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Tetraploidy constitutes an adaptation to stress and an intermediate step between euploidy and aneuploidy in oncogenesis.
Tetraploid cells are particularly resistant against genotoxic stress including radiotherapy and chemotherapy. Here, we
designed a strategy to preferentially kill tetraploid tumor cells. Depletion of checkpoint kinase-1 (Chk1) by siRNAs, transfection
with dominant-negative Chk1 mutants or pharmacological Chk1 inhibition killed tetraploid colon cancer cells yet had minor
effects on their diploid counterparts. Chk1 inhibition abolished the spindle assembly checkpoint and caused premature and
abnormal mitoses that led to p53 activation and cell death at a higher frequency in tetraploid than in diploid cells. Similarly,
abolition of the spindle checkpoint by knockdown of Bub1, BubR1 or Mad2 induced p53-dependent apoptosis of tetraploid
cells. Chk1 inhibition reversed the cisplatin resistance of tetraploid cells in vitro and in vivo, in xenografted human cancers.
Chk1 inhibition activated p53-regulated transcripts including Puma/BBC3 in tetraploid but not in diploid tumor cells.
Altogether, our results demonstrate that, in tetraploid tumor cells, the inhibition of Chk1 sequentially triggers aberrant
mitosis, p53 activation and Puma/BBC3-dependent mitochondrial apoptosis.
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INTRODUCTION
Cancer results from the accumulation of genetic and epigenetic

alterations in which genomic instability conditions the progressive

deterioration towards an ever more aggressive phenotype. One of

the mechanisms of genomic instability involves a transient phase of

polyploidization (in most cases tetraploidization), which may result

from endoreplication (DNA replication without mitosis), endomi-

tosis (karyokinesis without cytokinesis) [1] or aberrant cell fusion

[2,3]. Tetraploid cells then can undergo asymmetric cell division

and/or chromosome loss, leading to aneuploidization and

chromosomal instability [4–6].

Under normal conditions, a variety of endogenous tumor

suppressor gene products prevent the generation of tetraploid cells.

For instance, p53 is activated immediately after illicit tetraploidi-

zation induced either by fusion [7], endoreplication, or endomi-

tosis [8], and promote cell cycle arrest [9–12] and/or the

activation of pro-apoptotic genes that cause the elimination of

the tetraploid cell by programmed cell death [7,8,12,13].

Inactivation of the p53 pathway is hence permissive for

tetraploidization [6]. Similarly, the loss of the tumor suppressor

proteins p21 [14], Bax [8], APC [15], or Lats2 [12] facilitates the

generation of tetraploid cells. Symmetrically, overexpression of

oncogene products such as Aurora kinase A [16] or papillomavirus

E6 [17] induces tetraploidization. One possible interpretation of

these findings is that a hypothetical ‘‘tetraploidy checkpoint’’ [9]

would prevent the generation or propagation of tetraploid cells, by

mean of a stable cell cycle arrest or their elimination by apoptosis.

Indeed, defective checkpoints have been involved in oncogenesis,

at several levels. As an example, it has been shown that the

activation of Chk2 helps in the elimination of potentially

malignant cells [18,19], and that familial loss-of-function muta-

tions [20] or an acquired interruption of Chk2 activation [18,19]

contribute to oncogenesis. The checkpoint kinase-1 (Chk1) is also

lost in aggressive lymphoid tumors [20]. Nonetheless, Chk1 is

involved not only in tumor suppression, and its inhibition can

sensitize tumor cells to DNA damage [21–24], presumably

because the failure to arrest the cell cycle upon DNA damage is

a lethal event.

Experimental tetraploidization of p53-negative mammary

epithelial cells can be employed as a method to generate

transformed, tumorigenic cells, thus providing a proof-of-principle

that tetraploidization may constitute an important intermediate

step in carcinogenesis [5]. Heterotypic fusion has been described in

vivo, in rodent models, for instance between tumor cells and

infiltrating cells from myeloid origin [25] and may contribute to

the plasticity of cancer. A fusogenic retrovirus can induce the

transformation of human cells in vitro through cell fusion [26].

Accordingly, pre-malignant and malignant tetraploid cells have

been documented in precancerous lesions such as Barret’s

esophagus [27], in pre-invasive lesions of the uterine cervix

[17,28], in laryngeal dysplasia [29], and in chronic ulcerative

colitis dysplasia [30]. The presence of sub-clones of tetraploid/

octoploid cells in human tumors has been correlated with worse
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prognosis, for instance in uterine cervix carcinoma [31], squamous

cell carcinoma of the head and neck [32], and in poorly

differentiated prostate carcinoma [33].

Tetraploid cells are intrinsically resistant against genotoxic stress

mediated by ionizing irradiation or by genotoxic agents used for

anti-cancer chemotherapy, including platinum compounds (such

as cisplatin and oxaliplatin) and topoisomerase inhibitors (such as

camptothecin) [8,25], meaning that tetraploid cells have a high

chance to survive apoptosis-inducing regimes. Since polyploid

tumor cells accumulate in particular areas of the cancerous lesion,

for instance in areas of hypoxia [34], it can be speculated that

tetraploid cells might contribute to chemotherapeutic failure.

Based on these considerations, we wondered whether it might

be possible to design strategies for the destruction of tetraploid

tumor cells. Here, we report that inhibition of one particular

drugable kinase, Chk1, leads to the selective destruction of

tetraploid cancer cells. In addition, we provide an exhaustive

characterization of the pro-apoptotic signal transduction pathway

elicited by Chk1 inhibition.

RESULTS

Aberrant mitoses of tetraploid cells with an intact

spindle assembly checkpoint (SAC)
Recently, we have developed a panel of tetraploid HCT116 and

RKO cell clones that bear exactly twice the normal chromosome

content than their diploid precursors, yet lack any other

discernible numeric or structural chromosomic aberration [8]

[35]. Tetraploid tumor cells exhibit a slightly reduced growth rate,

by about 10%, as compared to their diploid precursors [8], a

finding that prompted us to investigate the rate and efficacy of

mitoses. While there was no difference in the rate of mitotic events

between diploid and tetraploid HCT116 cells, we found a

significantly increased frequency of abnormal mitoses in tetraploid

cells (Fig. 1). Such abnormal mitoses were characterized by

misaligned chromosomes during metaphase, multipolar (mostly

tri- or tetrapolar) metaphases, anaphase bridges and cytokinesis

failure resulting into binucleation (Fig. 1A,C). Among tetraploid,

apparently normal or aberrant metaphases were frequently

characterized by the activation of the spindle assembly checkpoint

(SAC), as indicated by the presence of BubR1 on kinetochores

(Fig. 1B,C). Accordingly, SAC was intact in tetraploid cells,

because, treatment with nocodazole or docetaxel induced similar

percentages of mitotic arrested cells and cell death in tetraploid

and diploid clones (Fig. S1). Videomicroscopy of the nuclear and

cellular divisions of tetraploid cells transfected with a histone H2B-

GFP fusion construct (which allows to visualize chromosomes in

live cells) confirmed that 10 to 15% of tetraploid mitoses were

aberrant (Videos S1, S2), while less than 3% of diploid mitoses

were abnormal.

