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Abstract. Mammalian telomeres are composed of long 
arrays of TTAGGG repeats complexed with the 
T r A G G G  repeat binding factor, TRF. Biochemical 
and ultrastructural data presented here show that the 
telomeric DNA and TRF colocalize in individual, con- 
densed structures in the nuclear matrix. Telomeric 
T r A G G G  repeats were found to carry an array of nu- 
clear matrix attachment sites occurring at a frequency 
of at least one per kb. The nuclear matrix association of 
the telomeric arrays extended over large domains of up 
to 20-30 kb, encompassing the entire length of most 
mammalian telomeres. TRF protein and telomeric 
DNA cofractionated in nuclear matrix preparations 
and colocalized in discrete, condensed sites throughout 
the nuclear volume. FISH analysis indicated that TRF 

is an integral component of the telomeric complex and 
that the presence of TRF on telomeric DNA correlates 
with the compact configuration of telomeres and their 
association with the nuclear matrix. Biochemical frac- 
tionation of TRF and telomeric DNA did not reveal an 
interaction with the nuclear lamina. Furthermore, ul- 
trastructural analysis indicated that the mammalian 
telomeric complex occupied sites throughout the nu- 
clear volume, arguing against a role for the nuclear en- 
velope in telomere function during interphase. These 
results are consistent with the view that mammalian te- 
lomeres form nuclear matrix-associated, TRF-contain- 
ing higher order complexes at dispersed sites through- 
out the nuclear volume. 

M 
AMMALIAN telomeres have attracted consider- 
able interest for their possible involvement in 
malignant transformation (for review see de 

Lange, 1995; Autexier and Greider, 1996). While many as- 
pects of the structure and maintenance of telomeric DNA 
have been studied in detail, relatively little is known about 
the overall arrangement of the nucleoprotein complex at 
mammalian chromosome ends. This study represents a 
biochemical, immunocytochemical, and ultrastructural anal- 
ysis of mammalian telomeres in interphase nuclei. 

Mammalian chromosome ends carry telomeric tracts 
containing 2-50 kb of tandem TI'AGGG repeats (Moyzis 
et al., 1988; de Lange et al., 1990; Kipling and Cooke, 
1990). This sequence can be maintained by the telomere- 
specific RNP polymerase, telomerase (Morin, 1989; for re- 
view see Blackburn, 1993). In the absence of telomerase 
activity, telomeres shorten with cell divisions (Singer and 
Gottschling, 1994; Feng et al., 1995; McEachern and 
Blackburn, 1995), probably because the chromosomal rep- 
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lication strategy fails to duplicate DNA ends. In addition 
to recruiting telomerase, telomeric repeats are thought to 
mask the presence of natural chromosome ends from 
DNA damage checkpoints and repair activities (for review 
see Zakian, 1995). 

Human somatic cells undergo programmed telomere 
shortening in a process that appears to involve repression 
of telomerase (Cooke and Smith, 1986; de Lange et al., 
1990; Harley et al., 1990; Hastie et al., 1990; Counter et al., 
1992; Kim et al., 1994). The progressive decline of somatic 
telomeres with cell divisions may constitute a tumor sup- 
pressor mechanism that limits the replicative potential of 
transformed cells. In agreement, telomerase is frequently 
activated in human and mouse tumors and restoration of 
telomere length is correlated with immortalization of hu- 
man cells in vitro (Counter et al., 1992, 1994a, b; Kim et al., 
1994; Blasco et al., 1996; Broccoli et al., 1996a). 

There is mounting evidence that both the shielding of 
telomeric ends, as well as their interaction with telomer- 
ase, depend on the structural proteins in the telomeric 
complex. In yeast, telomere length homeostasis requires 
the binding of a protein along the telomeric tract (Lustig 
et al., 1990; Kyrion et al., 1992; McEachern and Blackburn, 
1995) and alterations in telomeric protein complex com- 
promise the stability of chromosome ends (for review see 
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Zakian, 1995). Consistent with a specific telomeric com- 
plex at human chromosome ends, an altered chromatin 
structure has been detected (Tommerup et al., 1994; Lej- 
nine et al., 1995) and the telomeric T I 'AGGG repeats 
were found to associate with the nuclear matrix (de Lange, 
1992). Since subtelomeric DNA is not tethered to the nu- 
clear matrix and has a normal nucleosomal organization, 
the functional interactions appear to be confined to the 
T r A G G G  repeat region. However, the molecular basis of 
telomeric protection of chromosome ends and the mecha- 
nism by which telomeres recruit and modulate telomerase 
are not known in mammals or other eukaryotes. 

