                    |
| ng t                                                                                     |                  | ∾ +     | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114-00                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                    |
| es duri                                                                                  |                  | Time 1+ | 00000<br>00000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time 2<br>05 (F)<br>0 3 (F)<br>0 1<br>1<br>1<br>0 0 1<br>1<br>1<br>0 0 0<br>1<br>1<br>0 0 0<br>1<br>0 0<br>0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11116 3<br>0-3 (F) -<br>0-2 (F) -<br>10*<br>11*<br>13*<br>14*                                                                                                                                                                                                                                                                       | 0.2 (F)<br>0.1 (F)<br>354<br>174<br>8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                |                                    |
| sampl                                                                                    |                  | ຄ       | 0.6 (C)<br>0.6 (C)<br>0.6 (C)<br>123<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6 (C)<br>0.4 (C)<br>54<br>138<br>161<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-2 (C)<br>0-4 (C)<br>11<br>18<br>108<br>144<br>136                                                                                                                                                                                                                                                                                 | 0-2 (C)<br>1-0 (C)<br>85<br>62<br>83<br>81<br>83<br>81                                     |                                    |
| rom                                                                                      | ო                | 67      | 110000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1400 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100%%2                                                                                                                                                                                                                                                                                                                              | 1100000                                                                                    |                                    |
| ained f                                                                                  |                  | [-      | <pre>&lt; 0.1 (F) &lt; 0.1 (F) &lt; 0.1 (F) &lt; 0 33 0 33 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1 (F)<br>0.6 (F)<br>0<br>13*<br>5*<br>14*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.4 \ (F) \\ 0.4 \ (F) \\ 0 \\ 35* \\ 35* \\ 17* \end{array}$                                                                                                                                                                                                                                                     | $\begin{array}{c} 0.7 (F) \\ 0.3 (F) \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ \end{array}$    |                                    |
| ults obi                                                                                 |                  | က       | 0-3 (C)<br>1-2 (C)<br>36<br>268<br>236<br>93<br>93<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 (C)<br>1.0 (C)<br>5<br>5<br>26<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0 (C)<br>19<br>12<br>12<br>61<br>6<br>6                                                                                                                                                                                                                                                                                           | 0.6 (C)<br>1.0 (C)<br>158<br>49<br>172<br>39                                               |                                    |
|                                                                                          | ¢1 7             | 2       | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                     | 1 00000                                                                                    |                                    |
| Table 5. Bacteriological                                                                 |                  | [       | <pre>&lt;0.1 (F) 0.3 (F) 0.3 (F) 0.3 (F) 0.4 2.4 3.4 4 2.4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.3(F)\ 0.0(F)\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\ 0\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.2 \ (F) \\ 0.5 \ (F) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $ | ole 1.                             |
| Bacteri                                                                                  |                  | က       | 1:3 (C)<br>1:5 (C)<br>41<br>136<br>149<br>204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.4 (C)<br>1.0 (C)<br>25<br>99<br>71<br>99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{43}{8}$                                                                                                                                                                                                                                                                                                                      | 588513 2    <br>5865 13 2                                                                  | as in Tal                          |
| 5. 1                                                                                     | ч <              | 67      | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aa<br>xxooooo                                                                                                                                                                                                                                                                                                                       | aa<br>NN 00000                                                                             | ences                              |
| Table                                                                                    |                  | [-      | 0.2 (F)<br>0.3 (F)<br>0<br>0<br>0<br>0<br>13*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-1 (F)<br>0-7 (F)<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ****                                                                                                                                                                                                                                                                                                                                | 00000                                                                                      | Footnote references as in Table 1. |
|                                                                                          | Day<br>Bootemiel | count   | Inlet (L)  <br>A<br>B<br>C<br>C<br>D<br>E<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inlet (L)<br>Inlet (M)<br>B<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inlet (L)<br>A<br>B<br>C<br>C<br>C<br>E<br>E                                                                                                                                                                                                                                                                                        | Inlet (L)<br>Inlet (M)<br>B<br>C<br>C<br>E<br>E                                            | Foc                                |

