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Abstract
A broad range of studies of preventive measures in infectious diseases gives rise to incidence data
from close contact groups. Parameters of common interest in such studies include transmission
probabilities and efficacies of preventive or therapeutic interventions. We estimate these parameters
using discrete-time likelihood models. We augment the data with unobserved pairwise transmission
outcomes and fit the model using the EM algorithm. A linear model derived from the likelihood
based on the augmented data and fitted with the iteratively re-weighted least squares method is also
discussed. Using simulations, we demonstrate the comparable accuracy and lower sensitivity to initial
estimates of the proposed methods with data augmentation relative to the likelihood model based
solely on the observed data. Two randomized household-based trials of zanamivir, an influenza
antiviral agent, are analyzed using the proposed methods.
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1 Introduction
Close contact groups, such as households, are the important places of transmission for many
infectious diseases. Data collected from these contact groups provide a basis for evaluating
person-to-person transmission risks and effectiveness of intervention methods such as antiviral
treatments or vaccine (Halloran, Struchiner and Longini, 1997; Becker, Britton and O'Neill,
2003). Using different levels of information available in the data, various statistical methods
have been developed for data analysis. If only the final infection status of participants are
known, methods utilizing recursive final-size probabilities can be applied, including likelihood
maximization (Longini and Koopman, 1982; Addy, Longini and Haber, 1991), Bayesian
approaches (O'Neill and Roberts, 1999), generalized linear models (Magder and Brookmeyer,
1993), and estimating equations with martingale techniques (Becker and Hasofer, 1997). In
many modern clinical trials, sequential laboratory tests and symptom diary of participants
provide time-to-event data with individual-specific longitudinal exposure information. To take
into account exposure and transmission dynamics at the individual level, Rampey et al.
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(1992) constructed discrete-time likelihoods based on assumptions about the natural history of
the disease such as the distributions of the latent and infectious periods. Yang, Longini and
Halloran (2006) extended this method to the more realistic case-ascertained design. Cauchemez
et al. (2004) proposed a Bayesian model with the flexibility of estimating the natural history
of the disease, but time-dependent covariates have not been accommodated.

The discrete-time likelihoods in Rampey et al. (1992) and Yang et al. (2006) are built solely
upon the observed data, including symptom onset dates, laboratory test results and household
structure (which individuals live in which households), and involve summing probability
components over the latent period. Summations or integrals are commonly seen in likelihoods
based solely on the observed data, and such complicated structure may present difficulties for
standard analyses or prevent extension by other methods (O'Neill et al., 2000). More
importantly, when data are sparse because of rare incidences and/or a multicovariate structure,
iterative estimation procedures (e.g., the Newton-Raphson algorithm) using only the observed
data may be sensitive to the initial estimates in locating the maximum likelihood estimates
(MLEs). This fact can be seen in section 3 and 4 of this paper, and is also mentioned in Yang
et al. (2006). Data augmentation is a popular technique to circumvent computational difficulties
in classical likelihood methods because likelihood functions conditional on unobserved
variables are often simpler (van Dyk and Meng, 2001; Paap, 2002). In a transmission model
for infectious diseases, a basic element is the transmission probability given a contact between
an infective person and a susceptible person. The contact may be defined in various ways, for
example, one day of living in the same household. The outcome of each contact, infection or
escape, is generally not observable since a person may make multiple contacts before infection.
In this paper, we revise the discrete-time likelihood in Yang et al. (2006) by augmenting the
observed symptom onset data with the unobserved transmission outcome for each contact. This
likelihood based on the augmented data has a simpler form than the one based on only the
observed data and can be maximized with the EM algorithm. To illustrate the potential use of
the simple likelihood by a different method, we derive a linear model that can be fitted using
the iteratively re-weighted least squares (IRLS) procedure. We show via simulation studies
that both the maximum likelihood (ML) and the IRLS methods using the augmented data are
less sensitive to initial estimates as compared to the ML method using only the observed data
in Yang et al. (2006). We use the proposed approaches to estimate the prophylactic and
treatment effectiveness of an influenza antiviral agent in two household trials.