A human telomere-binding protein, the T r A G G G  re- 
peat binding factor (TRF) 1, was recently identified and 
cloned (Zhong et al., 1992; Chong et al., 1995). hTRF is a 
novel Myb-retated protein of ~60 kD that binds to duplex 
telomeric DNA in vitro and has features expected for a 
protein that coats the telomeric tract along its length. The 
factor binds specifically to double-stranded telomeric re- 
peat arrays and does not require a terminus for site recog- 
nition. Expression studies demonstrate TRF in the telomeric 
complex in interphase nuclei and in mitotic chromosomes. 
In agreement with an essential role for TRF at telomeres, 
de novo telomere formation in human cells requires se- 
quences that can bind TRF in vitro (Hanish et al., 1994). 
Mouse TRF (mTRF) has considerable sequence similarity 
to hTRF, indicating that mammalian telomeres form a 
highly conserved nucleoprotein complex (Broccoli et al., 
1996b). 

This report examines the complex formed between telo- 
meric DNA and TRF, its subnuclear distribution, and the 
interaction of telomeres with the nuclear matrix. The re- 
suits indicate that telomeres form discrete individual nu- 
cleoprotein complexes built up of telomeric DNA and 
TRF. These structures occupy dispersed positions through- 
out the nuclear volume and are strongly associated with 
the inner network of the nuclear matrix. Biochemical frac- 
tionation indicates that the telomeric complex is bound to 
the nuclear matrix through multiple interactions along the 
"I'TAGGG repeat array. This binding mode is consistent 
with tethering through TRF which is demonstrated to be a 
component of the nuclear matrix. 

Materials and Methods 

Cell Culture 
HeLa-S and HeLa-L cells are described in Tommerup et al. (1994). HeLa-L 
cells stably transformed with a construct expressing a hemagglutinin 
[HA]z-tagged mTRF were described in Chong et al. (1995). Human rhab- 
domyosarcoma RD cells (ATCC CCL 136) and mouse renal adenocarci- 
noma RAG cells (ATCC CCL 142) were grown in DMEM with 10% iron- 
supplemented bovine serum. Cells were harvested at 50-70% confluency. 
Suspension cultures of human nontransformed lymphoblastoid SU-LyB-1 
cells (Saltman et al., 1993) were grown in RPMI 1640 supplemented with 
10% FCS to ~5  × 105 cells per ml. Mouse plasmacytoma J558 cells 
(ATCC TIB 6) were grown in suspension in Joklik's medium with 10% 
iron-supplemented bovine serum to 5 × 105 cells per ml. All media were 
supplemented with L-glutamine, nonessential amino acids, penicillin, and 
streptomycin. 

1. Abbreviations used in this paper:. EM-ISH, electron microscopical in situ 
hybridization; LIS, lithium diiodosalicylate; TRF, T T A G G G  repeat bind- 
ing factor. 

Isolation of Nuclear Matrices and Nuclear Shells 
Nuclear matrices were isolated as described previously (de Lange, 1992) 
following the lithium diiodosalicylate (LIS) extraction procedure of Mirk- 
ovitch et at. (1984). A few minor modifications were made. Briefly, cells 
were washed twice with ice-cold PBS, twice with ice-cold CWB (50 mM 
KC1, 0.5 mM EDTA, 0.5% thiodiglycol, 0.05 mM spermine, 0.05 mM sper- 
midine, 0.25 mM PMSF, 5 mM Tris-HC1 [pH 7.4]), and suspended in CWB 
with 0.1% digitonin (Calbiochem, San Diego, CA) at a density of 2 × 106 
ceils per ml. Adherent human HeLa-S, HeLa-L, RD, and mouse RAG 
cells were lysed by passage through a needle as described (de Lange, 
1992); nonadherent human SU-LyB-1 and mouse J558 cells were lysed by 
vortexing briefly. Resulting nuclei were centrifuged through a glycerol 
cushion (10% glycerol in CWB) and washed twice in CWB with 0.1% dig- 
itonin. The nuclei were stabilized by a 20-rain incubation at 37°C in CWB 
with 0.1% digitonin and 0.5 mM CuSO4 but without EDTA, and subse- 
quently extracted by the addition of LIS buffer (10 mM LIS, 100 mM 
LiAc, 1 mM EDTA, 0.1% digitonin, 0.05 mM spermine, 0.125 mM sper- 
midine, 0.25 mM PMSF, 20 mM Hepes-KOH [pH 7.4]). Extraction was 
carried out for 10 min at room temperature at a density of 2 × 106 cells per 
mi. Resulting nuclear halos were collected by centrifugation and pro- 
cessed to yield nuclear matrices as described below. 

