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Abstract
Lymphodepletion with chemotherapeutic agents or total body irradiation (TBI) before adoptive
transfer of tumor-specific T cells is a critical advancement in the treatment of patients with melanoma.
More than 50% of patients that are refractory to other treatments experience an objective or curative
response with this approach. Emerging data indicate that the key mechanisms underlying how TBI
augments the functions of adoptively transferred T cells include (a) the depletion of regulatory Tcells
(Treg) and myeloid-derived suppressor cells that limit the function and proliferation of adoptively
transferred cells; (b) the removal of immune cells that act as “sinks” for homeostatic cytokines, whose
levels increase after lymphodepletion; and (c) the activation of the innate immune system via Toll-
like receptor 4 signaling, which is engaged by microbial lipopolysaccharide that translocated across
the radiation-injured gut. Here, we review these mechanisms and focus on the effect of Toll-like
receptor agonists in adoptive immunotherapy. We also discuss alternate regimens to chemotherapy
or TBI, which might be used to safely treat patients with advanced disease and promote tumor
regression.

It is the information carried by the bacteria that we cannot abide. The gram-negative
bacteria are the best examples of this. They display lipopolysaccharide endotoxin in
their walls, and these macromolecules are read by our tissues as the very worst of
bad news. When we sense lipopolysaccaride, we are likely to turn on every defense
at our disposal. . . Lewis Thomas, New England Journal of Medicine, 1971

Historical Perspective on Exploiting Bacteria to Treat Cancer
Over a century ago, William B. Coley observed spontaneous tumor regression in some of his
patients with bacterial infection (1). He hypothesized that the tumor regression was caused by
infection and designed a mixture of bacteria consisting of heat-killed cultures of
Streptococci and Serratia marcescens known as Coley’s toxins. He reported success using
these mixtures in patients with soft tissue sarcoma. Subsequent investigators, however, failed
to reproduce these findings (2). Nonetheless, Coley’s notion that bacteria can activate immune
responses to cancer cells persists to the present day.

Bacterial mixtures as activators of immune responses could be understood in the danger model
formulated by Polly Matzinger in the early 1990s (3,4). According to this model of immune
activation versus tolerance, tumor antigens would be viewed as dangerous to the immune
system in the presence of bacteria. A molecular understanding of how host-derived bacteria
stimulate the immune system was later elucidated by Charles Janeway and colleagues (5–7)
who found that bacteria contain conserved pathogen-associated molecular patterns such as
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lipopolysaccharide (LPS) and bacterial DNA that can ligate pattern recognition receptors, such
as the Toll-like receptors (TLR) of the innate immune system (8–11). Engagement of TLRs
on antigen presenting cells (APC; such as dendritic cells) of the innate immune system results
in their maturation and migration to lymph nodes where they initiate adaptive immune
responses (12,13).

TLRs in Intestinal Immune Health and Disease
It is now clear that recognition of host-derived bacteria by TLRs is vital for intestinal health,
exerting a variety of structural, metabolic, and protective effects on the intestinal mucosal
barrier (14–17). Medzhitov and colleagues first found that TLR detection of gut microbes could
protect mice from life-threatening colitis. They found that mice genetically deficient in My
D88 (a molecule important for TLR recognition of gut microbes) succumbed to increased
disease pathogenesis as evidenced by pronounced gut injury and related mortality compared
with wild-type mice (18). Conversely, gut injury and mortality was increased in wild-type mice
with colitis upon removal of gut microbes using broad-spectrum antibiotics. Interestingly,
administrating LPS to their drinking water rescued antibiotic-treated wild-type mice from
disease pathogenesis, indicating that TLR recognition of microbial products was surprisingly
important for maintaining intestinal immune health (18).

TLR recognition of gut microflora can also be deleterious to the host, especially if the host is
rendered lymphopenic by a chronic infection or by lymphodepleting preparative regimens
(19–21). Translocated colonic microbes have been implicated in exacerbating graft-versus-
host disease in patients receiving allogeneic stem cell transplant (22–27) and have recently
been reported to cause systemic immune activation in patients with chronic HIV infection
(28,29). Thus, it is clear that commensal gut microflora can exacerbate unwanted immune
responses, but the potential for exploitation in T cell–based antitumor immunotherapies
remains to be fully explored.