## Chlorine concentrations

Different amounts of free chlorine (0.2, 0.5, 0.8 and 1.3 mg/l) were used on four separate days and the required concentration was set on the previous evening to allow the pool to equilibrate overnight. During the day of sampling, chlorine was measured hourly at the inlets to both pools and slight adjustments were made to the chlorinators to maintain a constant amount in the pool in the light of changing bathing loads. Free chlorine was also measured both at the sites and times used for bacteriological sampling (Table 3). The same sites as described in the first survey were used but included an additional point BS, at the surface of the main pool at point B. The variation in free chlorine both in the inlet water and at the sampling sites was  $\pm 0.2 \text{ mg/l}$  except during the day when the approximate value was 1.3 mg/l. A larger variation was seen on this day  $(\pm 0.3 \text{ to } -0.5 \text{ mg/l})$  primarily because the free chlorine in the morning was lower (at 0.8 mg/l) than that required. A variation of  $\pm 0.2 \text{ mg/l}$  was thought to be acceptable in view of the precision of the measuring technique.

### Pool temperature

Temperatures were measured twice during each day of sampling and were found to be higher than those observed in the first survey. The temperature of the main pool did not fluctuate greatly from 31.5 °C, while that in the learner pool usually ranged between 32.5 and 34.5 °C.

# pH

Measurements of pH (Table 2) were made at the pool inlets at the times of bacteriological sampling. In the main pool the pH variation over the survey period was between 7.4 and 7.8 and in the learner pool the variation was between 7.5 and 8.2. The largest daily fluctuation in pH was 0.6 and occurred in the learner pool on the day when the free chlorine was approximately 0.5 mg/l. Apart from this the maximum variation was 0.2 (Table 2).

## Bacteriological results

These are shown in Table 3. At a concentration of free chlorine of 0.2 mg/l, coliform organisms were obtained on two occasions (asterisked) and five out of 30 plate counts (16.7%) showed > 100 organisms/ml. All of these were obtained in the morning. Smaller increases in the plate count were seen during the evening when the bathing load was comparable (Fig. 5). With a free chlorine value of 0.5 mg/l, 17 out of 30 samples (56.7%) were 'Satisfactory', one was 'Unsatisfactory' (one coliform organism/100 ml) and three out of 30 samples (10%) had total counts of > 100 organisms/ml. When the free chlorine was raised to 0.8 mg/l 'Satisfactory' results were obtained almost throughout the day. No coliform organisms were found in any sample but four out of the 30 samples (13.3%) had total counts of > 10 organisms/ml. However, three of these were counts of 11, 12 and 13 organisms/ml. With free chlorine at 1.3 mg/l two samples containing coliform organisms were obtained but the plate count in both these cases was low

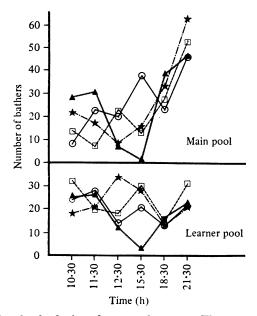



Fig. 5. Bathing loads during the second survey. The approximate concentrations of free chlorine were:  $0.2 \text{ mg/l} ( \blacktriangle --- \bigstar)$ ,  $0.5 \text{ mg/l} ( \Box --- \Box)$ ,  $0.8 \text{ mg/l} ( \bigcirc -- \bigcirc)$ ,  $1.3 \text{ mg/l} ( \bigstar --- \bigstar)$ .

(3 and 12 organisms/ml respectively). Low plate counts were also obtained in the rest of the samples including 12 out of 30 (40%) which contained <1 organism/ml.

## DISCUSSION

Ozone has not been widely used for swimming pool disinfection in the United Kingdom, but in Europe many pools are disinfected by this method. In Germany the suggested value for residual free chlorine in swimming pool water disinfected by ozone is between 0.2 and 0.5 mg/l (Anon., 1976). At the Valley Leisure Centre in the first survey, during the period of disinfection by ozone/chlorine, the majority of free chlorine concentrations were less than 0.5 mg/l. This resulted in 47 out of 140 samples (33.6%) showing the presence of coliform organisms (Table 5). Even overnight exposure to these amounts of chlorine did not result in bacteriologically 'Satisfactory' water in the morning.

