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Abstract
Background—Lithium and carbamazepine (CBZ) are used to treat mania in bipolar disorder. When
given chronically to rats, both agents reduce brain arachidonic acid (AA) turnover in brain
phospholipids and downstream AA metabolism. Lithium administration to rats also attenuates N-
methyl-D-aspartic acid receptor (NMDAR) signaling via AA.

Hypothesis—Chronic CBZ administration to rats, like chronic lithium, will reduce NMDAR-
mediated signaling via AA.

Methods—We used our fatty acid method with quantitative autoradiography to image the regional
brain incorporation coefficient k* of AA, a marker of AA signaling, in unanesthetized rats that had
been given 25 mg/kg/day i.p. CBZ or vehicle for 30 days, then injected with NMDA (25 mg/kg i.p.)
or saline. We also measured brain concentration of two AA metabolites, prostaglandin E2 (PGE2)
and thromboxane B2 (TXB2).

Results—In chronic vehicle-treated rats, NMDA compared with saline increased k* significantly
in 69 of 82 brain regions examined, but did not change k* significantly in any region in the CBZ-
treated rats. In vehicle- but not CBZ-treated rats, NMDA also increased brain concentration of
PGE2 and TXB2.

Conclusions—Chronic CBZ administration to rats blocks the brain NMDAR-mediated AA signal
k* and the increments in PGE2 and TXB2 that are seen in vehicle-treated rats. The clinical action of
antimanic drugs may involve inhibition of brain NMDAR-mediated signaling involving AA and its
metabolites.

Keywords
carbamazepine; NMDA; arachidonic acid; bipolar disorder; phospholipase A2; prostaglandin E2

Introduction
Glutamatergic neurotransmission is thought to play a role in the pathophysiology and treatment
of bipolar disorder (BD) (1,2). An elevated brain glutamate/glutamine ratio has been reported
using magnetic resonance spectroscopy in children and adults with BD (3,4), and gene variants
of the NR1 and NR2 subunits of the N-methyl-D-aspartate receptor (NMDAR) have been
linked to the disease (5–7). Furthermore, NMDAR density and levels of NR1, NR2A and NR3A
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mRNA were decreased in post-mortem BD brain, as were densities of the NMDAR-associated
post-synaptic proteins, PSD-95 and SAP102 (8,9). It has been shown that NMDAR stimulation
by glutamate or NMDA decreases NR-1 expression (10), and that the NR3A subunit co-
assembles with other subunits (NR1, NR2A or NR2B) to form NMDAR with decreased activity
and calcium influx (11,12). Decreased NR1 and NR3A expression observed in BD is consistent
with upregulated NMDAR function, and with the observation that mice lacking the NR-3A
subunit have increased brain NMDAR activity (13).

Binding of glutamate or NMDA to NMDAR will allow extracellular Ca2+ into the cell, thereby
activating a number of Ca2+-dependent enzymes. One of these, cytosolic phospholipase A2
(cPLA2), selectively releases arachidonic acid (AA, 20:4n-6) from synaptic membrane
phospholipid, to initiate the AA signaling cascade (14–18). A fraction of the released AA may
be converted by cyclooxygenase (COX), lipoxygenase and cytochrome P-450 enzymes to
eicosanoids, or lost via other metabolic pathways, whereas the remainder will be reincorporated
into brain phospholipid (19–21). Markers of the AA cascade have been reported to be abnormal
in BD (22–24).

Three chemically disparate agents, carbamazepine (CBZ), lithium and valproic acid, have
proven effective against acute mania and mixed episodes in BD (25–28). When administered
chronically to rats to produce clinically relevant plasma concentrations, each was reported to
downregulate the brain AA cascade -- AA turnover in brain phospholipids, cPLA2 or acyl-
CoA synthetase activity as well as COX activity, and the concentration of prostaglandin E2
(PGE2), an AA metabolite produced preferentially via COX-2 (18,29–37).