Recent Efforts in Exploiting TLRs for the Treatment of Cancer
Given the notion that bacteria might increase antitumor immunity, the question arises “Can
bacterial TLR agonists augment cancer immunotherapy?” Early studies indicated that inserting
model tumor-associated antigens into viruses, which contain TLR agonists, can augment their
immunogenicity and function as tumor vaccines (30–32), but these studies largely used very
early treatment models in which tumors were not yet vascularized. In humans, cancer vaccines
have not proven to be consistently therapeutic even when used under circumstances in which
recombinant and synthetic vaccines are capable of activating the innate immune system (33).

Recently, Speiser and colleagues have made efforts to use TLR agonists in conjunction with
vaccination in patients with melanoma (34,35). They found that combining TLR9 agonist CpG
ODN 7909 (a 24-mer oligodeoxynucleotide containing 3CpG motifs) with a Melan A26–35/
MART1 peptide and incomplete Freund’s adjuvant increased the number of MART1-specific
T cells by >10-fold compared with vaccination without CpG. This heightened immune
response, however, did not promote tumor regression (35). These findings might imply that
the MART1 T cells induced by CpG ODN 7909 and vaccination are functionally tolerized.
The tumor-reactive T cells might be tolerized by regulatory T cells (Treg) cells, as hypothesized
by the same investigators, who reported that Treg cells were elevated in the tumors of vaccinated
patient’s receiving CpG ODN 7909 (36).

Adoptive Immunotherapy
Adoptive transfer of autologous tumor-specific T cells, as initially reported in 1988, has been
shown to reproducibly mediate the destruction of bulky tumors in ~30% of the patients treated
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(37,38). This approach involves growing tumor-infiltrating lymphocytes ex vivo from the
resected tumor nodules of patients and then adoptively transferring them into the patient in
conjunction with bolus high-dose interleukin-2 (IL-2; refs. 37,38). Although this approach is
cumbersome, it has a number of advantages. One can administer large numbers of naturally
occurring or genetically engineered cells with high avidity for tumor antigens (39,40). Both
CD4+ and CD8+ T cells have been shown to be capable of recognizing tumor antigens and to
potentially play a role in the antitumor immune response (41–45). These cells can be selected
for particular functions (46), they can be activated from their poorly functional state in vivo
(47), and they can be programmed for optimal function (48). After adoptive transfer into a
tumor-bearing host, they are capable of massive expansion in both mice and humans (49,50).
Adoptively transferred T cells are capable of trafficking to virtually every somatic site (51).
Despite all of these advantages, the adoptive transfer of cells triggered objective immune
responses in only a small minority of patients until investigators began to use lymphodepleting
preparative regimens to provide an altered environment for transferred cells (49,52–56).

Lymphodepletion Augments Adoptive Immunotherapy
Adoptive transfer of ex vivo expanded antitumor T cells after a nonmyeloablative
lymphodepleting preparative regimen with chemotherapeutic reagents is the most effective
treatment for patients with metastatic melanoma. When antitumor T cells are given after
lymphodepletion, ~50% of patients refractory to other treatments will experience objective
clinical responses with this treatment (Fig. 1A and B; refs. 49, 55, 57). Not all patients’ tumors
yield antitumor T cells, however, and only about a third of the patients experience durable
tumor regressions. Thus, there are significant efforts to continue to improve the current
therapies. Preclinical data show that increasing the intensity of lymphodepletion to a
myeloablative preparative regimen that requires hematopoietic stem cell (HSC) transplant
might further improve the effectiveness of adoptive cell transfer. This approach is currently
being examined in clinical trials at the NIH, National Cancer Institute, Surgery Branch (58–
60). Preliminary findings indicate long-term responses in patients pretreated with
chemotherapeutics agents in conjunction with 200 cGy total body irradiation (TBI; Fig. 1C)
or 1,200 cGy TBI (six fractionated doses of 200 cGy TBI, twice a day for 3 days) plus HSC
transplant (Fig. 1D).