For the isolation of nuclear shells, the same procedure was followed ex- 
cept that the incubation at 37°C in the presence of 0.5 mM Cu 2+ ions, 
which serves to stabilize the internal structure of the nuclear matrix (Izaur- 
ralde et al., 1988; Ludrrus et al., 1992), was replaced by an incubation on 
ice without Cu 2+. LIS-generated nuctear shell halos were collected by cen- 
trifugation for 15 min at 4°C in an Eppendorf microcentrifuge at maximal 
speed. 

Halo preparations were gently washed once in MWB (20 m M  KCI, 
70 mM NaC1, 10 mM MgCI 2, 10 mM Tris-HCl [pH 7.4]) with 0.1% digito- 
nin, twice in MWB, and twice in the appropriate restriction endonuclease 
digestion buffer. Nuclear halos were digested to completion with the ap- 
propriate restriction enzyme (as indicated in the text) and the resulting 
nuclear matrices were pelleted by centrifugation. To purify matrix/shell- 
bound and released restriction fragments from pellet and supernatant 
fraction, respectively, protein in both fractions was digested overnight at 
37°C with 100 p,g/ml proteinase K in 10 mM EDTA, 0.5% SDS, 10 mM 
Tris-HCl [pH 7.4]. Subsequently, the DNA was purified by phenol-chloro- 
form extraction and isopropanot precipitation. 

DNase I Mapping Experiments 
Freshly isolated nuclear matrices, digested with restriction endonuclease, 
were collected by centrLfugation for 5 rain in an Eppendorf microcentri- 
fuge at setting 7 (1,000 g), washed in 5 mM MgCI 2, l0 mM "Iris [pH 7.4], 
and resuspended at a density of 107 matrices per ml of the same buffer. 
DNase I was added (final concentrations of 0, 25, 50, 100, 250, or 500 ng/ml) 
to 500 ~l samples, and digestion was carded out for 15 min at 37°C. Diges- 
tion was stopped by the addition of 8 mM EDTA at 0°C. The suspensions 
were centrifuged for 5 rain at 4°C in an Eppendorf microcentrifuge at set- 
ting 7, and matrix-bound DNA and released DNA was purified as de- 
scribed above for the isolation of matrix-attached restriction fragments. 

Genomic Blotting 
Fractionation of DNA on agarose gels, transfer of the fractionated DNA 
to Hybond-N membrane, and annealing to labeled probes was performed 
as described by de Lange (1992). In human DNAs, T r A G G G  sequences 
were detected with an 800-bp ['I'TAGGG]135 fragment and subtelomeric 
sequences were detected with the insert of plasmid pTH2A (de Lange et al., 
1990). To detect telomeric TTAGGG repeats on blots of mouse genomic 
DNA, the oligonucleotide AAAACTCGAC[TFAGGG]3TTAGG,  end- 
labeled using [~t-32P]ATP (6,000 Ci/mmol) and "I'4 polynucleotide kinase, 
was used as probe. Blots were prehybridized for 30 min at 65°C in 0.5 M 
Na-phosphate buffer (pH 7.2), 1 mM EDTA, 7% SDS, 10% BSA (Church 
and Gilbert, 1984), and hybridized overnight in the same buffer at 55°C. 
Genomic blots from J558 cells, which have telomeres between 50- and 
150-kb long, were hybridized in the presence of a 10-fold molar excess of 
unlabeled probe oligonucleotide. Blots were washed in 4 x SSC, 0.1% 
SDS at room temperature and subsequently at 65~C. Hybridization signals 
were visualized by autoradiography at -80°C on Kodak XAR film using in- 
tensifying screens, and analyzed quantitatively with a PhosphorImager 
(Molecular Dynamics, Sunnyvale, CA). 
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Production of Anti-TRF Antibody 

A 16-amino acid peptide (peptide I5) of sequence (NH2)-TSQDKPS- 
GNDVEMETC-(COOH),  encompassing residues 273-287 of human TRF 
plus a COOH-terminal cysteine was synthesized (Rockefeller University 
peptide synthesis facility) and coupled to Imject Maleimide activated 
KLH (Pierce, Rockford, IL). A rabbit antiserum (serum #5) against this 
conjugate was produced commercially and affinity-purified using peptide 
I5 cross-linked to Sulfolink Coupling gel (Pierce). 