A fraction of tetraploid cells displayed an activating phosphor-

ylation of p53 (detectable by immunofluorescence using an

antibody that stains p53 phosphorylated on serine 15) within their

nuclei, and these phospho-p53-positive cells were in most cases

(approximately 80%) bi- or multi-nucleated and/or or contained

micronuclei (Fig. 1D,E), suggesting that p53 activation resulted

from mitotic failure. The large majority of mitoses (as discerned by

the presence of mitotic figures after Hoechst 33342 staining) were

phospho-p53-negative. Only in a small percentage of mitoses that

bears features of imminent apoptosis (with clumpy chromatin

condensation), p53 appears to be phosphorylated (not shown). In

contrast normal interphases (G1, S or G2) were mostly (.99%)

negative for phospho-p53. Only cells with abnormal nuclear

morphologies manifested the p53 phosphorylation on Ser15.

The frequency of cells that activated a p53-inducible green

fluorescent protein (GFP) construct was higher among tetraploid

than among diploid cells (Fig. 1F,G). As an internal control that

the p53-inducible GFP indeed detected an elevated p53-mediated

transactivation, we found that inhibition of p53 either chemically

(with cyclic pifithrin-a) or genetically (by transfection with a

dominant-negative p53 mutant) inhibited the production of p53-

inducible GFP in response to cisplatin down to the background

level (Fig. 1G). Altogether, these results suggest that catastrophic

mitoses are responsible for an enhanced activation of the p53

system in tetraploid cells.

Aberrant mitoses of tetraploid cells are exacerbated

by Chk1 inhibition
In view of the apparent difficulty of tetraploid cells to successfully

complete mitosis, we wondered whether these cells might rely more

heavily on the cell cycle checkpoint kinase Chk1 than diploid cells.

Transient transfection with a Chk1-specific small interfering RNA

(siRNA) (Fig. 2A) caused a dramatic increase in aberrant mitoses of

tetraploid cells (one third of all mitoses), resulting in delayed mitotic

exit, apoptotic disintegration of both daughter cells after cytokinesis,

formation of binucleated cells, multipolar mitoses, or apoptosis

during or shortly after the metaphase (Fig. 2B,C,D and videos
S3, S4, S5, S6, S7, S8). This correlated with premature mitoses,

detectable as events in which the phosphorylation of histone H3 by

mitotic kinases occurs in cells that have not duplicated their genome,

and hence have less than 8N DNA content (Fig. 2E,F). The

percentage of premature mitoses was not affected by preincubation

with the pancaspase inhibitor Z-VAD.fmk (not shown). The increase

in frequency of aberrant or premature mitoses induced by Chk1

inhibition was more pronounced among tetraploid than among

diploid cells (Fig. 2A–F).

Chk1 inhibition abolished the spindle assembly

checkpoint (SAC) and activates p53
The knockdown of Chk1 resulted in a complete abolition of SAC

resulting in the failure to recruit BubR1 and Bub1 to kinetochores

during the prometaphase and aberrant metaphases for diploid and

tetraploid cells (Fig. 3A,B for tetraploid cells). Indeed, after Chk1

knockdown less than 30% of prometaphases and aberrant

metaphases exhibited the localization of Bub or BubR1 to

kinetochores, indicating abolition of SAC in more than 70% of the

cells. The percentage of SAC inhibition, as detectable among

aberrant metaphases, was similar in diploid and tetraploid cells

(although the number of aberrant metaphases is much higher in

tetraploid cells, see Fig. 1). Small interfering RNA (siRNA)-mediated

depletion of Chk1 or its pharmacological inhibition by UCN-01 (7-

hydroxystaurosporine) also resulted in the activating phosphoryla-

tion of p53, more frequently in tetraploid than in diploid cells

(Fig. 3C). Similarly, the knockdown of the essential SAC proteins

Bub1, BubR1, Mad2 or Aurora B induced the phosphorylation of

p53 on serine 15, more so in tetraploid than in diploid cells

(Fig. 3D,E). Taken together, these data indicate that Chk1

inhibition abolishes SAC, and that SAC inhibition exacerbates

mitotic defects coupled to p53 activation in tetraploid tumor cells.

Chk1 inhibition kills tetraploid cells
In view of the mitotic or post-mitotic apoptosis induced by Chk1

depletion (Fig. 2A–C), we quantified the frequency of cell death

induced by Chk1 inhibition by cytofluorometric methods.

Simultaneous detection of dying cells (which exhibit a dissipated

mitochondrial transmembrane potential, i.e. DYm, and hence a
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reduced DiOC6(3) incorporation) and dead cells (which possess

permeabilized plasma membranes and hence incorporate the vital

dye propidium iodide, i.e. PI) revealed that depletion of Chk1 with

either of two distinct siRNAs killed tetraploid HCT116 cells more

efficiently than diploid cells. This effect was less pronounced when

instead of Chk1, Chk2 was depleted (Fig. 4A,B). The downregu-

lation of Chk1 was more efficient in inducing an apoptosis-associated

DNA loss (sub-G1 DNA content, as determined by staining with

DAPI) among tetraploid than among diploid cells (Fig. 4C,D).

Similar results were obtained for another colon carcinoma cell line,

namely RKO (Fig. S2 A) in thus far that Chk1 depletion was more

efficient in killing tetraploid than diploid tumor cells.