The concept that lymphopenia-induced homeostatic expansion of T cells intensifies immune
responses to tumor antigens and facilitates potent antitumor immune responses was first
reported by Fefer and colleagues in the late 1960s (61). They found that i.p. administration of
lymphocytes in conjunction with chemotherapy could treat mice bearing virally induced
lymphomas (61). Likewise, other groups in the early 1980s found that this approach could
mediate the regression of established sarcomas in mice and rats (62,63). More recently,
Dummer and colleagues found that homeostatic expansion of autologous CD8+ T cells can
inhibit tumor growth. Importantly, CD8+ T cells from these mice mediated tumor-specific
cytotoxicity and IFN-γ production associated with long-term tumor-specific memory (64). In
addition, tumor growth was profoundly inhibited in irradiated animals vaccinated with tumor
lysate–pulsed dendritic cells (65). This work clearly showed that lymphodepletion can enhance
T cell–mediated antitumor immune responses.

We have explored the use of lymphodepletion with a nonmyeloablative preparative
conditioning regimen using 5 Gy TBI in a model of adoptive immunotherapy using CD8+

pmel-1 T cells that are specific for the self/tumor antigen gp100 (66–68). The administration
of 5 Gy TBI before a tripartite regimen consisting of adoptive transfer of transgenic pmel-1
cells, vaccination encoding gp100, and IL-2 significantly enhanced the destruction of large,
established B16 tumors (69). The mechanisms underlying this improvement are multifold and
have been substantially elucidated using varieties of knockout and transgenic animals (Fig. 2).
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These mechanisms include the removal of inhibitory lymphocytes such as regulatory T cell
and cytokines sinks, elevation of homeostatic cytokines, and activation of the innate immune
system (Fig. 3).

Mechanisms Underlying the Effectiveness of TBI in Adoptive Immunotherapy
Depletion of Treg cells

Lymphodepletion before the adoptive transfer of T cells can also reduce the numbers of
CD4+ CD25+FoxP3+ Treg cells whose generation and function are reviewed elsewhere (70,
71). Treg cells maintain tolerance to self-antigens by blocking the functionality of effector T
cells (72–80), as reported by North and colleagues more than two decades ago (81). Emerging
data indicate that the CD39 and CD73 are surface markers for Treg cells that impart a specific
biochemical signature characterized by adenosine generation (82). These phenotypic markers
might have more functional relevance than the cell surface marker CD25 for cellular
immunoregulation. It is now clear that removal of Treg cells by 5 Gy TBI improve the function
of adoptively transferred cells (Fig. 3; refs. 58,78). Another category of immune cells that have
been reported to induce lymphocyte dysfunction and promote tumor growth are designated
myeloid-derived suppressor cells (MDSC; refs. 83–89). Removal of these cells might also
contribute to the effectiveness of TBI.

Removal of cytokine sinks
Lymphodepletion with nonmyeloablative 5 Gy TBI augment the effectiveness of adoptively
transferred cells in part by depleting the lymphoid compartment that consumes homeostatic
cytokines (cytokine sinks such as host natural killer, CD4+ and CD8+ T cells; refs. 69,78).
Removal of this compartment increase the availability of homeostatic γ-chain cytokines such
as IL-7, IL-15, and possibly IL-21. An increased availability of these cytokines for the
adoptively transferred cells may enhance their function and enable them to destroy bulky
nonimmunogenic tumors (58,69).

Activation of innate immunity via translocated microbes
Interestingly, removal of Treg cells and cytokine sinks do not fully account for the dramatically
improved tumor regression resulting from TBI. We recently found that Rag2−/ − γc

−/ − mice,
which lack both Treg cells and sinks for homeostatic cytokines, benefited from TBI
preconditioning, an unexpected finding given that these mice are deficient in all lymphocyte
subsets. These data indicate the existence of another mechanism by which TBI enhances
adoptive immunotherapy (90).