Western Blotting 
Proteins from nuclei, nuclear matrices, and nuclear shells were separated 
on a 10% SDS-polyacrylamide gel and transferred to nitrocellulose. 
A-type lamins were detected by monoclonal antibody (mAb) 41CC4 
(Burke et al., 1983), hnRNP A2fB1 by mAb 7A9 (Pifiol-Roma and Drey- 
fuss, 1991; McKay and Cooke, 1992b), hnRNP D1/D2 by mAb 5B9 (Ish- 
ikawa et aL, 1993), the internal matrix protein p160 by mAb AM88 (de 
Graaf et al., 1991), and the anti-lamin B mAb 101-B7 was purchased from 
Matriteet (Cambridge, MA). Blots were blocked in 10% fat-free milk 
powder and 0.5% Tween-20 in PBS, and antibody incubations were per- 
formed in 0.1% milk powder and 0.1% Tween-20 in PBS (incubation 
buffer). Antibody-protein complexes were detected using the chemilumi- 
nescence ECL system (Amersham). 

For Western blotting of TRF, blots were probed for 16 h at 4°C with af- 
finity-purified serum No. 5, diluted 1:200 in incubation buffer. Next, blots 
were washed three times for 10 rain in 0.1% SDS, 0.5% deoxycholic acid, 
1% NP-40 in PBS (wash buffer), incubated for 1-2 h at room temperature 
with horseradish peroxidase--conjugated goat anti-rabbit antibody (Am- 
ersham) in incubation buffer, and washed three times for 10 min in wash 
buffer, followed by detection by ECL. Similar results were obtained when 
125I-labeled protein A was used for detection (data not shown). As a con- 
trol, in each experiment an identical blot was incubated in parallel with af- 
finity-purified serum No. 5 that was preincubated for 30 min at room tem- 
perature with 1 mg/mi peptide I5. 

In Situ Hybridization Experiments 
In Situ Preparation of Permeabilized Nuclei, Nuclear Halos, and Nuclear 
matrices. In situ hybridization experiments were performed with HeLa-L 
cells and HeLa-L cells expressing a [HA]2-tagged mTRF (Chong et al., 
1995). Cells were grown to 50-70% confiuency on glass coverslips for light 
microscopy or on Thermanox coverslips (Lux) for electron microscopy. 
Procedures were essentially as described by Sibon et at. (1994). 

For the in situ preparation of permeabilized nuclei, cells were washed 
twice with ice-cold PBS and once with ice-cold CSK buffer (100 mM 
NaC1, 2 mM MgC12, 0.5 mM CaC12, 300 mM sucrose, 10 mM Pipes [pH 
6.8]). Cells were extracted for 3 min on ice in CSK-buffer containing 0.5% 
(wt/vol) Triton X-100, washed with CSK buffer, and digested with 100 p,g 
RNase A per ml CSK buffer for 10 min at 37°C. After two washes with 
CSK buffer at room temperature, the ceils were fixed for 10 min at room 
temperature with 4% formaldehyde for light microscopy, or with 4% 
formaldehyde plus 0.05% glutaraldehyde for electron microscopy. 

For the in situ preparation of nuclear halos and nuclear matrices, ceils 
were washed twice in ice-cold PBS, twice in ice-cold CWB, and incubated 
in CWB with 0.1% digitonin plus 100 ixg RNase A per ml for 15 min on 
ice. Permeabilized cells were then stabilized for 20 min at 37°C in CWB 
containing 0.1% digitonin and 0.5 mM CuSO4, but without EDTA. Subse- 
quently, they were extracted with LIS buffer (10 mM LIS, 1130 mM 
LiAc, 1 mM EDTA,  0.1% digitonin, 0.05 mM spermine, 0.125 mM sper- 
midine, 0.25 mM PMSF, 20 mM Hepes-KOH [pH 7.4]) for 10 min at room 
temperature, and washed several times in PvulI restriction endonuclease 
buffer. For the isolation of nuclear matrices, preparations were digested 
with PvulI plus Hinff for 2 h at 37°C. Nuclear matrices and nuclear halos 
were fixed as described above for permeabilized nuclei. 