Figure 1. Abnormal mitoses linked to p53 activation in tetraploid HCT116 cells. A. Abnormal mitoses. Tetraploid cells were stained to visualize
chromosomes (Hoechst 33342, blue) and c-tubulin (green). The arrow marks a misaligned chromosome. B. Activation of the spindle assembly
checkpoint (SAC) in tetraploid mitoses. Cells are stained to visualize chromosomes (blue), centromeres (CENP-B, red) and the SAC protein BubR1
(green). The white color results from the overlap of the three fluorescence signals, indicating recruitment of BubR1 to centromeres. C. Quantitation of
the data obtained in A and B, comparing diploid and tetraploid cells in three independent experiments (X6SEM). D, E. p53 phosphorylation linked to
abnormal mitoses. Representative examples of tetraploid cells that show incomplete cytokinesis, binucleation and micronucleation coupled to p53
phosphorylation on serine 15 (detected by immunofluoresence staining) are shown in D and quantified in E. F, G. Evidence for transcriptional
activation of p53 in tetraploid cells. Diploid or tetraploid cells were transfected with dsRed (red fluorescence), a p53-inducible GFP construct (green
fluorescence), and either empty vector only, a plasmid encoding for wild type p53 or dominant-negative p53 (H175) and then cultured for 48 h in the
absence or presence of the p53 inhibitor cyclic pifithrin-a. Cells were labeled with the vital stain DAPI and the frequency of transfected (dsRed-
expressing) cells that express GFP was determined by cytofluorometry as shown in D for vector-only controls cultured in the absence of pifithrin.
Representative results (X6SEM, n = 3) from three independent experiments are shown in E. Asterisks indicate significant (p,0.01) differences
between diploid and tetraploid cells.
doi:10.1371/journal.pone.0001337.g001
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Since we worried about possible off-target effects of the Chk1-

specific siRNAs, we repeated the experiments using alternative

methods of Chk1 inhibition. Transfection with a dominant-

negative (DN) Chk1 mutant (Fig. 5A) or inhibition of Chk1 with

UCN-01 or SD1825 (Fig. 5B–F) resulted in an enhanced

mortality of tetraploid HCT116 cells, with little or no effects on

diploid cell. Efficient cell death of tetraploid cells was confirmed

in RKO cells after pharmacological inhibition of Chk1 (Fig. S2
B). Moreover, alternative strategies to subvert SAC, by

knockdown of Bub1, BubR1, Mad2 or Aurora B caused cell

death much more efficiently in tetraploid than in diploid cancer

cells (Fig. 5G, H).

Figure 2. Effect of Chk1 depletion on mitosis and p53 activation in tetraploid cells. A. Efficient Chk1 depletion after transfection with a specific
siRNA. Tetraploid RKO cells were transfected with a Chk1-specific siRNA (Chk1a) or scrambled (SCR) control siRNA and the abundance of Chk1 was
determined by immunobloting. GAPDH was detected to control equal loading. B–D. Videomicroscopic analyses of tetraploid cell division. Tetraploid
RKO cells stably transfected with a histone H2B-GFP fusion construct (green fluorescence marking chromosomes) were transfected with a Chk1-
specific siRNA (Chk1a) and monitored 48 h later for abnormal mitosis. Representative sequences of pictures in B illustrate normal mitosis (0), delayed
mitotic exit resulting in apparently normal division (I), apoptotic disintegration of daughter cells after cytokinesis (II), abnormal metaphase plates
leading to formation of binucleated cells (III), multipolar mitoses (IV) and apoptosis during or shortly after the metaphase (V). The frequency of mitotic
aberrations observed in cells that were transfected with a control siRNA (SCR) or the Chk1-depleting siRNA was calculated after having monitored 150
to 200 mitoses (C) and the length of mitosis was computed (D). E, F. Premature mitosis in Chk1-depleted tetraploid cells. Thirty-six hours after
transfection with control siRNA (SCR) or Chk1-depleting siRNA, diploid or tetraploid cells were stained to measure DNA content (with DAPI) and
histone H3 phosphorylation, followed by cytofluorometric analysis. The rectangle in E marks the population of cells showing the phosphorylation of
mitotic histone H3. Numbers refer to percentage of diploid or tetraploid cells with less than 4N or 8N, respectively, that manifest premature mitosis.
The quantification is represented in F. (X6SEM, n = 3).
doi:10.1371/journal.pone.0001337.g002
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Cell death induced by Chk1 inhibition was accompanied by the

hallmarks of apoptosis such as nuclear DNA condensation

(Fig. 2B), mitochondrial cytochrome c release, caspase-3 activation

(Fig. 5D,E), and phosphatidylserine exposure (Fig. 5F). In

conclusion, tetraploid cells die from apoptosis after catastrophic

mitoses due to SAC inhibition.

Synergistic killing of tetraploid cells by cisplatin plus

Chk1 inhibition
As compared to their diploid counterparts, tetraploid cancer cells are

relatively resistant against DNA damaging agents including cisplatin,

both in vitro (Ref. [8], Fig. 6A,B for HCT116 and Fig. S2 C for

RKO) and in vivo (Fig. 6C,D). Although there was no difference in

the growth tumors originating from diploid versus tetraploid

HCT116 cells inoculated into immunodeficient mice (Fig. 6C),

tetraploid tumors responded far less to chemotherapy with cisplatin

than diploid cancers (Fig. 6D). Chk1 depletion (Fig. 6A, Fig. S2 C) or

inhibition (Fig. 6B) had an additive cytotoxic effect on tetraploid cells

in vitro, in short-term assays. Treatment of tetraploid HCT116

tumors that had been established in xenotransplanted immunode-

ficient mice with a subtoxic dose of UCN-01 had no growth-

inhibitory effect (Fig. 6E). However, the combination of cisplatin

plus UCN-01 had a synergistic anti-cancer effect, which was

particularly pronounced for tetraploid tumors (Fig. 6F). Based on

these observations, we decided to explore the effect of cisplatin, Chk1

inhibition and the combination of both on the transcriptome of

diploid and tetraploid colon cancer (HCT116) cells. The number of

cisplatin-modulated genes showing a statistically relevant altered

expression (p value,1025) was higher among diploid than among

tetraploid cells (Fig. 7A,B), correlating with the higher susceptibility

of diploid cells to cisplatin-induced killing (Fig. 6D). In contrast, the

number of genes modulated by Chk1 inhibition was significantly

higher among tetraploid (152 genes) than among diploid cells (20

genes), with only six genes that were modulated in both diploid and

tetraploid cells (Fig. 7A,B), again correlating with the enhanced

killing of tetraploid cells by Chk1 inhibitors. The combination of

cisplatin and Chk1 inhibition modified a large pool of transcripts that

were common to tetraploid and diploid cells, with a higher number

of tetraploid- than diploid- specific transcripts (Fig. 7A,B), in

correlation with the particularly dramatic effects of the combined

therapeutic regimen on tetraploid cells in vivo (Fig. 6F).