TBI has recently been reported to increase antigens on the cell surface of the tumor stroma
(91,92). Increased expression of antigens was reported to contribute to elimination of the
immunogenic tumors by T cells. We found that local irradiation at the tumor site of up to 10
Gy before adoptive cell transfer, however, had virtually no effect on the growth rate of
established B16 melanoma (69). Conversely, TBI with 5 Gy before adoptive cell transfer
enhanced tumor destruction even when the tumor was shielded from radiation. This indicated
that the observed enhancement of CD8+ T-cell function after TBI did not directly result from
its influence on the tumor, but rather resulted from its effect on the host cells. This finding is
in accordance with earlier studies by Hellstrom in 1978, who first reported the irradiation might
be beneficial for the treatment of MCA-1315 tumors in mice because of the effect of radiation
on host but not tumor cells (93).

Additional investigation conducted in our laboratory revealed that radiation-induced injury to
the gut permitted translocation of microbes to the mesenteric lymph nodes and systemic
liberation of bacterial-derived LPS (90). Bacterial translocation resulted in activation of the
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innate immune system, as indicated by an increase in the splenic CD11c+ CD86hi dendritic
cells, which are capable of activating adoptively transferred T cells (94–96). In addition, higher
levels of pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor-α were found in
the serum of irradiated mice (90). Furthermore, IL-12, a well-described enhancer of CD8+ T-
cell function (97,98), was found in the serum as well (90).

Neutralization of gut microbes with ciprofloxacin reduced the absolute numbers of activated
host dendritic cells and impaired tumor destruction by the adoptively transferred cells in
irradiated mice (90). These data have shown that innate activation by the translocated microbes
is surprisingly important for improving T cell–based immunotherapy. As cancer
immunotherapy develops, it is important to understand the effect of these treatments on host-
microbe homeostasis and the role of gut microbes in antitumor immunity. A better
understanding of this mechanism might allow us to optimize our therapies to enhance clinical
responses.

Translocation of Microbial LPS Augments Adoptive Immunotherapy via TLR4
Signaling

Microbes that translocate across the perturbed gut contain a plethora of TLR agonists (i.e.,
lipoproteins, lipoteichoic acid, peptidoglycan, flagellin, bacterial DNA, and LPS; refs. 11,13,
99). Thus, any of these agonists might have been responsible for enhancing adoptive
immunotherapy. We found, however, that LPS is principally responsible for the effectiveness
of TBI because neutralizing it with polymyxin B, a cyclic cationic polypeptide antibiotic that
blocks the biological effect of Gram-negative LPS (100), also impaired tumor destruction
mediated by the adoptively transferred cells.

LPS, which binds to the soluble LPS binding protein, activates innate immunity primarily
through engagement of TLR4, which acts in conjunction with accessory CD14 and MD2
molecules (refs. 101,102;Fig. 4). These accessory molecules are important for stabilizing
TLR4. TLR4 engagement induces nuclear factor-κB activation via multiple pathways (i.e.,
MyD88, TRIF, TIRAP, and TRAM pathways; refs. 103,104), leading to the production of pro-
inflammatory cytokines, up-regulation of costimulatory molecules, and greater expression of
MHC class II on phagocytes (Fig. 4). Innate activation via TLR4 engagement of microbial LPS
was important for the effectiveness of TBI because removal of LPS signaling components using
mice genetically deficient in CD14 or TLR4 reduced destruction of large tumors by the
adoptively transferred cells (90).

Depletion of Sinks and Suppressors: Requirements for TLR Agonists to
Enhance Adoptive Immunotherapy

Investigators have previously reported that TLR agonists can inhibit tumor growth in
prevention models of adoptive immunotherapy (105–108). Because of this finding and because
endogenous microbial LPS plays a role in the effectiveness of TBI, we hypothesized that
exogenous administration of LPS to nonirradiated mice might replace preconditioning animals
with TBI. We found, however, that exogenous LPS alone does not mediate regression of large,
established, nonimmunogenic B16 tumors in nonirradiated mice receiving adoptive
immunotherapy in comparison with mice irradiated with 5 Gy TBI. Furthermore,
administration of other TLR agonists [i.e., imiquimod, zymosan, poly(I:C), or CpG] alone were
likewise ineffective.1 Thus, in contrast to prevention models, TLR agonist cannot replace the
effectiveness of TBI in adoptive cell transfer models with large, established tumors.