In Situ Hybridization. DNA denaturation, hybridization, and washing 
conditions were identical to those described by Sibon et al. (1994). A 
[CCCUAA]27 repeat RNA probe was synthesized with SP6 polymerase in 
the presence of biotin-16-UTP (Boehringer Mannheim Corp., Indianapo- 
lis, IN) on HindlII-linearized plasmid pTH5 (de Lange et al., 1990). 

Detection of Hybrids by Immunofluorescence Microscopy. After the in situ 
hybridization and washing procedures the preparations were incubated 
for 10 min in PBS with 50 mM glycine, and for 15 min in PBG (PBS with 
0.1% cold water fish skin gelatin [Sigma] and 0.5% BSA). Biotin-labeled 
RNA-DNA hybrids were detected using a rabbit anti-biotin antibody 
(Enzo), and, subsequently, a goat anti-rabbit antibody coupled to fluores- 

cein isothiocyanate (FITC) (Jackson Immunoresearch Labs, West Grove, 
PA). For simultaneous visualization of telomeric DNA and [HA]2-tagged 
mTRF protein in stably transformed ceils, HA epitopes were detected us- 
ing mAb 12CA5, and a Cy3-coupled goat antibody to mouse IgG (Amer- 
sham). All antibodies were diluted in PBG. DNA was stained with 0.2 p,g 
4,6 diamidino-2-phenylindol-dihydrochloride (DAPI) (Boehringer) per 
ml. After the antibody incubations, preparations were washed extensively, 
first with PBG, then with PBS, and mounted in Mowiol (HOECHST) sup- 
plemented with 0.5% para-phenylendiamine (Johnson and De Nogeira 
Araujo, 1984). Slides were examined using a Leitz Orthoplan microscope 
equipped with epifluorescence optics. Confocal laser scanning microscopy 
was performed with a 600 instrument on a Zeiss Axioplan microscope 
(Bio Rad Labs, Hercules, CA). 

Detection of  Hybrids by lmmunoelectron Microscopy. After in situ hy- 
bridization and washing procedures, the preparations were incubated for 
10 min in PBS with 50 mM glycine and for 15 min in PBG. Biotin-labeled 
RNA-DNA hybrids were detected using a rabbit anti-biotin antibody 
(Enzo) and a goat anti-rabbit antibody coupled to ultrasmaU gold parti- 
cles (Aurion, Wageningen, The Netherlands), both diluted in PBG. The 
incubation with the gold-conjugated secondary antibody was performed 
for at least 16 h at room temperature. Coverslips were washed for 3 h in 
PBG and for 30 min in PBS. The samples were postfixed for 10 min with 
1% glutaraldehyde in PBS, and the ultrasmall gold particles were en- 
larged by silver enhancement for 24 min (Danscher, 1981). The prepara- 
tions were stained with 0.5% uranyl acetate in H20, dehydrated, and em- 
bedded in Epon. Nuclear preparations were cut parallel to the substratum 
in 0.28 ~m sections using an Ultracut E (Reichert-Jung). Sections were ex- 
amined in a Philips EM 420 electron microscope operated at 100 kV. 

Analysis of the Subnuclear Distribution of 
Telomeric Loci 
The analysis was performed on telomeric loci visualized by electron mi- 
croscopical in situ hybridization (EM-ISH) in 22 nonsequential nuclear 
sections cut parallel to the substratum. Each nuclear section contained an 
average of 10 -+ 3 telomeric signals. Outlines of nuclei were traced and 
their center was assigned as the origin of a two-dimensional XY coordi- 
nate system. For each telomeric signal the distance to the center relative 
to the local nuclear radius was measured. The nuclear surface was then 
subdivided into four concentric rings and the distribution of the telomeric 
signals over these respective segments was calculated for each section. 
Obtained distributions were averaged and the Students t test was used to 
determine significant deviations from a random distribution based on ei- 
ther surface area or volume. 