2 Methods
Suppose that the disease under investigation is influenza and the data arise from a clinical trial
in which household members are randomized to either an antiviral agent or control when an
index case is identified by clinical symptoms. Let us assume the antiviral agent provides
temporary protection for susceptible contacts and therapy for cases. In the discrete-time
likelihood model setting, risks are evaluated for each susceptible participant in each time
interval. Suppose that the time intervals are consecutive days, and define a contact as the
exposure of a susceptible person to an infective person in the same household throughout a
day. The pairwise transmission probability per contact between a susceptible person i with
covariates xi and an infective person j with covariates xj in the same household is expressed as
p(xi, xj). If xi and xj are scalars denoting treatment status of antiviral agent (1=yes, 0=no), then

one can define efficacy measures ,  and

, where in the epidemiological literature AVES measures the antiviral
efficacy in reducing susceptibility, AVEI measures the efficacy in reducing infectiousness, and
AVET is called the total effectiveness (Halloran et al., 1997). Let p = p(0, 0) be the baseline
daily pairwise transmission probability without any treatment. For notational convenience, a
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reparameterization leads to  where θ = 1 − AVES, ϕ = 1 −
AVEI and η = 1 − AVET. For simplicity, we assume multiplicativity of θ and ϕ such that η =

θϕ, and thus . In Yang et al. (2006), we explored the assumption of
multiplicativity for the ML method using only the observed data.

As our interest centers around estimation of transmission probabilities and treatment efficacies,
we assume that: 1. the latent period (time from infection to being infectious) coincides with
the incubation period (time from infection to the onset of symptoms); and 2. durations of the
latent and the infectious periods have known probability distributions. If the latent and the
incubation periods do not coincide but are both known, the model can be adjusted for such
situation.

2.1 The Maximum Likelihood Method Based on the Augmented Data
Suppose that the trial is conducted on a population of size N and is observed on a daily basis
from day 1 to day T. Let us assume day 1 is the first calendar day of exposure for the whole
study population. The observed data for each subject include household membership, the date
of symptom onset, laboratory test result, randomized treatment and treatment period as well
as other characteristics such as age and gender. On day t, the probability that an infective person
j with treatment status rj(t) (0: untreated, 1: treated) infects a susceptible person i with treatment
status ri(t) in the same household is expressed as

(1)

where f(t|t̃j) is the probability that person j stays infectious on day t given the day of symptom
onset t̃j and is derived from the known distribution of the infectious period. For simplicity in
notation, we use t̃i to denote the observed symptom onset time for each person, although t̃i is
right-censored for those who are free of symptoms up to day T. We allow a constant common
infective source from outside of the household, by setting , where c refers to the
common source, and b is the baseline probability of being infected by the common source per
day. Let ψj = 1 if the infective source j is a person and 0 if j = c. A modification of (1) takes
into account the common source as the following

(2)

where fc(t|t̃c) = 1 and rc(t) = 0 for all t. A likelihood involving only the observed data, {t̃i : 1 ≤
t ≤ T, 1 ≤ i ≤ N}, can be constructed from (2) and the known distribution of the latent period
as in Yang et al. (2006).

Let Yji(t) be the transmission result (1:infection, 0:escape) between an infective source j and a
susceptible person i on day t. Let lmax and lmin be the maximum and minimum duration of the

latent period, so that ti = t̃i − lmax and  are the earliest and latest potential infection
days for person i. Given the observed symptom onset day t̃i, the sequence of Yji(t)'s for t ≥ ti
remains unknown. It should be noted that Yji(t) is a random variable only if Yji(τ) = 0 for all τ
< t, and Yji(t) is independent of Yki(t) for the same day t. Define

and
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where Di is the collection of potential infective sources for person i, i.e., people living in the
same household with person i plus the external common source. Zji(t) = 1 is the event that
person i escapes infection from any source before day t but is infected by source j on day t,
while  is the event that person i escapes infection from any source before day t and
from source j on day t. Let  indicate if Zji(t) = 1 for any j on day t. The likelihood
of the augmented data is