Mechanisms of the cytotoxic effects of Chk1

inhibition
Close inspection of the microarray data led us to the discovery that

Chk1 inhibition caused the modulation of a particularly elevated

percentage (12.3%) of p53 target genes in tetraploid cells (18 p53

target genes among a total of 146 Chk1-modulated genes) but not

in diploid cells (none among 14 genes). This percentage is higher

than that observed among the set of genes modulated by cisplatin

(7.6%) or cisplatin plus Chk1 inhibitor (7.0%) in both diploid and

tetraploid cells (Fig. 7B, Tables S1). These results corroborate the

observation that Chk1 inhibition causes the activating phosphor-

ylation of p53 (Fig. 3C). To clarify whether the transcription of

p53 target genes is an epiphenomenon or if it is directly

responsible for cell killing by Chk1 inhibition, we depleted p53

Figure 3. Phosphorylation of p53 on serine 15 in response to SAC inhibition. A, B. Abolition of SAC by Chk1 depletion. Tetraploid cells were either
transfected with a scrambled control siRNA (SCR) or with a Chk1-specific siRNA and then subjected 48 h later to immunofluorescence to determine
the centromeric location of BubR1 or Bub1 (as in Fig. 1B) as a sign of SAC activation. Note that depletion of Chk1 fully abolished SAC. C. p53
activation by Chk1 inhibition in diploid versus tetraploid cells. Cells treated with 15 mM cisplatin, a Chk1-depleting siRNA (or its control SCR) or the
Chk1 inhibitor UCN-01 were stained 48 h later to detect p53 phosphorylation on serine 15. Cisplatin treatment was used as an internal positive
control. D. Efficacy of siRNAs directed against SAC proteins, as determined by immunoblot, 48 hours after transfection. E. p53 phosphorylation on
serine 15 after depletion of SAC proteins. (X6SEM, n = 3).
doi:10.1371/journal.pone.0001337.g003
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with a specific siRNA. p53 knockdown strongly reduced the

cytotoxic effect of Chk1 depletion (Fig. 8A). Similarly, tetraploid

derivatives of p532/2 HCT116 cells, generated as previously

described [8], died significantly less than the p53 proficient

tetraploid cells in response to the knockdown of Chk1 (Fig. 8B) or

that of Bub1, BubR1, Mad2 or AuroraB (Fig. 8C). In each case,

the inhibition of p53 strongly attenuated the cytotoxic effects of

cisplatin and/or SAC inhibition.

Next, we downregulated a series of p53 target genes that were

strongly induced by Chk1 inhibition in tetraploid cells (Table S1).

Knockdown of the BH3-only protein Puma/BBC3, of the Bcl-2

antagonist Bax, or of the pro-apoptotic transcription factor ATF3

[36] (Fig. S3) attenuated the cytotoxic effect of Chk1 inhibition in

tetraploid cells, while the depletion of villin 3 (ezrin), spermidine/

spermine N1-acetyltransferase (SSAT) or of the essential autoph-

agy gene Atg12 had no such effect (Fig. 8D). These results

suggested that the Bcl-2 protein family dictates the fate of Chk1-

inhibited tetraploid cells. Accordingly, knockdown of Puma/BBC3

and of the pro-apoptotic multi-domain Bcl-2 family proteins Bax

and Bak were as efficient in inhibiting Chk1 depletion-induced cell

death as was the downregulation of p53 and the p53 associated

protein p53BP1 (Fig. 8E). These data could be corroborated at

the genetic level. Tetraploid cells derived from parental Bax2/2

HCT116, generated as previously described [8], cells failed to die

in response to Chk1 depletion (Fig. 8F). Moreover, knockdown of

the endogenous Bax/Bak antagonists Bcl-2 or Bcl-XL sensitized

tetraploid cells to Chk1 inhibition (Fig. 8E). Altogether, these

results indicate that Chk1 inhibition kills tetraploid cells via the

Figure 4. Apoptosis induction by depletion of Chk1 in tetraploid HCT116 cells. A, B. Loss of the mitochondrial transmembrane potential (DYm)
and viability induced by Chk1 depletion. Diploid (D) or tetraploid (T) cells were transfected with either of two siRNAs specific for Chk1 (Chk1a, Chk1b)
or Chk2 (Chk2a, Chk2b) and stained 48 h later to measure DYm (with DiOC6(3)) and viability (with PI). Representative FACS pictograms are shown in A
and data are quantified in B. C, D. Apoptotic DNA loss induced by Chk1 depletion. Cells were stained with DAPI to measure DNA content, 24, 48 or
72 h after transfection with Chk1-depleting siRNA. Data shown in C have been obtained 48 h after transfection. The numbers in C refer to the
percentage of cells with a sub-G1 DNA content. Inserts in D demonstrate siRNA-mediated Chk1 and Chk2 depletion, as detected by immunoblots.
* p,0.01 and ** p,0.001 as compared to untreated or control siRNA-transfected (SCR) controls. Data represent the mean of three independent
experiments in triplicate. (X6 SEM).
doi:10.1371/journal.pone.0001337.g004
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Figure 5. Apoptosis induction by Chk1 or SAC inhibition. A. Chk1 inhibition by a dominant-negative (DN) Chk1 mutant. Diploid or tetraploid
HCT116 cells were transfected with vector only (Co) or vectors encoding wild type (WT) or DN Chk1 or Chk2, together with a DsRed-encoding
construct. 48 h later, cells were stained with DiOC6(3) and the frequency of DiOC6(3)low cells was determined among the transfected (dsRed+)
population. B–F. Chk1 inhibition by pharmacological agents. HCT116 cells were cultured for 48 h in the presence of the indicated concentrations of
UCN-01 (B,D) or SD1825 (C,D) and the frequency of dead and dying cells was measured by co-staining with DiOC6(3) and PI (as in Fig. 3A).
Alternatively, cells cultured on polylysin slides were stained for the simultaneous immunofluorescence detection of mitochondrial cytochrome c (Cyt
c) release and caspase-3 activation (Casp-3a). Representative microfluorographs are shown in D and the frequency of cells showing diffuse Cyt c
staining and caspase-3 activation are scored in E. Finally, phosphatidylserine exposure was measured in diploid and tetraploid RKO cells by annexin V-
FITC staining (F). Asterisks denote significant (p,0.01) effects of Chk1 inhibition. G, H. Preferential mortality of tetraploid cells subjected to SAC
inhibition. Diploid or tetraploid cells were depleted from the indicated SAC proteins. Forty-eight hours later, apoptotic events were scored by
measuring the frequency of DYm (with DiOC6(3)) and viability (with PI) (G) or sub-G1 cells (H). Columns represent the average of three independent
experiments 6SEM.
doi:10.1371/journal.pone.0001337.g005
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Figure 6. Combined effects of Chk1 inhibition and cisplatin on tetraploid tumor cells in vitro and in vivo. A. Cytotoxic effects of Chk1 depletion in
combination with cisplatin. Diploid (D) and tetraploid (T) HCT116 cells were knocked down for Chk1 (or transfected with control siRNA SCR) for 24 h
and then cultured in absence or presence of cisplatin (20 mM) for further 48 h. Finally, the frequency of dying (DiOC6(3)low PI2) or dead (DiOC6(3)low