Results 

Telomeres Are Attached to the Inner Nuclear Matrix 

The nuclear matrix is the insoluble nonchromatin scaffold- 
ing of the interphase nucleus (for review see Berezney et al., 
1995). It is isolated by removing histones, other loosely 
bound proteins, and most of the nuclear DNA and RNA 
(Berezney and Coffey, 1974). We have previously shown 
that the q-TAGGG repeats at human telomeres are associ- 
ated with the nuclear matrix (de Lange, 1992). An exam- 
ple of this binding is shown in Fig. 1 A, which represents 
HeLa-S nuclei extracted with LIS, a treatment that re- 
moves histones and other soluble proteins (Mirkovitch et al., 
1984). The DNA in the resulting nuclear halos was cleaved 
with PvulI to disconnect DNA sequences that are not at- 
tached to the matrix. Matrix-attached and solubilized re- 
striction fragments were separated by centrifugation and 
analyzed by gel electrophoresis and genomic blotting. A 
(TTAGGG)4 oligonucleotide was used to detect telomeric 
fragments and the signals were quantitated by Phosphor- 
imager analysis. While a minor fraction of the bulk chro- 
mosomal DNA (left panel) is found in the nuclear matrix 
attached fraction, the majority (70%) of the telomeric re- 
striction fragments are recovered in this fraction (Fig. 1 A, 
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middle panel). The same ffactionation pattern is observed 
for a subset of telomeres that carry a specific subtelomeric 
repetitive element that can be detected with the probe 
pTH2A (Fig. 1 A, right panel, and Fig. 1 C). Quantitation 
revealed that ~ 7 0 %  of terminal fragments that carry the 
pTH2A sequence are recovered in the nuclear matrix (Fig. 
1 A, right panel). This represents a considerable enrich- 
ment of  telomeric fragments and is consistent with previ- 
ous estimates for the relative retention of telomeric loci in 
the nuclear matrix preparations. 

Ultrastructurally, the nuclear matrix contains the nu- 
clear lamina, nuclear pore complexes, remnants of the nu- 
cleolus, and an internal fibrogranular network that con- 
tains hnRNP proteins (Fey et al., 1986; Jackson and Cook, 
1988; He et al., 1990; Belgrader et al., 1991; Mattern et al., 
1996). To address whether the attached telomeres are 
tethered to any one of these substructures, we examined 
the fractionation of telomeric D N A  with nuclear shells. 
Isolated as nuclear matrices but without the heat-stabiliza- 
tion step, nuclear shells represent a peripheral substruc- 
ture of  the nuclear matrix that is highly enriched for 
lamins proteins (Izaurralde et al., 1988; Lud6rus et al., 
1992). 

Nuclear matrices and nuclear shells were isolated in par- 
allel from HeLa  cells, the associated D N A  fragments were 
cleaved with PvulI,  and the released and bound D N A  
fractions were isolated. Both matrices and shells were 
found to contain only a minor fraction of  the total chromo- 
somal D N A  (Fig. 1 B, left hand panel). Similar to the ex- 
periment shown in A of Fig. 1, nuclear matrices were 
found to contain 65% of the telomeric D N A  (Fig. 1 B, 
right hand panel). In contrast, nuclear shells retained only 
~ 5  % of the telomeric restriction fragments (Fig. 1 B, right 
hand panel). These findings indicate that matrix-bound telo- 
meres are predominantly associated with the internal nu- 
clear matrix, rather than with a peripheral structure. 

Telomeres Contain Long Arrays of Nuclear Matrix 
Attachment Sites 

The attachment of telomeres to the nuclear matrix could 
either be mediated by the extreme end of  the telomere or 
be due to interactions along the double-stranded telomeric 
repeat array (or both). To address this issue, our strategy 
was to use DNase I to cleave telomeres at multiple sites 

Figure 1. Telomeric DNA is predominantly attached to the inter- 
nal nuclear matrix. (A) Quantitative comparison of matrix at- 
tachment of pTH2A telomeres with attachment of the total popu- 
lation of telomeres. Nuclear halos were isolated from HeLa-S 
cells and digested with PvulI. Matrix-attached (P) and released 
(S) PvulI fragments were separated by centrifugation and frac- 
tionated on a 0.8 % agarose gel alongside total PvulI-digested 
chromosomal DNA from nuclei that were not extracted with LIS 
(T). In each lane DNA samples derived from 106 nuclei was 
loaded. The panels show the ethidium/UV staining pattern of the 