(3)

where g(t̃i|t) denotes the probability of illness onset on day t̃i given infection on day t and is
derived from the distribution of the latent period. According to our assumption, both f(t|t̃j) and
g(t̃i|t) are known. This likelihood is a product of binomial probability components, much
simpler than the one in Yang et al. (2006). To apply the EM algorithm, we need to determine
the distributions of Zji(t) and  conditioning on current estimates of b, p, θ and ϕ as well
as t̃j, j ∈ Di (Dempster, Laird and Rubin, 1977). Define Si(t) as the event that person i has
symptom onset on day t, Ii(t) the event that person i is infected on day t and Iji(t) the event that
person i is infected by j on day t. Then, the conditional distributions are given by (Appendix
A)

(4)

and

(5)

Given estimates  from the (l – 1)th iteration, in the lth iteration we have

where  is the estimated cumulative escape probability based on 
The likelihood history before day  can be dropped from Pr(Ii,j(t)) and Pr(Ii(t)), since

 is the common factor and will eventually be cancelled out in the calculations of (4)
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and (5). The implementation of the EM algorithm is straightforward. In the E-step, (4) and (5)
are calculated and plugged into the logarithm of (3) to obtain

(6)

which is maximized in the M-step.

Variances of the parameter estimates can be evaluated using Louis' method (Louis, 1982). Let
Z be the collection of Zji(t), and t̃ the collection of t̃i, for all i, j and t, so that t̃ is the observed
data and Z is the partially latent data. Let λ = {b, p, θ, ϕ}. Louis' method states that

The first component on the right side can be evaluated analytically based on (6), while the
second component can be estimated via sampling from the distribution of Z conditioning on
t̃ and .

2.2 The Linear Model Based on the Augmented Data
A linear model is a natural consequence of modeling the daily pairwise transmissions. Taking
the logarithm on both sides of (2),

(7)

The response of this model is Yji(t) since . From

(6), it is clear that one should assign weights  to the outcome Yji(t)

= 1 and  to the outcome Yji(t) = 0. As the weights need to be
calculated from pre-estimated parameters, we use the iteratively re-weighted least squares
(IRLS) method to fit the model.

To apply the IRLS method, suppose the conditional expected frequencies of Yji(t)'s have been
summarized into H binomial proportions Ph, h = 1, …, H, with the H covariate patterns defined

by ri(t), rj(t), ψj and . We fit model (7) by minimizing the objective function

, the squared difference between the observed proportion P̃h and
the mean proportion Ph. Let nh be the number of observations in the hth pattern. The weight

for the hth pattern  could be estimated from either P̃h (data-based) or the
fitted response P̂h (model-based). Our simulations suggest that combinations such as the

arithmetical mean  or the geometric mean 
provide estimates close to the MLEs. If P̃h = 0, we replace P̃h by P̂h from the previous iteration.

Yang et al. Page 5

Comput Stat Data Anal. Author manuscript; available in PMC 2008 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Let  be the WLS estimates of the coefficients in model (7), then the WLS estimates
of the parameters at the lth iteration are

We then update the parameters and re-fit the model until the estimates converge. We have
generalized the linear model method to populations with heterogeneity in the transmission
probabilities (Appendix B).

At each iteration, the variances of b̂l, p̂l,  and  estimated from the linear model have been
averaged over the conditional distribution of Z. With the loss of randomness in Z, the final
estimates will under-estimate the true variances. Since

, similar to the Louis' method for the ML method,

one can employ the following adjustment procedure to approximate :
•

Sample Z from , where  is the final parameter estimates.
• Use the sampled Z as the weights to fit model (7) and obtain new point estimates of

the parameters and their variances.
• Repeat the previous steps for a sufficient number of times. The sample average of the

newly-estimated variances approximates , and the sample variance of

the newly-estimated parameters approximates .