In addition, chronic administration of lithium to rats and pretreatment with the NMDAR
antagonist MK-801 reduced the brain AA signal following acute NMDA administration (38).
This signal was measured using quantitative autoradiography as a regional AA incorporation
coefficient k* (brain radioactivity/integrated plasma radioactivity) following the intravenous
injection of radiolabeled AA. It represents AA lost by metabolism following its release from
synaptic membrane phospholipid by cPLA2 activation, due to Ca2+ entry into the cell at
NMDARs (17,20,38). Suppression by chronic lithium of the NMDA-initiated AA signal
suggested that the lithium acts in BD by reducing this signal, consistent with evidence for
upregulated glutamatergic transmission in the disease (1,2).

In the present study we hypothesized that effective mood stabilizers might generally interfere
with NMDA-initiated signaling via AA, and tested this hypothesis by measuring effects of
chronic administration of CBZ to rats on the AA signal, and on the concentrations of AA
metabolites, PGE2 and thromboxane B2 (TXB2). In this regard, CBZ has been reported to block
NMDA-induced currents in cultured spinal cord neurons (39), to inhibit NMDA-induced
depolarization in cortical wedges (40), to prevent NMDA-initiated convulsions in mice (41),
inhibit NMDA-evoked Ca2+ influx in cultured neurons (42,43), and protect against NMDA-
mediated neurotoxicity (44,45).

In the present study, we measured regional k* responses and brain concentrations of PGE2 and
TXB2 after giving 25 mg/kg i.p. NMDA or saline to unanesthetized rats that were injected
daily for 30 days with 25 mg/k.g. i.p. CBZ or vehicle. This NMDA dose does not produce
convulsions, but causes widespread increments in k* that can be prevented by chronic LiCl
feeding or pretreatment with MK-801 (38). The CBZ regimen, which we have used before,
produces a mean plasma concentration of 54 μM, in the high end of concentrations reported
in CBZ-treated BD patients (51 μM) (31,34,46,47).
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Methods and Materials
Animals and Diets

The National Institutes of Health (NIH) Animal Care and Use Committee approved the study
in accordance with NIH guidelines on the care and use of laboratory animals. Two-month-old
male Fischer CDF (F-344)/CrlBR rats (Charles River Laboratories, Wilmington, MA, USA)
were acclimatized for 1 week in an animal facility with regulated temperature, humidity and
light cycle, and had ad libitum access to food (NIH-31 diet, Zeigler, Gardners, PA, USA) and
water. The diet contained (as percent of total fatty acids) 20.1% saturated, 22.5%
monounsaturated, 47.9% linoleic, 5.1% linolenic, 0.02% AA, 2.0% eicosapentaenoic, and
2.3% docosahexaenoic acid.

Drugs
[1-14C]AA in ethanol (53 mCi/mmol, >98% pure, Moravek Biochemicals, Brea, CA, USA)
was evaporated and resuspended in HEPES buffer, pH 7.4, containing 50 mg/ml fatty acid-
free bovine serum albumin (Sigma-Aldrich, St Louis, MO, USA). CBZ-treated rats received
25 mg/kg intraperitoneally once daily for 30 days (Sigma-Aldrich). The CBZ was dissolved
in a 50:50 (v/v) dimethyl sulfoxide (DMSO, ≥99.9% Sigma-Aldrich): saline (0.9% NaCl)
mixture and kept at 37°C (31,34). A control group received the same volume of DMSO: saline
(vehicle) under parallel conditions.

Surgical Procedures and Tracer Infusion
On the morning following the 30th CBZ or vehicle injection, a rat was anesthetized with 2–3%
halothane in O2, and PE 50 polyethylene catheters were inserted into the right femoral artery
and vein as described previously (38). The wound was closed with surgical clips and the
hindquarters of the rat were wrapped loosely, with its upper body remaining free, in a fast-
setting plaster cast taped to a wooden block. The rat was allowed to recover from anesthesia
for 3–4 hours in an environment maintained at 25°C. Body temperature was kept at 36.4–37.1°
C using a feedback-heating device and rectal thermometer. Arterial blood pressure and heart
rate were measured with a blood pressure recorder (CyQ 103/302; Cybersense, Inc.,
Nicholasville, KY, USA). Arterial blood pH, pO2 and pCO2 were measured with a blood gas
analyzer (Model 248, Bayer Health Care, Norwood, MA, USA).