DNA gel (left), the hybridization pattern of a TFAGGG repeat 
probe (middle), and the same Southern transfer probed with a 
pTH2A probe (right). Positions of telomeric (t) and chromosome- 
internal (*) restriction fragments are indicated (de Lange et al., 
1990). (B) Attachment of telomeric DNA to nuclear matrices and 
nuclear shells. Nuclear matrices and nuclear shells, both digested 
with PvuII, were isolated from HeLa-S cells. Matrix/shell- 
attached (P) and released (S) restriction fragments were fraction- 
ated on a 0.8% agarose gel. The left panel shows the ethidium/ 
UV staining pattern of the DNA gel. The mean size of the DNA 
fragments in B is somewhat larger than in A due to slight partial 
digestion with PvulI in B . ~ e ~ g h t  panel shows the hybridiza- 
tion pattern of a qTAOGG repeat probe to a Southern transfer 
of the same gel. (C) Physical map of HeLa-S telomeres that con- 
tain the pTH2A subtelomeric repeat (adapted from de Lange et 
al., 1990). The position of the PvulI restriction site is indicated. 
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Figure 2. Telomeres contain long ar- 
rays of nuclear matrix attachment 
sites. Nuclear halos from human 
HeLa-S (A), HeLa-L (B), RD (C), 
and SU-LyB-1 cells (D) were di- 
gested with PvulI; nuclear halos from 
mouse RAG (E) and J558 cells (F) 
were digested with Hinfl. Resulting 
nuclear matrices were collected by 
centrifugation to separate matrix- 
bound restriction fragments (P, 
PvulI; P, HinfI) from released re- 
striction fragments (S, PvuII; S, 
HinfI). Samples of the sedimented 
nuclear matrices, containing matrix- 
bound telomeres, were digested with 
increasing amounts of DNase I (0, 25, 
50, 100, 250, and 500 ng/ml). Digested 
matrices were spun down, and result- 
ing fractions of matrix-bound (P) and 
DNase I-released (S) DNA frag- 
ments were fractionated on agarose 
gels alongside the original restriction 
enzyme-generated P and S fractions. 
In each lane, DNA derived from the 
same number of nuclei was loaded. 
To detect telomeric DNA, Southern 
transfers of the gels were hybridized 
with appropriate TTAGGG repeat 
probes, as described in Materials and 
Methods. 

within the double -s t randed  T T A G G G  repea t  stretch and 
to de te rmine  whether  the resulting short  te lomer ic  sub- 
f ragments  are  re ta ined  on the nuclear  matrix.  

This me thod  was appl ied  to four  human cell lines with 

different  t e lomere  lengths. Two H e L a  cell lines were 
tested,  one with te lomeres  of 14-31 kb (HeLa-L)  and one 
with te lomeres  of 2-7 kb (HeLa-S)  (de Lange  et  al., 1990; 
Sal tman et  al., 1993; T o m m e r u p  et  al., 1994). In  addit ion,  
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RD rhabdomyosarcoma cells with 2-5 kb telomeres and a 
lymphoblastoid cell line (SU-LyB-1) with telomeres in the 
10-15-kb range were examined (Saltman et al., 1993). Nu- 
clear halos were isolated from each cell line and the associ- 
ated DNA was first cleaved with PvulI. The resulting ma- 
trix preparations with bound PvulI fragments were isolated 
and subsequently cleaved with increasing concentrations 
of DNase I to create subfragments within the telomeric re- 
peat array. The release of telomeric sequences was moni- 
tored by genomic blotting of attached and released DNAs. 
For each of the human cell lines, we found that the telo- 
meric fragments remained quantitatively attached to the 
nuclear matrix, even when degraded to a median size of 1 
kb (Fig. 2, A-D). 

The quantitative attachment of 1 kb T r A G G G  repeat 
stretches derived from telomeres that are 10-30 kb in 
length (HeLa-L and SU-LyB-1, Fig. 2, B and D), is incom- 
patible with an attachment mode that is solely due to an 
interaction of the telomere terminus with the nuclear ma- 
trix. Similarly, the data cannot be explained by the pres- 
ence of a single focal nuclear matrix attachment site within 
the telomeric stretch. Rather, it appears that the human 
telomeric tracts bind to the nuclear matrix along their 
length and that the attachment sites occur frequently, on 
the order of one site/kb. Furthermore, the results indicate 
that for human telomeres in the 2-30-kb length range, the 
whole telomeric tract has this type of interaction with the 
nuclear matrix. 