3 Simulation Study
To compare the ML and IRLS methods using the augmented data with the ML method using
only the observed data, we conducted simulations under two scenarios: with a large number
of cases and with sporadic cases. A pseudo-community composed of households of size two
or larger with 1000 people was generated according to the distributions of age and household
sizes from the US Census 2000. The distribution of the simulated household sizes is {2 : 67%,
3 : 13%, 4 : 10%, 5 : 7%, 6 : 2%, 7 : 1%}. Simulated epidemics were stopped on day 100, the
typical length of the influenza season for a community. The empirical latent and infectious
period distributions, from which f(t|t̃i) and g(t̃i|t) were derived, were obtained from Elveback,
Fox and Ackerman (1976) and given in Table 1. Our simulations were implemented with
individual-level randomization of treatments, where individuals including index cases in the
same household may receive different treatments. In the Newton-Raphson procedure for
likelihood maximization, we apply the complementary log-log transformation for b and p and
the log transformation for θ and ϕ to help improve convergence. One thousand stochastic
replications were carried out for each scenario investigated.

We first set the values of the parameters to b = 0.005, p = 0.1, θ = 0.4, ϕ = 0.7. Under this
setting, on average 69% of the households and 51% of the contacts were attacked in simulated
epidemics, and 20% of the contacts were infected when receiving treatment. The three iterative
procedures were initiated from the true values of the parameters and, with adequate numbers
of events, converged most of the time. By convergence we mean that the estimates of all four
parameters converge to reasonable values. Specifically, estimates of b and p in (10−10, 1) and
estimates of θ and ϕ in (10−10, 10) are considered reasonable. Given convergence, the MLEs
obtained from only the observed data are exactly the same as those obtained from the
augmented data, and the estimates of the SDs are also similar. Therefore, we present only the
MLEs obtained from the augmented data. Table 2 shows mean parameter estimates, Monte
Carlo standard deviations (SD of point estimates), mean model-estimated SDs and coverage
rates of 95% confidence intervals (CI) based on model-estimated SDs for the two approaches
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using the augmented data. The IRLS method yielded about the same estimates of the parameters
and SDs as the MLEs. The small differences between the IRLS estimates and the MLEs for

b, SD(b̂) and  decrease as the sample size increases (not shown).

To compare the sensitivity of the three methods to starting parameter values when data are
sparse, we reduced the true values of b from 0.005 to 0.002 and p from 0.1 to 0.01 so as to
reduce transmissions within households. Under this setting, the average attack rates decreased
to 39% for households and to 12% for contacts, and only 10% of the contacts were infected
when receiving treatment. We ran simulations under different starting values of b and p, as log
(pji(t)) is generally more sensitive to the transmission probabilities than to the efficacies.
Simulation results including convergence rates and parameter estimates are compared in Table
3. Clearly, the ML method using only the observed data is highly sensitive to initial values of
b and p. The convergence rate of the ML method using only the observed data was comparable
to the methods using the augmented data when the iteration started from the true parameters,
but dropped dramatically when starting from larger values (b = 0.02, p = 0.1) or smaller values
(b = 0.0002, p = 0.001) of the probability parameters. In contrast, the convergence rate was
relatively stable for the approaches using the augmented data, regardless of the starting values.
Parameter estimates and associated Monte Carlo standard deviations were similar across
methods, except that the IRLS method appeared to overestimate θ to a larger extent compared
to the ML methods. All methods overestimated ϕ as a consequence of sparse data. In addition,
the ML methods overestimated, while the IRLS method underestimated, the standard deviation
of ϕ. For example, when starting from true values of b and p, the mean standard errors are 1.10,
1.16 and 0.78 (not shown in Table 3) for the MLE based on the observed data, the MLE based
on the augmented data and the IRLS estimate of ϕ respectively, in contrast to Monte Carlo
standard deviations 0.95, 0.96 and 0.93.

As seen in Table 3, sparse data generally lead to biased and unstable efficacy estimates for the
parametric methods, particularly for the IRLS method. At the same time, sparse data also
increase the chance of non-convergence for the standard likelihood maximization algorithms.
Household-level randomization, in which individuals in the same household receive the same
treatments, provides much less information for estimating θ and ϕ separately compared to
individual-level randomization with the same population size. More discussion on trial design
issues can be found in Donner (1998),Datta, Halloran and Longini (1999),Halloran et al.
(2006) and Yang et al. (2006).