PI+) cells was monitored by DiOC6(3)/PI staining. B. Cell killing by pharmacological inhibition of Chk1 plus cisplatin. Cells were cultured with cisplatin
(20 mM), UCN-01 (500 nM) and/or SD1825 (500 nM) for 48 h, and dead and dying cells were determined as in A. C–E. Combined effects of Chk1
inhibition and cisplatin on tetraploid tumors established in vivo. Diploid or tetraploid HCT116 tumors were established in vivo and their growth was
monitored continuously from day 18 (when tumors measured 125 to 250 mm3), when animals were injected with PBS alone (controls in C), cisplatin
(D), UCN-01 (E), or with a combination of both (F). Asterisks indicate significant differences between diploid and tetraploid cells (p,0.05, unpaired
Student t test). The results shown in Fig. 6C–E are representative for three different experiments.
doi:10.1371/journal.pone.0001337.g006
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activation of a p53-dependent pathway that elicits mitochondrial

membrane permeabilization through the induction of Puma,

which in turn acts on its mitochondrial receptors Bax and Bak.

DISCUSSION
In the present study, we show that inhibition of Chk1 by small

interfering RNAs, dominant-negative mutant Chk1, or pharma-

cological compounds is particularly toxic on tetraploid tumor cells

that otherwise are relatively resistant against genotoxic agents. The

mechanism accounting for the preferential killing of tetraploid cells

appears to involve the abolition of the spindle assembly checkpoint

(SAC), premature entry in mitosis, failed and catastrophic mitotic

events, as well as p53 activation, transcription of pro-apoptotic p53

target genes including the BH3 only protein Puma and induction

of the mitochondrial pathway of apoptosis.

Although this sequence of events is well documented in this paper,

it is at variance with previous knowledge on cell death induction by

Chk1 inhibition. First, Chk1 activation reportedly causes the

phosphorylation of p53, resulting in its stabilization and its

transcriptional activation [37]. On the contrary, here we show that

the inhibition of Chk1 can activate p53, as indicated by an increased

p53 phosphorylation and an increased transcription of p53 target

genes. Second, Chk1 inhibition by UCN-01 or other chemical Chk1

inhibitors has been shown to sensitize preferentially p53-deficient

cells [38–40]. In contrast with this notion, we show here that, at least

for tetraploid cells, p53 activation is required for the cytotoxic effect

of Chk1 inhibition. Thus, inhibition of p53 (chemically or

genetically, by knockdown or knockout) strongly reduced cell killing

by Chk1 inhibition or depletion.

What may be the mechanism through which Chk1 inhibition is

particularly toxic for tetraploid cells? Reportedly, Chk1 is required

Figure 7. Microarray analyses of the transcriptome of diploid (D) and tetraploid (T) HCT116 cells treated with cisplatin, Chk1 inhibitor or the
combination of both. A. Hierarchical cluster analysis of 1411 gene expression profiles in the 6 experimental samples is shown. Each row represents
the combination of two dye-swap experiments compared to untreated control cells and each column represents a single gene. Red and green colors
indicate an increase and a decrease, respectively, in the expression of genes as compared to unstimulated control cells. B. Overview of the
modification of gene expression by cisplatin and Chk1 inhibition in diploid and tetraploid cells (p value,1025).
doi:10.1371/journal.pone.0001337.g007
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Figure 8. Involvement of p53 and Bcl-2 family proteins in apoptosis induction by Chk1 inhibition. A. Effect of p53 knockdown. Diploid or
tetraploid HCT116 cells were transfected with control siRNA (SCR), a p53-specific siRNA, and/or Chk1-depleting siRNA and cultured in the presence of
absence of cisplatin during the last 24 hours of the 72-hour experiment. Then, cells were stained with DiOC6(3)/PI. B,C. Effect of p53 knockout.
Tetraploid HCT116 cells generated on a wild type (WT) or p53 knockout (p532/2) background were treated with the indicated combination of Chk1-
depleting siRNA and/or cisplatin (B) or were depleted from SAC proteins (C), followed by determination the frequency of dying (DiOC6(3)low PI2) or
dead (DiOC6(3)low PI+). Results (X6SEM, n = 3) are representative of three independent determinations. Asterisks indicate a significant protection by
p53 deletion. D. Contribution of p53 target genes to Chk1 depletion-induced apoptosis. Tetraploid HCT116 cells were transfected with the indicated
siRNAs and the frequency of cell death was determined by DiOC6(3)/PI staining. E. Contribution of p53 and pro-apoptotic proteins of Bcl-2 family to
the death of HCT116 cells induced by Chk1 depletion. Tetraploid HCT116 cells were subjected to the siRNA-mediated downregulation of Chk1 alone
or together with the indicated gene products, followed by measurement of cell viability with a tetrazolium reduction assay. Negative values indicate
sensitization to the cytotoxicity of Chk1 depletion while positive values indicate protective effects (X6SEM, n = 3). F. Effect of Bax knockout.
Tetraploid HCT116 cells generated on a wild type (WT) or Bax knockout (Bax2/2) background were subjected to Chk1 inhibition, followed by
determination of the frequency of dead and dying cells 48 h later. Results (X6SEM) are representative of three independent determinations.
doi:10.1371/journal.pone.0001337.g008
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for optimal progression of replication forks during normal S phase

of vertebrate cells [41] and avoids the accumulation of DNA

breaks at fragile sites [42]. On theoretical grounds, the replication

of a tetraploid set of chromosomes may be particularly vulnerable

to perturbations, which ultimately results in delayed or incomplete

DNA replication followed by premature and catastrophic mitosis.