The difference between our findings and the German recommendations could have been due to: (a) inaccuracies in the methods used, and (b) variations in the pool conditions.

(a) Inaccuracies in the methods. Measurement of free chlorine by the DPD method suffers from variations in the tabletted reagents (Watts, D., personal communication) and for this reason DPD chlorine test powder was used in the second survey. Heintz (1975) cites evidence that the measurement of chlorine content alone does not enable the disinfectant activity of pool water to be adequately assessed and that redox potential is a more accurate criterion. However,

in practice at this pool as with many others, chlorine is measured by the DPD method and we felt that it would be more meaningful to follow the same procedure.

In both surveys the maximum time that samples for bacteriological analysis were stored at 4 °C was 24 h, a time similar to that used by Black *et al.* (1970). Storage for not more than 6 h at this temperature has been recommended by the Department of Health and Social Security (1969) but we found it impracticable to comply with this time. Recently, Standridge & Lesar (1977) have studied the effects of storage times and temperatures on the recovery of faecal coliform organisms from non-potable waters. They found that in many cases the counts of organisms obtained after storage for 24 h at 4 °C did not differ significantly from the counts obtained after storage for 4 h. Furthermore, as samples in our study obtained at particular times on differing days were stored for the same lengths of time, any change in counts should have been comparable.

(b) Variations in the pool conditions. It is unlikely that the difference in circulation time (3 h main pool and 1.5 h learner pool; Fig. 1) compared with similar pools in Germany (2.5 h and 1 h respectively; H. Reid, personal communication) or the absence of dilution (30 l/day/bather in German pools; Anon., 1976) would account for the higher chlorine value required at the Valley Leisure Centre.

Changes in the pH of swimming pool water markedly affect the amount of free chlorine available as hypochlorous acid, the main bactericidal component, especially if the pH moves outside the desirable range of  $7\cdot2-8\cdot0$  (U.K. limits: Department of Environment, 1975) or  $7\cdot2-8\cdot2$  (American Public Health Association; Black *et al.* 1970). Even within these ranges, the amount of hypochlorous acid decreases considerably as the pH increases (Black *et al.* 1970). The generally high pH values experienced, especially in the learner pool (Table 4) during this survey could partly explain the poor bacteriological results.

The bacteriological findings in the first survey during the period of disinfection with ozone/chlorine did not indicate a value for free chlorine which would give 'Satisfactory' pool water samples (Fig. 6). This was because the values chosen were generally too low, as we had expected that ozonization would reduce the amount of free chlorine required. Also, the free chlorine was not kept constant, as hourly measurements showed random fluctuations (e.g. between 0–1·3 mg/l) during individual days. These fluctuations caused an uneven distribution of chlorine and probably accounted for 'Unsatisfactory' results which were obtained with theoretically adequate concentrations of free chlorine and 'Satisfactory' results obtained with very low values. Measurements in the main pool with an average bathing load, showed that it took approximately 2 h for the free chlorine at the surface to be reflected at the base of the wall at the deep end and approximately 1·5 h for the change to occur at the shallow end. In the learner pool equilibrium was much more rapid and occurred in about 30 min.

The second survey was undertaken to establish a free chlorine value that would give bacteriologically 'Satisfactory' water samples and to reduce the errors caused by fluctuations in pH and free chlorine occurring in the first survey.

The range of pH encountered during this second survey (Table 2) was sufficiently small not to have grossly affected the recorded concentrations of free chlorine.

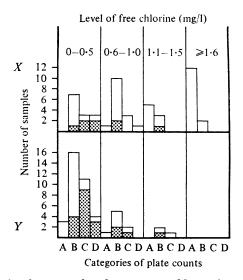



Fig. 6. The relation between the plate counts of bacteria and the concentration of free chlorine during the first survey. X = week of disinfection by chlorine alone. Y = week of disinfection by ozone/chlorine. The categories of plate counts are represented by: A, 0-10; B, 11-100; C, 101-1000; D, >1000 organisms/ml.  $\Box$  represents the number of samples within a particular category of plate count.  $\blacksquare$  represents the number of samples within a category which contained coliform organisms.