4 Data Analysis
Two randomized multi-center efficacy trials of zanamivir, an inhaled influenza antiviral agent,
were conducted during October 1998 - April 1999 (Hayden et al., 2000) and June 2000 - April
2001 (Monto et al., 2002). In both trials, households were randomized to zanamivir or placebo
but only eligible household members (aged 5+ years) were treated. In the later trial, index cases
were not treated. Characteristics of the two trials are given in Table 4.

The earlier trial adopted a typical household-level randomization, providing information about
AVET = 1 − θϕ, if we assume multiplicativity between θ and ϕ, and the later trial contains
information mainly about AVES. Neither trial alone provides any information about AVEI,
and thus we combine the two trials to estimate AVES and AVEI simultaneously. While
transmission probabilities and antiviral efficacies might differ from center to center, the limited
sample size prohibits estimation of centerspecific parameters. As a result, we assume all the
centers in both trials share the same parameters. The two reference papers used slightly different
definition for clinical symptoms. We used the one in Monto et al.(2002) for both trials, i.e.,
presence of at least two of temperature≥ 37.8° C or feverishness (counted as one), cough,
headache, sore throat and myalgia. As it is well known that influenza is more transmissible
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among children, we assume age-specific transmission probabilities in two age groups, children
(< 18) and adults (≥ 18). Our primary endpoint is laboratory-confirmed influenza with clinical
symptoms (clinical infection). Households in both trials were followed from the ascertainment
time of index cases, for which selection bias was adjusted for based on Yang et al. (2006) and
Appendix C. In such adjustment, index cases were excluded from analyses regardless of
laboratory results, but their effects on the exposure level of the contacts were considered.

Results are given in Table 5. For this data set, both ML methods converge and thus give the
same MLEs. Prophylaxis with zanamivir led to significantly preventive efficacy against
clinical infection by  (95% C.I.=(0.56, 0.86)). Hence, a susceptible person taking
zanamivir has his chance of developing influenza illness reduced by 75% per daily exposure
to an untreated symptomatic infected person. Zanamivir did not show significant efficacy in
reducing the infectiousness of infected people with  (95% C.I.=(−1.33, 0.75)).
Assuming multiplicativity of θ and ϕ, the total efficacy AVET reached 0.81 (95% C.I.=(0.50,
0.93)). Based on final data of clinical influenza illness provided in Hayden et al. (2000) and
Monto et al. (2002), similar AVET (0.80; 95% C.I.=(0.53, 0.91)) and AVES (0.84; 95%C.I.=
(0.61, 0.90)) were reported by Halloran et al. (2006). They also reported AVES (0.75; 95%
C.I.=(0.54, 0.86)), AVEI (0.19; 95% C.I.=(−1.60, 0.75)) and AVET (0.87; 95% C.I.=(0.63,
0.95)) based on secondary attack rates (SAR) during 2-7 days since the ascertainment of index
cases. These results differ in their interpretation.

The estimated probability of infection from the common source per daily exposure is 0.0028
for children and 0.0010 for adults. Within households, the daily pairwise transmission
probability is also higher in children  than in adults . These estimates
of transmission probabilities are comparable to those found in two trials of oseltamivir, another
influenza antiviral agent, conducted about the same time in North America and Europe (Yang
et al., 2006).

The IRLS estimates are fairly close to the MLEs except for paa and θ . In addition, the IRLS
method might have under-estimated the SD for ϕ. The two trials combined together still do not
provide sufficient information for estimating ϕ as suggested by the large SD for the MLE of
ϕ. Starting estimates for all three methods were provided by a non-iteratively evaluated linear
model (Appendix D). With a complementary log-log transformation for probability parameters
and a log transformation for efficacy parameters, all three methods converge very well. Without
such transformation, the Newton-Raphson procedure applied to the observed data converges
if started from the IRLS estimates or the MLEs obtained via data augmentation but not from
the noniteratively obtained estimates, which confirms the relative robustness of the methods
using data augmentation to starting estimates.