1C. Paulos, unpublished data.

Paulos et al. Page 5

Clin Cancer Res. Author manuscript; available in PMC 2008 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



What is required for TLR agonists to mediate destruction of large tumors by adoptively
transferred cells? The answer to this question is clear from mechanisms underlying the
effectiveness of TBI (58,59,69,78,90,109). TBI enhances adoptive immunotherapy via
removal of cytokine sinks, depletion of Treg cells, and activation of innate immunity via TLR
ligation. In fact, we found that depletion of cytokine sinks alone (with a single administration
of natural killer–depleting antibody), removal of Treg cells alone (with a single administration
of CD4-depleting antibody), activation of the innate immune system via TLR4 signaling alone
(with systemic administration of LPS at 1 day after adoptive cell transfer), or any two
combinations of the three mechanisms underlying the effectiveness of TBI induces nominal
antitumor immune responses by the adoptively transferred cells in nonirradiated mice with
bulky tumors (90). Destruction of bulky tumors achieved in irradiated mice is only achieved
in nonirradiated mice by mimicking all three mechanisms underlying the effectiveness of TBI.
These findings are important because they define the variables required for TBI to improve
adoptive immunotherapy for cancer.

Administration of LPS to Irradiated Animals Enhances Adoptive
Immunotherapy

We recently reported that exogenous administration of LPS to irradiated animals further
enhanced the proliferation and function of adoptively transferred cells, resulting in long-term
cures and enhanced autoimmune vitiligo in these animals. (90). These data indicated that
administration of a clinical adjuvant that signals TLR4 might treat patients with advanced
disease receiving T cell–based immunotherapy. It is important to find an alternate agonist to
LPS, however, because LPS cannot be realistically used in clinical trials of adoptive
immunotherapy because of its inherent toxicity (110).

It is important to keep in mind that the expression and function of TLRs on immune cells in
mice are different than humans (111). Thus, a variety of clinically available TLR agonists, such
as virally derived imiquimod, that were ineffective in our hands (data not shown) might be
effective in treating human patients, especially considering that imiquimod has been reported
to treat some patients with superficial early-stage disease (112,113).

Future Directions: Alternate Reagents to Chemotherapy or TBI
Activation of the innate immune system via TLR4 signaling, removal of cytokine sinks, and
depletion of MDSC and Treg cells are key mechanisms underlying the effectiveness of TBI
(Fig. 3). Based on these mechanisms, alternate reagents could be used in combination to
enhance tumor destruction by adoptively transferred cells in humans. Alternate reagents to
mimic these mechanisms are outlined in Table 1.

The patient’s innate immune system might be activated with clinically relevant TLR agonists,
including monophosphoryl lipid A, imiquimod, or CpG ODN 7909 (34,35,105–108,114–
117). The CD40 costimulatory molecule, which is up-regulated on innate immune cells, such
as dendritic cells, upon their activation might also enhance adoptive immunotherapy through
engaging the CD40L molecule on adoptively transferred tumor-specific T cells. A recombinant
human CD40 ligand could be used to mimic the activated innate immune cell, thereby
enhancing the tumor-specific transferred T cells (118–123). Because combining TLR agonists
have been reported to further activate the innate immune system, coadministration of these
adjuvants might greatly enhance adoptive immunotherapy (124,125).

A number of approaches to eliminate human Treg cells and cytokines sinks have been done
with varying degrees of success, including ONTAK, Hu Max-CD4 (Zanolimumab), and RFT5
(126–133). Furthermore, B cells might act as sinks and/ or suppressor lymphocytes and thus
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their removal with rituximab, a chimeric anti-CD20 monoclonal antibody, might also improve
adoptive immunotherapy (134,135). Alternatively, homeostatic cytokines IL-7, IL-15, or IL-21
could be administered systemically to support the adoptively transferred cells because they are
of low basal level in patient (136–143). Importantly, combining these reagents with clinical
TLR agonists might greatly improve adoptive immunotherapy.