Ten min after injecting NMDA or saline (about 4 hours after the last of the chronic CBZ or
saline dose), 2 ml [1-14C]AA (170 μCi/kg) was infused into the femoral vein for 5 min at a
rate of 400 μl/min using an infusion pump (Harvard Apparatus Model 22, Natick, MA, USA).
Twenty min after beginning infusion, the rat was euthanized with an overdose of Nembutal®
(100 mg/kg, intravenously) and decapitated. The brain was rapidly removed, frozen in 2-
methylbutane maintained at −40°C with dry ice, and stored at −80°C until sectioned.

Chemical Analysis
Thirteen arterial blood samples collected before, during and after [1-14C]AA infusion were
centrifuged immediately (30 s at 18,000 g). Total lipids were extracted from 30 μl of plasma
with 3 ml chloroform:methanol (2:1, by vol) and 1.5 ml 0.1 M KCl (48). As reported, following
[14C]AA infusion, greater than 97% of plasma radioactivity was radiolabeled AA at 5 min
(49). Concentrations of unesterified fatty acids were determined in 100–150 μl of frozen arterial
plasma. Total lipids were extracted (48) and separated by thin layer chromatography on silica
gel 60 plates (Whatman, Clifton, NJ, USA) using the solvent system
heptane:diethylether:glacial acetic acid (60:40:3, by vol). Unesterified fatty acids were scraped
from the plate and methylated with 1% H2SO4 in anhydrous methanol for 3 hours at 70°C
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(50). Fatty acid methyl esters were separated and quantified by gas chromatography using
heptadecanoic acid (17:0) as an internal standard (31).

Quantitative Autoradiography
Frozen brains were cut in serial 20-μm thick coronal sections in a cryostat at −20°C. The
sections were placed for 5 weeks with calibrated [14C]methylmethacrylate standards on Kodak
Ektascan C/RA film (Eastman Kodak Company, Rochester, NY, USA). Eighty-two brain
regions from autoradiographs were identified from a stereotaxic brain atlas (51), and were
sampled in both hemispheres. The average of bilateral measurements for each region from
three consecutive brain sections was used to calculate regional radioactivity (nCi/g of brain)
by digital quantitative densitometry, using a Macintosh computer and the public domain NIH
Image program 1.62 (developed at the U.S. National Institutes of Health and available on the
Internet at http://rsb.info.nih.gov/nih-image/). Regional incorporation coefficients k* (ml
plasma/sec/g brain) of AA were calculated as (21),

k ∗ =
cbrain
∗ (20min )

∫020cplasma
∗ dt

(Eq. 1)

c*plasma equals plasma radioactivity determined by scintillation counting (nCi/ml),
c*brain(20 min) equals brain radioactivity (nCi/g of brain) at 20 min after staring infusion, and
t equals time (min) after beginning [1-14C]AA infusion. Rates of incorporation of unesterified
AA from plasma into brain, Jin (nmol/sec/g), were calculated as,

Jin = k ∗ cplasma (Eq. 2)

where cplasma is the plasma concentration of unlabeled unesterified AA (nmol/ml).