However, the pH of 8.2 found in the learner pool for 3 h during one morning (free chlorine approximately 0.5 mg/l) possibly accounted for the poor bacteriological results obtained at 11.15 and 12.30 hours. The reason for this high pH is not known.

Fluctuations in the free chlorine were largely prevented by equilibrating the pool overnight and carefully maintaining the selected concentration throughout the day. No major difference in free chlorine between point B and BS were then seen.

As in the first survey, the small temperature fluctuations seen do not seem to be sufficient to affect a comparison of the differing chlorine concentrations, nor would the variations observed in the number and composition of the bathing load (Fig. 5).

The bacteriological results of the second survey (Table 3) showed that generally 'Satisfactory' samples were only obtained when a value of 0.8 mg/l was maintained in the pool. Concentrations of free chlorine of 0.2 and 0.5 mg/l resulted in high plate counts (>10 organisms/ml) in a considerable proportion of the samples although on only three occasions were coliform organisms found. At both 0.8 and 1.3 mg/l, low plate counts and no coliform organisms were generally found (Fig. 6) and therefore the concentration of 0.8 mg/l would seem to be suitable for general use.

When chlorine alone was used to disinfect the pools in the first survey, 'Satisfactory' samples were not obtained when the free chlorine was less than 1.0 mg/l(Fig. 6). This finding is in agreement with the U.K. recommendations that 1.0 mg/lis suitable for disinfection (Department of Environment, 1975), but contrasts

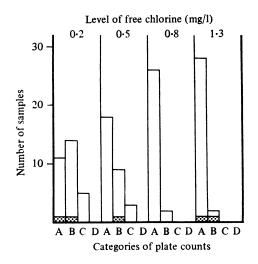



Fig. 7. The relation between the plate counts of bacteria and the concentration of free chlorine during the second survey. See Fig. 6 for explanation of symbols.

with the recommended German level of 0.3-0.6 mg/l (Anon., 1976). Our finding that a free chlorine value of 0.8 mg/l was necessary during disinfection with ozone/chlorine is also different from the German recommendation of between 0.3and 0.5 mg/l (Anon., 1976). The discrepancy in both these cases may be explained by the differing standards adopted in the two countries. In Germany the requirements are that swimming pool water should contain no coliforms/100 ml and a plate count of  $\leq 100$  organisms/ml, compared with the U.K. requirement of no coliforms/100 ml and a plate count of  $\leq 10$  organisms/ml in 75% of samples. If the German standards are applied to our findings in the second survey (Fig. 7) generally 'Satisfactory' pool conditions would be obtained at a free chlorine value of about 0.5 mg/l, in agreement with their recommendations. A similar correlation could not be obtained with either method of disinfection in the first survey (Fig. 6) presumably because of the difficulties that occurred.

Another factor that may be influencing the apparent discrepancy between the amounts of free chlorine necessary at the Valley Leisure Centre and those specified for German pools may lie in the German provision of more effective pre-cleanse facilities. During the second survey, although the number of bathers at any one time in the morning and the evening were similar (Fig. 5), in the mornings the pools had a very high turnover of bathers because of use by schools. The majority of samples showing raised plate counts were obtained at free chlorine values of 0.2 and 0.5 mg/l during this morning period (Table 3).

Although the amount of free chlorine needed to maintain the pools at the Valley Leisure Centre in a bacteriologically 'Satisfactory' condition was similar with both methods of disinfection, we do not feel that this negates the use of ozone. In their experiments with rabbits, Eichelsdorfer *et al.* (1976) showed that it was the amount of combined chlorine rather than that of free chlorine that was responsible for eye irritation. During the first survey when the pools were disinfected with

chlorine alone, combined chlorine in the inlet water varied (Table 1) between a minimum of 0.2 mg/l and a maximum of 2.0 mg/l, with 41 out of 48 readings (85%) showing  $\geq 1.0 \text{ mg/l}$ . With ozone/chlorine in the first survey (Table 5), combined chlorine showed a minimum value of 0 mg/l and a maximum of 1.5 mg/l. Only nine out of 49 readings (18%) showed  $\geq 1.0 \text{ mg/l}$  and as eight of these were obtained within two days of the changeover from chlorine alone, they may have represented a 'hangover' effect and thus not be representative. Further confirmation of the very low concentrations of combined chlorine experienced with disinfection by ozone/chlorine was obtained in the second survey (Table 2) where the maximum found in 158 readings was 0.3 mg/l. These values were independent of the amount of free chlorine. Subjectively, at a concentration of free chlorine in the atmosphere of the pool hall nor taste it in the water.