5 Discussion
By augmenting the observed sequential symptom onsets in close contact groups with
unobserved daily pairwise transmission outcomes, we identified a likelihood that has a simpler
form than the one based solely on observed data and that can be maximized via the EM
algorithm. Reilly and Lawlor (1999) used a similar approach to study hepatitis C infection in
women with know exposure to anti-D immunoglobulin in sequential years before testing.
However, the presence of multiple infective sources in the same time interval and the
involvement of latent and infectious periods of influenza make our situation more complex.
This simple form of the likelihood offers the flexibility of using other potential methods, for
instance, the Fisher-scoring method instead of the Newton-Raphson algorithm for iterative
maximization. As another example, we derived from this likelihood a linear model fitted with
the IRLS method in combination with the EM-analogous algorithm. In a simulation study, the
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two approaches using the augmented data performed better than the ML method using the
observed data in terms of robustness to initial estimates, especially for sparse data. The IRLS
method is the most robust to initial estimates, and asymptotically provides estimates of the
same quality as the MLEs. The IRLS estimates are likely biased and have larger variances
when data are sparse, but can serve as good initial estimates for the ML methods.

We have assumed known distributions for the latent and infectious periods and the coincidence
between the latent and the incubation periods, which may not be realistic for some infectious
diseases. If these assumptions do not hold, estimates could be biased and misleading.
Cauchemez et al. (2004) used a Bayesian hierarchical model to allow estimation of the latent
and infectious periods, assuming that the latent and the incubation periods were equal, but such
estimation requires a sufficient number of cases. In addition, our models are limited to
symptomatic infections. However, asymptomatic influenza infections can provide further
information about the efficacies and transmission probabilities from a virological point of view,
although such ”silent” cases complicate the likelihood to a large extent. A future research topic
of potential public health interest would be to extend our data augmentation scheme to a
Bayesian framework that can estimate the natural history of the disease and take into account
asymptomatic cases.

In the data analysis, index cases were excluded regardless of their laboratory test results.
According to the rationale of adjustment for selection bias, i.e., conditioning on the symptom
status (caused by true infection) of the index case on the ascertainment day, a test-negative
index case should be viewed as a susceptible and followed the same way as for contacts.
However, not all clinical trials required symptom diary for index cases after enrollment, e.g.,
in the 2000-2001 trial of zanamivir. Households with test-negative index cases are generally
excluded from calculations of SARs; but in our case the inclusion of the contacts in these
households can improve estimation of b and θ and of p to a lesser extent. This issue could be
resolved by improving the follow-up of index cases.

In this paper we have assumed fixed antiviral effects and non-random susceptibility. If
sufficient data are available, random effects on the transmission probabilities as well as the
antiviral efficacies could be considered to address potential heterogeneity among centers,
households, or individuals (Longini and Halloran, 1996; Halloran, Préziosi and Chu, 2003).

With the potential for pandemic influenza, a rising global concern, zanamivir is one of the
major available influenza antivirals agents (Hayden, 2001). Our estimates can be used in
modeling research to evaluate the effects of intervention options at different levels of contact
groups (Longini et al., 2004; Longini et al., 2005; Germann et al., 2006). This research also
emphasizes the need for proper study design for the parameters to be adequately estimated.
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Appendix A: Conditional Expected Frequency of Transmission Status

Define  as the event that a susceptible person i escapes infection from infective source j
on day t. Note that the following basic facts hold:

• .
•

.
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•
.

•
.

Then,

(8)

and

(9)

Appendix B: Generalization of the Linear Model to Heterogeneous
Populations

For a heterogeneous population composed of k risk categories of people (e.g., age groups), let
pvu be the pairwise transmission probability per unprotected contact between a susceptible
individual in category u and an infective person in category v. Further, let bu be the probability
of infection from the common source for category u. Assume that the AVES and the AVEI are
the same for all categories for notational simplicity. The models can be easily generalized to
situations with heterogeneous efficacies as well. There are k parameters for common source
transmission probabilities and k2 parameters for household transmission probabilities.