Brain prostaglandin E2 and thromboxane B2 concentrations
In separate experiments, vehicle- and CBZ-treated rats were given i.p. NMDA (25 mg/kg) or
saline. Ten min later, they were anesthetized with Nembutal® (100 mg/kg, i.p.) and subjected
to head-focused microwave irradiation (5.5 kW, 3.4 s then 1.4 s; Cober Electronics, Stamford,
CT, USA) to stop post-mortem changes, such as release of fatty acids and formation of
prostaglandins (52). Extraction was performed by Radin’s method (53). Briefly, half-brains
were weighed, then extracted in 18 volumes of hexane:isopropanol (3:2, by vol) using a glass
Tenbroeck homogenizer. The extract was concentrated to dryness under nitrogen and
resuspended in an enzyme immunoassay buffer provided with a polyclonal PGE2 or TXB2
assay kit (Oxford Biochemical Research, Oxford, MI, USA).

Statistical Analyses
An unpaired two-tailed t-test was used to compare mean physiological parameters in CBZ-
and vehicle-treated rats, using GraphPad Prism version 4.0b (GraphPad Software, San Diego,
CA, www.graphpad.com). A standard two-way ANOVA, comparing CBZ administration
(CBZ vs. vehicle) with drug (NMDA vs. saline) was performed with regard to arterial plasma
radioactivity, plasma unesterified fatty acid concentrations, brain PGE2 and TXB2
concentrations, and regional values of k* using SPSS 11.0 (SPSS Inc., Chicago, IL, USA,
http://www.spss.com). Where interactions between CBZ and NMDA were statistically
significant, probabilities of main effects of CBZ and NMDA were not reported as they cannot
be interpreted (54,55). Instead, unpaired two-tailed t-tests were used to compare NMDA and
saline responses between vehicle and CBZ-treated rats, as well as saline responses in CBZ-
compared with vehicle-treated rats. Other comparisons were not considered relevant. A post-
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hoc test was not used to avoid a correction for multiple comparisons. However, when a
Bonferroni’s post-hoc test with correction for three comparisons was performed, statistical
significances of differences were not changed. Data are reported as means ± SD, with statistical
significance taken as p ≤ 0.05.

Results
Physiology, behavior and arterial plasma radioactivity

After 30 days of treatment, body weight in the chronic CBZ- and vehicle-treated rats did not
differ significantly [276.4 ± 14.6 (n = 15) vs. 276.1 ± 16.1 (n = 16)]. Compared with acute
saline, acute NMDA did not significantly affect arterial pH, pCO2, pO2 or blood pressure, but
significantly decreased heart rate by 20–29% in both groups (Table 1), as reported (38). NMDA
produced repeated cycles of head weaving and body movements following by a resting period.
Cycling continued and then ceased after 90–110 sec (Table 1). The mean cycling period did
not differ between CBZ- and vehicle-treated rats.

Neither CBZ nor NMDA modified the time course of arterial plasma radioactivity, the input
function in Eq. 1, following [1-14C]AA infusion. Mean integrated radioactivity in the plasma
organic fraction, in units of (nCi x sec)/ml (n = 7–8), did not differ significantly between groups:
vehicle plus saline, 183981 ± 38623; vehicle plus NMDA, 190501 ± 38459; CBZ plus saline,
194895 ± 24409; CBZ plus NMDA, 202102 ± 17701.

Plasma unesterified fatty acid concentrations
A two-way ANOVA did not show a significant interaction between CBZ and NMDA in any
measured plasma unesterified fatty acid concentration (Table 2). CBZ compared with vehicle
had no significant main effect on any concentration, whereas NMDA compared with saline
significantly increased concentrations of unlabeled unesterified palmitic, palmitoleic, stearic,
oleic, linoleic, α-linolenic, AA and docosahexaenoic acid in both vehicle- and CBZ-treated
rats (Table 2).