TLR Ligation May Foster the Development of Th17-like Cells
TLR agonists have been reported to reverse Treg-mediated suppression on effector CD8 T cells,
thereby enhancing their effector function (105,106,144). This blockade was partly dependent
on IL-6 (produced by TLR-ligated APCs; ref. 144). However, emerging data indicate that IL-6
(together with transforming growth factor-β produced by activated APCs) also supports the
development of CD4 IL-17 producing cells known as Th17 cells (145,146). Given the finding
that Th17-like cells exacerbate autoimmune responses (ranging from uveitis, scleritis, arthritis
to myocarditis) and are abundant in intestinal disease models (i.e., inflammatory bowel diseases
such as colitis and Crohn’s disease; refs. 147,148), it is possible that TLR ligation of
translocated microbes might also fuel surviving and reconstituting CD4 cells to develop into
Th17-like cells (149,150). Although the net effect of lymphodepletion-induced TLR4 ligation
on surviving and reconstituting CD4 cells is less clear than its effect on Treg cells and APCs,
ablation might ultimately increase the antitumor reactivity of transferred T cells by increasing
the activation and availability of Th17-like cells.

Conclusion
Lymphodepletion with chemotherapy or TBI enhances adoptive immunotherapy via several
mechanisms. Beyond the removal of cytokine sinks and Treg cells, translocation of gut
microflora and especially of microbial-derived LPS by TBI can clearly affect the outcome of
adoptive immunotherapy, a finding reminiscent of Coley’s findings published >100 years ago.

Importantly, beyond a greater innate activation by gut microbes and more complete removal
of inhibitory host cells (i.e., Foxp3+CD4+ cells, CD8+ cells, and NK1.1+ cells) with a
myeloablative preparative regimen, the HSC transplant promoted superior destruction of tumor
by adoptively transferred CD8+ T cells (58). The efficacy of the transplant was attributed to
the ability of the HSC to support the enhanced expansion and function of tumor-specific
CD8+ T cells. Interestingly, however, little is known about the specific factors produced by
HSC that improved the efficacy of the adoptively transferred cells. It is likely that the factors
that influence HSC will be important for current T cell–based immunotherapy.

Although the tolerated doses of TBI and chemotherapy are well known, these systemic
approaches are not devoid of toxicities. More targeted approaches that recapitulate the benefits
of lymphodepletion may become valuable in the development of adoptive immunotherapy.
The improved understanding of the mechanisms of action of TBI generates potential
alternatives in the nonirradiated host, such as antibody-mediated lymphodepletion,
administration of homeostatic cytokines, exogenous delivery of vaccine and/or TLR agonists,
as well as HSC transplant in combination with adoptive immunotherapy (Table 1). The findings
described in this review may therefore initiate novel treatment modalities for adoptive
immunotherapy.