Let group k be the reference stratum. The model in matrix form derived from (7) would be

(10)

where β(θ) = log(θ), β(ϕ) = log(ϕ), and
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Appendix C: Adjustment for Selection Bias in Case-ascertained Follow-up
Design

In a prospective follow-up design, exposure to risks of infection starts on day 1. However, in
real clinical trials, households are generally enrolled when one or more index cases are
identified by symptom onsets, to which we refer as a case-ascertained design. To reduce bias
caused by such selective enrollment, Yang et al. (2006) suggest that the individual likelihood
contributions be conditioned on observed symptom status up to the symptom onset day of the
index case. The consequences of such adjustment are the following:

• Index cases do not contribute to the likelihood.
•

The likelihood calculation for person i starts from the day , where di denotes the
index case in the household of person i.

• The individual log-likelihood is subtracted by log(Ai) where

(11)

For the ML method using the augmented data, the same adjustment can be applied. For the
linear model method, such a conditional adjustment is difficult. However, since minimizing
the weighted least squares is analogous to maximizing the log-likelihood, it is natural to use
the same adjusting term to penalize the objective function

where Ai is re-expressed as functions of β = (β0, … ,β3). Denote the covariate matrix by X, the

diagonal weight matrix by W and the observed response vector by , then at the lth
iteration,

Appendix D: Non-iteratively Fitted Linear Model for Initial Estimates
The ML and IRLS methods require initial estimates to start the iteration. Iteration could be
avoided if we model Ii(t) instead of Iji(t), i.e., infection status of person i on day t instead of

pairwise transmission, and assume equal Pr(Ii(t)) for all .
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Let Ni(t) be the number of treated infective individuals and Mi(t) be the number of untreated
infective individuals that a susceptible person i is exposed to within the household on day t.
Given Ni(t) and Mi(t), the probability that person i is infected on day t is given by

A reparameterization leads to
(12)

where

Let Yi(t) indicate the infection status (1:infection, 0:escape) for person i on day t. Similar to
Section 2.1, define

and

Zi(t) = 1 is the event that person i escapes infection from any source until day t, while
 is the event that person i escapes infection from any source up to day t. Assume that

Pr(Ii(t)) is equal for all . Then the conditional probabilities

do not involve unknown parameters, and can be used as the weights for fitting (12). While
Ni(t) and Mi(t) are generally unknown, they can be obtained by randomly sampling the duration
of infectious period for each infective individual according to the known empirical distribution
f. Alternatively, all possible combinations of Ni(t) and Mi(t) can contribute to model (12) with
the weights multiplied by the joint probability Pr (Ni(t), Mi(t)) derived from f.

Model (12) gives rise to multiple estimators for the efficacy parameters because of the increase
in parameter dimension:

for θ and

for ϕ. The average of the multiple estimates weighted by reciprocal standard errors can serve

as the initial estimate, e.g., , where .
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Table 1
Empirical cumulative distributions of the latent period and the infectious period for influenza (Elveback et al.,
1976).

Latent Period Infectious Period
Duration

(days)
Cumulative
Probability

Duration
(days)

Cumulative
Probability

0 0 ≤ 2 0
1 0.2 3 0.3
2 0.8 4 0.7
3 1.0 5 0.9

6 1.0
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Table 4
Two randomized multi-center trials of zanamivir, an influenza antiviral agent

Hayden et al., 2000 Monto et al., 2002

Time of trial Oct. 1998 - Apr. 1999 Jun. 2000 - Apr. 2001
Households 336 484
Population 1186 1770
Index case randomization Yes No
Duration of medication
   Index case 5 days N/A
   Contact 10 days 10 days
Follow up (symptom diary) 14 days 14 days
Infected/Symptomatic(index)† 164/336 281/484
Infected/Exposed(contacts)†
   Control 52/435 76/626
   Zanamivir 17/415 27/660

Numbers may slightly differ from references due to different criteria of data inclusion for analysis.

†
Laboratory-confirmed infections with clinical symptoms
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