Regional brain AA incorporation coefficients, k*
Effects of NMDA in vehicle-treated rats—Mean AA incorporation coefficients, k*, in
each of 82 brain regions (Eq. 1), were subjected to a two-way ANOVA (Table 3, Fig. 1).
Interactions between CBZ and NMDA were statistically significant in 68 of the 82 regions. In
these 68 regions, t-tests showed that NMDA compared with saline significantly increased mean
k* by 29–122% in the chronic vehicle-treated rats. Affected were prefrontal, frontal, anterior
cingulate, motor, somatosensory, auditory and visual cortical areas (33–122%), preoptic area
(44%), globus pallidus (60%), olfactory tubercle (57%), diagonal band (52–72%), amygdala
(41%), hippocampus (29–87%), nucleus accumbens (83%), caudate-putamen (58–88%), septal
nuclei (62–64%), habenular nuclei (67–68%), lateral geniculate nucleus dorsal (56%), medial
geniculate nucleus (67%), regions of the thalamus (46–104%), areas in the hypothalamus (46–
86%), interpeduncular nucleus (35%), substantia nigra (77%), superior and inferior colliculi
(46–79%), and cerebellar gray matter (32%). Where CBZ x NMDA interactions were
statistically insignificant, NMDA increased k* significantly in the pyriform cortex (33%).
Thus, NMDA increased k* significantly in 69 (68 + 1) of the 82 brain regions.

Effects of chronic CBZ—In the 68 regions in which CBZ x NMDA interactions were
statistically significant, t-tests showed that chronic CBZ vs. vehicle did not significantly change
mean baseline (response to acute saline) k* in any region. In the 14 regions with statistically
insignificant CBZ x NMDA interactions, CBZ did not have any main effect (Table 3). NMDA
compared with saline did not change k* significantly in any of the 68 regions in which CBZ
x NMDA interactions were statistically significant, nor did it affect k* in the pyriform cortex,
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where the CBZ x NMDA interaction was insignificant. Thus, chronic CBZ blocked each of
the 69 NMDA-induced k* increments that were seen in the chronic vehicle rats.

Regional rates of incorporation of unlabeled unesterified plasma AA
Rates of incorporation of unlabeled unesterified AA from plasma into brain, Jin, for AA (Table
were calculated by Eq. 2 using regional values of k* (Table 3) and cplasma did not differ
significantly 2) (results not shown). Because baseline values of cplasmabetween chronic CBZ-
and vehicle-treated rats (Table 2), the baseline relations of regional Jin corresponded to
respective relations in regional values of k* between the two groups. In vehicle-treated rats,
baseline Jin ranged from 3.3 fmol/sec/g in the periventricular area of the hypothalamus to 28.9
fmol/sec/g in the choroid plexus. by 2.1–2.4 fold (Table 2), a steady-However, because NMDA
acutely increased cplasma state plasma (and likely brain) AA concentration was unavailable to
calculate Jin in response to NMDA, and thus we did not calculate or compare Jin responses to
acute NMDA and saline.

Brain PGE2 and TXB2 concentrations
A two-way ANOVA demonstrated significant interactions between CBZ and NMDA for brain
PGE2 (p = 0.031) and TXB2 (p = 0.014) concentrations. Consequent t-tests showed that chronic
CBZ decreased both basal concentrations, PGE2 by 45% (p = 0.023) and TXB2 by 51% (p =
0.0014) (Table 4). NMDA administration to chronic saline-treated rats significantly increased
concentrations of PGE2 (p = 0.009) and TXB2 (p = 0.0009) by 1.8 and 2.2 fold, respectively,
whereas NMDA had no significant effect in the chronic CBZ-treated rats.

Discussion
In this study, acute NMDA in chronic vehicle-treated unanesthetized adult rats increased k*
for AA, a marker of cPLA2 activation and AA release from phospholipids, in widespread brain
regions, and also increased brain concentrations of the AA metabolites, PGE2 and TXB2.
Chronic CBZ blocked the NMDA-induced increments of k* as well as of PGE2 and TXB2. As
chronic lithium also blocks NMDA-induced increments in k* for AA in unanesthetized rats
(38), taken together the results suggest that effective antibipolar agents generally block
NMDA-mediated signaling via AA. Supporting this interpretation, valproic acid, another
effective agent, has been reported to interfere with NMDA neurotransmission (56,57), but it
remains to be seen whether chronic valproate also blocks the NMDA-initiated AA signal in
unanesthetized rats and, furthermore, whether abnormal NMDAR-mediated signaling,
suggested to exist in BD (see Introduction), might be modified in humans by the agents (58).