It is important to recognize the potential limitations of T cell–based immunotherapies. The
extent to which tumor histologies other than melanoma will be susceptible to adoptive
immunotherapy–based approaches is not yet known (151) and tumor cells are capable of
escaping from T cell – based immunotherapies through a variety of mechanisms (152,153),
included those described elsewhere in this Clinical Cancer Research Focus issue (154–157).
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The ability to genetically engineer T cells promises to expand the histologies that will be
susceptible to tumor destruction (40). The engagement of the innate immune system as a trigger
of the adaptive immune system represents a powerful new approach as the field of the adoptive
immunotherapy of cancer moves forward (90).
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Fig. 1.
Tumor destruction of metastatic disease in various anatomic sites by adoptively transferred
tumor-specific T cells in the setting of lymphodepletion with chemotherapeutic agents and/or
TBI. Computed tomography scan of tumors in patients with stage IV melanoma. A, multiple
large metastatic liver lesions existed before the treatment (pretreatment) and then regressed
dramatically after adoptive T-cell transfer (16+ mo). B, patients with brain and recurrent
axillary metastases experience tumor regression. C, multiple large metastatic liver lesions
existed before the treatment (pretreatment) and then regressed dramatically after adoptive T-
cell transfer (18+ mo) in patients receiving chemotherapeutic reagents in conjunction with 200
cGy TBI plus HSC transplant. D, multiple large metastatic liver lesions existed before the
treatment (pretreatment) and then regressed dramatically after adoptive T-cell transfer (8+ mo)
in patients receiving chemotherapeutic reagents in conjunction with six fractionated doses of
200 cGy TBI (twice a week for 3 d; 12 Gy TBI total) plus HSC transplant.
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Fig. 2.
Tumor regression can be triggered by transgenic pmel-1Tcells. A, a mouse bearing a large,
established, vascularized B16 mouse melanoma tumor shown after the start of treatment (19
d after tumor implantation). B, the same mouse (day 67).
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Fig. 3.
Adoptive cell therapy in a lymphoreplete host. A, in a lymphoreplete environment, antitumor
responses induced by adoptively transferred T cells are impaired because of their reduced
availability of homeostatic cytokines (including IL-2, IL-7, and IL-15) by immune cells that
consume them (cytokine sinks, which might include B cells,Tcells, and natural killer cells);
and the suppressive activities of Treg cells, MDSCs, quiescent monocytes and dendritic cells
(DC), and possibly natural killer cells. B, systemic chemotherapy or radiation before adoptive
cell transfer alters the milieu of the tumor-bearing host. APCs are reduced in number by direct
killing but there might be a net increase in lymphocyte activation because of reduced
competition for antigen at the APC surfaces. At the same time, as a result of the translocation
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of microbial LPS after chemotherapeutic or radiation-induced injury to the gut, dendritic cells
mature and migrate to the lymph node via TLR4 signaling. This TBI action increases the
functionality of the adoptively transferred lymphocyte. Activating γ-chain cytokines, such as
IL-2, IL-7, and IL-15, as well as inflammatory cytokines, such as IL-6, IL-12, and tumor
necrosis factor-α, are increased because of the removal of cellular sinks, Treg cells, MDSCs,
and natural killer cells, and concomitant innate immune activation. Collectively, these
modifications promote the full activation of adoptively transferred T cells and tumor
destruction.
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Fig. 4.
LPS signals the TLR4 pathway on an APC (i.e., monocyte or dendritic cell). TLR4 is a
pathogen-associated receptor for Gram-negative bacterial product LPS.TLR4 requires MD-2,
a secreted molecule, to functionally interact with the LPS:LPS binding protein complex
(LPB). CD14 stabilizes and enhances LPS signaling. TLR4 engagement of LPS leads to nuclear
factor-κB translocation via MyD88-dependent and MyD88-independent pathway that involve
the TIR domain–ontaining adapter protein TIRAP. Adapted by permission from MacMillan
Publisher Ltd: Nature Immunology 4; 1144–1150; Copyright 2003.
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Table 1
Alternative clinical reagents that might mimic the effectiveness of lymphodepleting preparative regimens

Reagent Mechanism of action
Depletion of regulatory elements and elimination of lymphocytes that
consume homeostatic cytokines
 ONTAK Denileukin diftitoxin
 Humax-CD4 Human monoclonal antibody to CD4 molecule
 RFT5-dgA Recombinant immunotoxin to IL-2 receptor
 LMB-2 Recombinant immunotoxin to Fv fragment of the anti-TAC anti-CD25

mAb
 Rituximab Depletes human B cells
Activation of the innate immune system
 MPL TLR2/4
 Imiquimod TLR7 agonist
 CpG ODN 7909 TLR9 agonist
Other reagents that might boost the expansion and/or function of adoptively
transferred cells
 HSC
 Exogenous administration of IL-7, IL-12, IL-15, and/or IL-21
 CD40 ligation Signal 2: T cells expressing CD40L engage CD40 molecule on APCs
 CD28 Signal 2: T cells expressing CD28 engage B7 molecule on APCs
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