Chk1 depletion can favor the premature activation of the Cdk1/

cyclin B1 complex [43], before the completion of the S phase, which

leads to mitotic defects with chromosome misalignment during

metaphase, chromosome lagging during anaphase, and kinetochore

defects within the regions of misaligned/lagging chromosomes [44].

Hence, Chk1 depletion may amplify the natural tendency of

tetraploid cells to die during or shortly after mitosis.

There is an alternative and additional explanation for the

preferential toxicity of Chk1 inhibition on tetraploid cells that is

supported by our data. Chk1 is required for spindle checkpoint

function, both in normal and in taxol-treated cells [45]. As shown

here, tetraploid cells have an intrinsic propensity to undergo

mitotic catastrophe although they have an intact spindle assembly

checkpoint (SAC) and even tend to spontaneously activate SAC.

Chk1 depletion compromises the spindle checkpoint by negatively

affecting the Aurora-B-dependent recruitment of BubR1 to

kinetochores [45]. We have confirmed this finding, showing that

Chk1 inhibition prevents the recruitment of both BubR1 and

Bub1 to the centromeres of tetraploid cells during the prometa-

phase or aberrant metaphases. Moreover, we have found that

inhibition of SAC by depletion of essential SAC proteins (such as

Bub1, BubR1 or Mad2) or inhibition of Aurora-B had similar

effects as Chk1 inhibition, namely a selective toxicity for tetraploid

as compared to diploid cells. The abolition of SAC killed tetraploid

cells through the activation of p53, exactly as this has been

observed for Chk1 inhibition. Chk1 inhibition caused the

abrogation of SAC both in diploid and tetraploid cell lines;

nevertheless, SAC is more frequently activated in untreated

tetraploid cells, correlating with an elevated frequency of

abnormal mitoses. Hence, it appears plausible that Chk1

inhibition kills tetraploid cells through its capacity to abolish

SAC and because tetraploids rely more heavily on an intact SAC

than diploid cells.

Chk1 inhibitors including UCN-01 are being introduced into

clinical trials [24] in combination with genotoxic agents such as

cytarabine (for the treatment of acute myeloid leukemia) [46] or

cisplatin (for the treatment of advanced solid tumors) [47], and

proof has been obtained that UCN-01 can actually inhibit Chk1 in

vivo, in tumor cells [46], although the inhibitor may act on other

kinases including Chk2 and PDK1 as well, at least in vitro. As

shown here, Chk1 inhibition by UCN-01 sensitizes tetraploid cells

to cisplatin-induced cell death, rendering otherwise chemoresistant

tetraploid tumors amenable to treatment, in vivo, in a model of

xenotransplanted human tumors. The mechanism through which

Chk1 inhibition (by UCN-01 or by two distinct specific siRNAs)

can restore the cisplatin sensitivity of tetraploid cells is elusive.

Based on the microarray data and cytotoxic effects, it appears that

diploid cells are relatively refractory to the apoptosis-inducing and

to the transcriptome-modifying effects of Chk1 inhibition (as

compared to tetraploid cells), while tetraploid cells are relatively

resistant against the cytocidal and transcriptional effect of cisplatin

(as compared to diploid cells). The combination of both cisplatin

and Chk1 inhibition had very similar effects on diploid and

tetraploid cells in thus far that it provoked cell death at a

substantially similar level and regulated a largely overlapping

panel of genes at the transcriptional level. Apparently, p53 target

genes are particularly important in mediating the combined lethal

effect of cisplatin and Chk1 inhibition, both in diploid and

tetraploid cells. The DNA damage-elicited kinase ATR is elicited

by cisplatin [48,49] and may participate in the activation of Chk1,

which in turn mediates the cisplatin-induced cell cycle arrest

[50,51]. Hence, inhibition of Chk1 may subvert a DNA damage-

elicited cell cycle checkpoint, thereby preventing DNA repair and

favoring an apoptotic response.

The challenge for future studies will be to determine whether

other specific Chk1 inhibitors can overcome chemoresistance of

tumor cells in vivo, in suitable preclinical models as well as in

clinical trials. It will be particularly interesting to determine

whether Chk1 inhibitors can be used for the treatment or even for

the prophylaxis of polyploidization-associated neoplasias.

MATERIALS AND METHODS

Cell lines, culture, transfection and siRNA
Tetraploid cells were generated from diploid WT, p532/2,

Bax2/2 (gift from Bert Vogelstein) HCT116 and RKO diploid

precursor as previously described in [8,35]. Diploid or tetraploid

HCT116 cells were grown in McCoy’s 5A medium supplemented

with 10% FCS. RKO clones transfected with the cDNA encoding

H2B-GFP were cultured in the presence of blasticidine (20 mg/

ml). All media and supplements for cell culture were purchased

from Gibco-Invitrogen (Carlsbad, USA). For each experiment at

least three clones diploid and tetraploid were used. Subconfluent

cultures were cultured in the absence or in the presence of cisplatin

(20 mM, Sigma-Aldrich, St. Louis, USA) and/or Chk1 inhibitors

(UCN-01 from the NCI, USA; SD1825, from Servier, Neuilly-sur-

Seine, France, see Fig. S4, IC50 for recombinant Chk1 in vitro:

29 nM) at indicated concentrations for 24–48 hours, in the

presence or in the absence of the pan-caspase inhibitor Z-valine-

alanine-aspartate- fluoromethyl ketone (Z-VAD-fmk, 100 mM) or

of the p53 inhibitor cyclic pifithrin-a (20 mM). Cells were

transfected with pRc/CMV containing human wild-type p53

(WT) or mutant (H175) p53 (gift of T. Soussi, Institut Curie, Paris,

France) under the control of the cytomegalovirus (CMV) promoter

[52]. Alternatively, cells were transfected with CMV-driven

expression plasmids containing WT or DN Chk1 (kinase dead,

gift by K.K. Khanna) [53], WT or DN Chk2 [54], or a p53-

inducible green fluorescence protein (GFP) plasmid (gift from K.

Wiman, Karolinska Cancer Center, Stockolm, Sweden) [55].

Transfections were performed by adding lipofectamineTM 2000

(Invitrogen) complexed with plasmid (final concentration: 1 mg/

ml) 24 hours before the addition of cyclic pifithrin-a (15 mM;

Sigma-Aldrich) or cisplatin (20 mM; Sigma-Aldrich). In some

experiments, transfections were performed in the presence of

pDsRed2 vector (0.2 mg/ml; Clontech, Palo Alto, USA) to identify

transfected cells. After additional 48 hours, cells were subjected to

cytofluorometric analysis of viability.