Mechanisms underlying attenuation of NMDA-induced increments in k* by chronic CBZ or
lithium are uncertain. Inhibition of AA cascade enzymes (e.g., cPLA2 and COX), as well as
direct interference with the NMDAR, may be involved. Both chronic lithium and CBZ reduce
rat brain cPLA2 activity, protein and mRNA levels, without changing activities of calcium-
independent iPLA2 or secretory sPLA2 (33,34,59). cPLA2 downregulation by both drugs is
accompanied by reduced expression and DNA-binding of activator protein 2 (AP-2), a
cPLA2 transcription factor (47,60). Both drugs also reduce the brain basal (this paper and
(34)) PGE2 concentration, and in this paper we show that CBZ also reduces brain basal
TXB2 concentration and increments in PGE2 and TXB2 concentrations in response to acute
NMDA. PGE2 and TXB2 are AA metabolites produced preferentially via COX-2 and COX-1,
respectively, and their reductions agree with evidence of a 40% reduction in net brain COX
activity caused by chronic CBZ (34,61–65).

Reduced k* responses to NMDA also might arise from chronic CBZ’s effect on the NMDAR
receptor itself, causing reduced entry of Ca2+ into the cell and reduced activation of cPLA2
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and other Ca2+-dependent intracellular enzymes. Indeed, CBZ has been reported to interfere
with multiple NMDAR signaling processes in in vitro studies (see Introduction) (39–43,66).
Additionally, chronic CBZ is reported to inhibit brain cyclic AMP-dependent protein kinase
A, which phosphorylates the NMDAR (47,67). NMDAR activation can increase acetylation
of histones H3 and H2A.X via the PKC/ERK signaling cascade, and CBZ can inhibit histone
deacetylases. Thus, CBZ may affect histones as well as NMDAR transcription factors that are
regulated by acetylation, such as specificity protein-1 (SP-1) (68–71). CBZ’s blocking of
NMDAR-mediated intracellular events is consistent with evidence that it has neuroprotective
properties (44,72–74). Neuroprotection may involve pro-apoptotic proteins p53,
cytoprotective protein Bcl-2, and cell survival protein kinase Akt, and would be interesting to
know the effects of CBZ on these proteins.

The ability of chronic CBZ (this paper) and of chronic lithium (38) to attenuate k* responses
to AA in unanesthetized rats is consistent with proposals that inhibition of glutamatergic
neurotransmission would have an antimanic effect in BD (1,2,75). In this regard, chronic
lithium and valproic acid administration to rats reduced expression of the glutamatergic alpha-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluR1, an
effect that been associated with reduced AMPA receptor function (76).

We did not determine if any of the CBZ effects arose from short-term brain exposure to drug.
This is unlikely, as chronic CBZ exposure is accompanied by significant changes in cPLA2
mRNA and in the AP-2 transcription that modulates cPLA2 transcription, as well as by other
neuroplastic changes that likely require long term exposure (34,47,77–79). Acute CBZ effects
include altering serotonergic transmission in vivo and in vitro and reducing high frequency
firing in cultured neurons (80–82). The brains in the present study were sampled within 4 hours
after the last of the daily CBZ doses, and pharmacokinetic data show that, following an i.p.
CBZ in rats, the brain concentration peaks at 100 min and then declines with a half-life of 205-
min (83). Thus, the brain would have been exposed to a therapeutic level of CBZ for only 1–
2 hours.

Our baseline values in Table 3 of k* (after acute saline in chronic vehicle-treated rats) ranged
from 2.69 to 7.14 × 10−4 ml/sec/g brain, agreeing with published values (38,84,85). NMDA
25 mg/k.g. i.p. significantly increased k* in 69/82 brain structures that have high NMDAR
densities, including the cerebral cortex, caudate-putamen, globus pallidus, hippocampus,
thalamus, hypothalamus, superior and inferior colliculi, and substantia nigra (86,87). In a prior
study, 49/83 regions were significantly activated by the same NMDA dose (38). The
discrepancy may be due to the lower variance of k* in the present study, a DMSO (vehicle)
effect, or just to experimental variation.