If ozone is to be used for the disinfection of swimming pools, we feel that pool managers should be made aware of the need to maintain a constant amount of free chlorine in the water. In the second survey this was achieved by hourly measurement and fine adjustment of the chlorinators in the light of bathing loads. As this would prove tedious in routine practice, there may be a strong argument for the use of automatic monitoring and dosing equipment as has been suggested by Heintz (1975). This could with advantage be combined with automatic pH control. Certainly, the rather coarse methods of adjustment which are employed in many pools disinfected with chlorine alone would appear to be inappropriate.

We are extremely grateful for the advice and assistance of the following people: Mr N. Dunn of the Newtownabbey Borough Council, Mr E. Boyd of the Valley Leisure Centre, Mr J. Miller and Mrs M. Simpson of the Sports Council for Northern Ireland, Mr H. Reid and Mr D. Richmond of Messrs Barr and Wray Ltd., Glasgow, and Mr S. Ferguson and Mr B. Thompson of Messrs Williams and Shaw, Belfast. We also thank Mr C. Leckey for processing the bacteriological samples, Mr T. Welch and his assistant for the artwork and finally to Miss J. O'Hara, Mrs L. Thompson and Miss J. Smith for patiently typing the manuscript.

## REFERENCES

- ANON. (1976). Guideline: 'Water treatment for swimming pool water, June 1972' Archiv des Badewesens 29, 148. (O.A. Trans. 2086.)\*
- BLACK, A. P., KEIRN, M. A., SMITH, J. J., DYKES, G. M. & HARLAN, W. E. (1970). The disinfection of swimming pool water, Part II. A field study of the disinfection of public swimming pools. *American Journal of Public Health* 60, 740.
- DEPARTMENT OF ENVIRONMENT (1975). The Purification of the Water of Swimming Pools. London: H.M.S.O.
- DEPARTMENT OF HEALTH AND SOCIAL SECURITY (1969). The Bacteriological Examination of Water Supplies, Reports on Public Health and Medical Subjects No. 71, London: H.M.S.O.
- EICHELSDORFER, D., SLOVAK, J., DIRNAGL, K. & SCHMID, K. (1976). Study of eye irritation caused by free and combined chlorine in swimming pool water. Archiv des Badewesens 29, 9. (O.A. Trans. 2061.)\*
- GERMAN ASSOCIATION OF GAS AND WATER COMPANIES (1975). Ozone in water treatment. Brunnenbau, Bau von Wasserwerken, Rohrleitungsbau 26, 163. (O.A. Trans. 2063.)\*

- HEINTZ, A. (1975). Hygiene and disinfection in baths—requirements and practical solution. Archiv des Badewesens 28, 578. (O.A. Trans. 2060.)\*
- HERSCHMAN, W. (1976). Construction and operation of swimming pool water treatment plants according to the 'guideline'. Archiv des Badewesens 29, 168. (O.A. Trans. 2086.)\*

HOLDEN, W. S. (ed) (1970). Water Treatment and Examination. London: J. and A. Churchill.

STANDRIDGE, J. H. & LESAR, D. J. (1977). Comparison of four-hour and twenty-four-hour refrigerated storage of nonpotable water for faecal coliform analysis. Applied and Environmental Microbiology 34, 298.

TECHNICAL UNIT FOR SPORT (1977). A survey of chemicals available for treating swimming pool water. Data sheet No. 71. The Sports Council, 70 Brompton Road, London, SW3 1EX.

WATTS, D. (personal communication) Messrs Barr and Wray Ltd., 324 Drumoyle Road, Glasgow, G51 4DY, Scotland.

\* Are obtainable as English translations. Ozonisation for Water Treatment in Swimming Pools. The Electricity Council, Overseas Relations Branch Translation Service, 30 Millbank, London, SW1P 4RD.