The knock-down of Atg12, ATF3, Aurora B, Bad, Bax a, Bcl-2,

Bcl-XL, Bid, Bub1, BubR1, Chk1, Chk2, Mad2, p53, p53BP1,

PUMA, spermidine/spermine N1-acetyltransferase (SSAT), Sur-

vivin, VDAC1, villin 3 (ezrin), was performed with siRNAs

purchased from Sigma-Proligo (The Woodlands, USA, siRNA

sequences in Table S2); the down-regulation of Bak and Bax was

performed with siRNAs (Hs_BAK_5, Hs_BAX_5 and

Hs_BAX_10 HP Validated siRNAs, respectively) purchased from

Qiagen (Hilden, Germany). As a control, a siRNA specific for

emerin [56] as well as unrelated control siRNAs (scramble, SCR)

were used. Cells were cultured in 12-well plates and transfected at

30–40% confluence by adding HiPerFect (Qiagen, Hilden,

Germany) complexed with siRNA (final concentration: 20nM) as

described previously [57]. 72 h later, the efficiency of transfection

was determined by immunoblot.
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Measurement of cell viability with a tetrazolium

reduction assay
3.56103 HCT116 cells were seeded in 100 ml of McCoy’s 5A

medium in 96-well plates and transfected after 24h, as follows. 2.5

pmol of each siRNA plus 2.5 pmol of Chk-1 specific siRNA or

control siRNA (SCR), dissolved in 10 ml of serum-free, antibiotic-

free, DMEM:F12 (1:1) with L-glutamine but no phenol red were

mixed with 0.5 ml of HiPerFect transfection reagent (Qiagen)

dissolved in 10 ml of the same medium and let stand at room

temperature for 30 min. Thereafter, transfection complexes (20 ml)

were added to the cultures. Transfected cells were maintained for

48 h prior to cell viability assays based on the cleavage of the

tetrazolium salt WST-1 (Roche Diagnostics, Germany).

Staining of live cells, immunofluorescence and

videomicroscopy
For the simultaneous assessment of mitochondrial apoptosis and

plasma membrane permeabilization, live cells were stained with

3,39dihexiloxalocarbocyanine iodide or tetramethylrhodamine

methylester (DiOC6(3) 40 nM or TMRM 150 nM, emitting in

green or in red respectively; Molecular Probes-Invitrogen) which

measure DYm, and propidium iodide (PI, 2 mg/ml, Sigma-Aldrich)

or 49,6-diamidino-2-phenylindole (DAPI, 10 mM, Molecular Probes-

Invitrogen), vital dyes that incorporate only into dead cells), for

30 min at 37uC [58]. Exposure of phosphatidylserine (PS) was

evaluated using annexin V-FITC (Molecular Probes, Invitrogen). For

simultaneous measurement of DNA content and Histone H3

phosphorylation, cells were fixed with ethanol (70% v:v), permeabi-

lized with tween (0.25% v:v) and stained with DAPI (10 mM,

Molecular Probes-Invitrogen) and a rabbit antisera specific for

Histone H3 phosphorylated (Upstate, Lake Placid, USA). Cyto-

fluorometric analyses were performed on a FACS Vantage (Becton

Dickinson, San Jose, USA) equipped with a 70 mm nozzle. Data were

statistically evaluated using Cell Quest software (Becton Dickinson).

Alternatively, for fluorescence microscopy, cells were fixed with

paraformaldehyde (4% w:v) then stained with rabbit antisera

specific for p53 phophorylated on serine 15 (Cell Signaling

Technology Inc., Danvers, USA), and for activated caspase-3

(Casp-3a, Cell Signaling Technology Inc.) or with mouse antisera

specific for cytochrome c (cyt c, BD Biosciences, San Jose, USA),

b-tubulin, or c-tubulin (both from Sigma-Aldrich) [7,59].

To detect Bub1, BubR1 and CENP-B, cells were fixed in 4%

(w/v) paraformaldehyde in PIPES buffer (80 mM PIPES, 5 mM

EGTA, 2 mM MgCl2) and co-imunostained with antibodies that

recognize Bub1 (rabbit polyclonal IgG, Chemicon International,

Temecula, USA), BubR1 (mouse monoclonal antibody, BD

Biosciences) and CENP-B (mouse monoclonal IgG, Santa Cruz

Biotechnology, San Jose, USA) (Vitale et al., 2007).

After the incubation with the primary antibody, slides were incu-

bated with goat anti-rabbit or anti-mouse IgG conjugated to Alexa

568 or to Alexa 488 fluorochrome (Molecular Probes-Invitrogen).

Chromatin was stained with Hoechst 33342 (2 mM, Molecular

Probes-Invitrogen). RKO cells expressing histone H2B-GFP were

cultured in the 35mm glass bottom culture dishes (MatTek

Corporation, Ashland, USA), maintained at a constant tempera-

ture of 37uC in an atmosphere with 5% CO2, and were subjected

to pulsed observations using an LSM 510 laser-scanning confocal

microscope (Zeiss, Oberkochen, Germany).

Quantitation of protein expression
Protein samples were prepared from HCT116 or RKO cells in

lysis buffer. Aliquots of protein extracts (50 mg/lane) were

subjected to immunoblots using antibodies specific for Bcl-2

(Santa Cruz Biotechnology), Bub1 (Chemicon International),

CENP-B (Santa Cruz Biotechnology), BubR1 (BD Biosciences),

Chk1 (Santa Cruz Biotechnology), Chk2 (Upstate), Mad2 (Santa

Cruz Biotechnology), VDAC (anti-porin 31HL, Calbiochem

International, Temecula, USA) and GAPDH (Chemicon, CA)

monitored as loading control.

Microarray analyses
We used Agilent long (60bp) oligonucleotide microarrays and the

dual color analysis method in which probes from specimens and

from the reference are differentially labeled with Cyanine 5 and

Cyanine 3 as described previously (Castedo et al, 2006). We

performed a set of 6 dye swap experiments to compare RNAs

obtained, in each case, from tetraploid and diploid HCT116 cell

lines cultured in the presence of cisplatin, UCN-01 and a

combination of both. In each experiment, the reference was RNAs

from cell lines without treatment. From each of the 6 combined

experiments, signatures (list of accession numbers) at p-value of 1025

are extracted and annotated with updated databases as Entrez-

Gene. A list of 275 p53 regulated genes are defined in Ingenuity

Pathways Analysis program (by a query of genes for which p53

directly interact with DNA, Ingenuity, Mountain View, USA,

http://www.ingenuity.com/products/pathways_analysis.html).