Chronic CBZ did not significantly affect baseline values of k*, consistent with its lack of effect
on baseline values of k* in individual phospholipid classes in microwaved rat brain (31).
Regional baseline values for Jin in vehicle-treated rats, 33–289 × 10−4 nmol/sec/g, agree with
a published global value of 65.7 × 10−4 nmol/sec/g (31). Given that Jin and k* represent regional
rates of AA metabolic loss from brain (88–90), our data indicate comparable baseline rates of
AA loss, but reduced incremental rates following NMDA, in chronic CBZ- compared with
vehicle-treated rats. The reduced incremental rates likely reflect the reduced formation of
PGE2 and TXB2. In this regard, k* responses in rats to the cholinergic agonist arecoline, which
activates PLA2  via muscarinic cholinergic receptors, were absent in COX-2 knockout
compared with wild-type mice (89), and in rats treated with a mixed COX-1/2 inhibitor
(Basselin et al., unpublished data).

The behavioral effects of NMDA noted in Table 1 were not altered by chronic CBZ, and also
are not altered by chronic lithium (38). Consistent with the lack of effect of both agents, neither
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modifies the seizure threshold to NMDA in rodents (91–93). Thus, the behavioral and seizure
responses to NMDA do not appear to directly involve the AA cascade.

Acute NMDA significantly increased many unesterified fatty acid concentrations in plasma in
both the chronic vehicle and CBZ groups (Table 2), likely through by stimulating corticosterone
secretion (94,95). The inability of CBZ treatment to block these increments agrees with our
previous report (31), and is consistent with evidence in normal human volunteers that CBZ
increases cortisol blood levels (96).

If disturbed NMDAR-initiated signaling via AA contributes to the mania of BD, as has been
suggested (see above), then our finding in this paper that CBZ suppresses the NMDA signal,
and elsewhere that chronic LiCl feeding does so as well, may mean that the efficacy of both
agents in BD involves such an effect. Experiments with valproic acid help to test this possibility,
as valproic acid, like lithium and CBZ, downregulates the AA cascade in rat brain and has been
shown to interfere with NMDAR function (29,36,56,57). Additionally, chronic lithium has
been reported to reduce k* for AA in response to quinpirole, an agonist of dopaminergic D2-
like receptors coupled to cPLA2 by a G-protein (84,97). It would be worthwhile to see if CBZ
and VPA do so as well, which would suggest a more general receptor action of these agents
on cPLA2-mediated AA signaling.
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Abbreviations
AA  

arachidonic acid (20:4n-6)

AP-2  
activator protein-2

BD  
bipolar disorder

CBZ  
carbamazepine

COX  
cyclooxygenase

NMDA  
N-methyl-D-aspartic acid

NMDAR  
NMDA receptor

cPLA2  
cytosolic phospholipase

sPLA2  
secretory PLA2

iPLA2  
calcium independent PLA2

PGE2  
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prostaglandin E2

TXB2  
thromboxane B2
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Figure 1. Coronal autoradiographs of brain showing effects of NMDA and carbamazepine on
regional AA incorporation coefficients k* in rats
Values of k* (ml/sec/g brain × 10−4) are given on a color scale from 3 (blue) to 8 (yellow-
orange). Abbreviations: Acg, anterior cingulate cortex; Aud, auditory cortex; AV,
anteroventral thalamus nucleus; CPu, caudate-putamen; Fr, frontal cortex; Hipp, hippocampus;
IPC, interpeduncular nucleus; MG, medial geniculate nucleus; Mot, motor cortex; Pyr,
pyriform cortex; Vis, visual cortex.
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