In vivo model
Athymic nu/nu six-week-old female mice (IGR animal facility)

were inoculated s.c in 200 ml of PBS with 36106 diploid or

tetraploid HCT116 cells into the lower flank as previously

described [60]. When tumors reached 125 mm3, mice received

i.p. either 200 ml of PBS1X, 5mg/kg of cisplatin three times a

week during 3 weeks, UCN-01 (7.5 mg/kg/daily) for 5 consecu-

tive days or a combination of cisplatin plus UCN-01. Tumor

growth was evaluated twice a week using a caliper. The mean of

the tumor volume at each point was normalized in each group to

the mean volume measured at the first injection. All animals were

maintained in specific pathogen-free conditions and all experi-

ments followed the FELASA guidelines.

SUPPORTING INFORMATION

Table S1

Found at: doi:10.1371/journal.pone.0001337.s001 (2.69 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0001337.s002 (0.07 MB

DOC)

Figure S1 Intact SAC in tetraploid HCT116 cells. Diploid (D)

or tetraploid (T) HCT116 cells were left untreated or cultured in

the presence of docetaxel (1 mM) or nocodazole (1 mM) for the

indicated period (24 h in A and C) and subjected to cell cycle

analyses (A, B) by labeling with 4,6-diamidino-2-phenylindole

(DAPI) or stained for the detection of phospho-histone H3, a

histone that is specifically phosphorylated during mitosis (C, D).

Representative FACS data are shown in A and C and quantitative

data (X6SEM, n = 3) are shown in B and D. In addition the

toxicity of docetaxel and nocodazole was determined by staining

with DiOC6(3)/PI, yielding information on the frequency of dying

(DiOC6(3)low PI-) or dead (DiOC6(3)low PI+) cells (E)

Found at: doi:10.1371/journal.pone.0001337.s003 (2.88 MB TIF)

Figure S2 Apoptosis induction by depletion or inhibition of

Chk1 in tetraploid RKO cells. A. Chk1 depletion kills tetraploid
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RKO colon cancer cells. RKO cells were transfected with siRNAs

that deplete Chk1 (Chk1a) or Chk2 (Chk2a), as demonstrated by

the immunoblot performed 48 h after transfection. The frequency

of dying (DYmlow) cells was determined by staining with

tetramethyl rhodamine methylester (TMRM, 150 nM, 15 min).

Asterisks mark significant (p,0.01) effects of Chk1 depletion. B.

Chk1 inhibition by SD1825 kills tetraploid RKO cells. RKO cells

were cultured with the indicated doses of SD1825, and the

frequency of dead and dying cells was measured by simultaneous

staining with DiOC6(3) and PI (as in Fig. 3A) 48 h later. C.

Combined effects of Chk1 inhibition and cisplatin (20 mM) on

tetraploid RKO cells. Diploid or tetraploid RKO cells were

treated by siRNAs targeting emerin (as a negative control),

VDAC1 (as a positive control of apoptosis inhibition), Chk1 or

Chk2, followed by staining with TMRM to measure DYm

dissipation

Found at: doi:10.1371/journal.pone.0001337.s004 (1.49 MB TIF)

Figure S3 The efficacy of the siRNAs specific for Puma, ATF3

and Bax was determined by immunoblot, 48 hours after

transfection of tetraploid HCT116 cells with control scrambled

(SCR) siRNA or the indicated specific siRNAs. The polyclonal

rabbit antibodies specific for Puma, ATF3 and Bax were from Y
ProSci Incorporated, Santa Cruz Biotechnology, and Upstate

Biotechnology, respectively. Equal loading was determined with

anti-actin antibody (monoclonal mouse IgG1 from AbCys)

Found at: doi:10.1371/journal.pone.0001337.s005 (3.69 MB TIF)

Figure S4 Chemical structure of SD 1825 and its IC50 for

recombinant Chk1

Found at: doi:10.1371/journal.pone.0001337.s006 (0.96 MB TIF)

Video S1 Abnormal mitoses in untreated tetraploid RKO cells

expressing histone H2B-GFP. The video shows an example of a

cell that undergoes an apparently normal mitosis, followed by

near-to-complete karyokinesis, furrow regression and formation of

one single binucleate cell, as well as a cell arrested in metaphase

Found at: doi:10.1371/journal.pone.0001337.s007 (1.74 MB AVI)

Video S2 Abnormal mitosis in untreated tetraploid RKO cells

expressing histone H2B-GFP. The video exemplifies an aborted

cell division leading to the formation of a single daughter cell

Found at: doi:10.1371/journal.pone.0001337.s008 (1.53 MB AVI)

Video S3 Normal mitosis in Chk-1 depleted tetraploid RKO

cells expressing histone H2B-GFP. Selected pictures are shown in

Fig. 2A, 0

Found at: doi:10.1371/journal.pone.0001337.s009 (1.10 MB AVI)

Video S4 Delayed mitosis in Chk-1 depleted tetraploid RKO

cells expressing histone H2B-GFP. Selected pictures are shown in

Fig. 2A, I

Found at: doi:10.1371/journal.pone.0001337.s010 (1.15 MB AVI)

Video S5 Delayed mitosis leading to apoptosis of both daughter

cells in Chk-1 depleted tetraploid RKO cells expressing histone

H2B-GFP. Selected pictures are shown in Fig. 2A, II

Found at: doi:10.1371/journal.pone.0001337.s011 (0.61 MB AVI)

Video S6 Aberrant mitosis with an abnormal metaphase plate in

Chk-1 depleted tetraploid RKO cells expressing histone H2B-

GFP. Note that the final result of the process is the generation of

one single binucleated cell. Selected pictures are shown in Fig. 2A,

III

Found at: doi:10.1371/journal.pone.0001337.s012 (1.83 MB AVI)

Video S7 Tripolar mitosis in Chk-1 depleted tetraploid RKO

cells expressing histone H2B-GFP. Selected pictures are shown in

Fig. 2A, IV

Found at: doi:10.1371/journal.pone.0001337.s013 (1.07 MB AVI)

Video S8 Apoptosis during the metaphase of Chk-1 depleted

tetraploid RKO cells expressing histone H2B-GFP. Selected

pictures are shown in Fig. 2A, V

Found at: doi:10.1371/journal.pone.0001337.s014 (1.74 MB AVI)
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