The same mode of attachment was observed for mouse 
telomeres. The short telomeres of the mouse renal adeno- 
carcinoma R A G  cells (1.5-2.5 kb; Fig. 2, E and D; Kipling, 
D., personal communication) are bound to the nuclear 
matrix and DNAse I digestion did not result in significant 
release of telomeric T T A G G G  repeat D N A  (Fig. 2 E). By 
contrast, the extremely long telomeres of BALB/c mouse 
plasmacytoma J558 cells, which carry on average greater 
than 50 kb of T T A G G G  repeats (Kipling and Cooke, 
1990; Tommerup et al., 1994; Broccoli, D., and M.E.E. 
Lud6rus, unpublished observations), appeared to be only 
partially bound along their length. Severing of these telo- 
meres into fragments shorter than 10 kb resulted in release 
of approximately half of the telomeric T T A G G G  DNA 
from the matrix (Fig. 2 F). This release was telomere-spe- 
cific, since no significant release of total matrix-bound 
chromosomal DNA was observed in these preparations 
(data not shown). We estimate that significant dissociation 
from the nuclear matrix occurs with fragments in the 10-kb 
size range. 

The simplest explanation of the results in Fig. 2 F is that 
matrix-bound telomeres of mouse J558 cells are attached 
to the nuclear matrix along approximately half of their 
length. The ratio between the matrix-bound and soluble 
fragments remained constant over the entire range of frag- 
ment sizes. This suggests that in J558 cells the T r A G G G  
regions are tethered to the nuclear matrix by multiple in- 
teractions, similar to what we observed for the shorter hu- 
man telomeres and mouse R A G  telomeres. These experi- 
ments demonstrate that long regions of double-stranded 
telomeric T T A G G G  repeat DNA at mouse and human 
telomeres interact with the inner nuclear matrix. Matrix- 
attached regions measure up to 30 kb, covering entire telo- 
meres in this size range, and appear to be tethered by an 

array of anchorage sites occurring frequently along the telo- 
meric tract. 

The Telomeric Protein TRF Is a Component o f  the 
Nuclear Matrix 

The finding that telomeres are bound to the matrix along 
their length implicates a double-stranded T T A G G G  re- 
peat binding factor in the attachment process. Since the 
telomeric protein TRF has this D N A  binding specificity 
and is known to interact with mammalian telomeres in 
vivo (Zhong et al., 1992; Chong et al., 1995), we examined 
the presence of this protein in the nuclear matrix. 

A rabbit polyclonal serum directed against a synthetic 
peptide representing amino acids 273-287 of the deduced 
sequence of hTRF was raised and subjected to affinity pu- 
rification. This antiserum reacts with recombinant TRF 
and gives rise to a supershift when incubated with HeLa 
TRF in a gel-shift assay (data not shown). In Western blots 
of HeLa cell proteins, the antibody specifically detect a set 
of proteins of ~60 kD that are predominantly nuclear and 
can be extracted from chromatin by elution with 0.4 M KC1 
(Fig. 3). These polypeptides are not detected when the an- 

Figure 3. The telomeric protein TRF is a nuclear protein and can 
be extracted from chromatin with 0.4 M KC1. HeLa-S cells were 
either brought up in Laemmli loading buffer (Total) or extracted 
by hypotonic lysis to yield cytoplasmic proteins ($100) and crude 
nuclei. The nuclear fraction was extracted with 0.4 M KC1 yield- 
ing soluble (Nuclear Extract) and insoluble (Nuclear Pellet) pro- 
teins. A whole cell extract was prepared by hypotonic lysis of cells 
followed by extraction of nuclear proteins with 0.4 M KC1 and re- 
moval of insoluble components (Zhong et al., 1992). Equal cells 
equivalents were fractionated on a 10% SDS-polyacrylamide gel 
and stained with Coomassie blue (A). A Western transfer was 
probed with an anti-peptide antibody directed against human 
TRF (B). C shows nuclear extract proteins probed with the TRF 
antibody with or without the addition of the peptide used for im- 
munization. TRF polypeptides migrate as a doublet of ~60 kD 
(caret). The nature of the protein band of ~70 kD (asterisk) is not 
known. 
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tibody is pretreated with excess peptide (Figs. 3 and 4). 
The apparent molecular weight of the detected proteins 
and their fractionation behavior is consistent with previ- 
ous purification of HeLa TRF (Chong et al., 1995). The 
antiserum also detects a protein of ~70 kD. This band is 
not seen in all experiments (for instance, compare Figs. 3 
and 4) and its relationship to TRF is unclear at this stage. 

The database contains a partial cDNA (GenBank acces- 
sion number X93512) with an open reading frame that 
shows considerable homology to the Myb domain of TRF. 
We have recently determined the open reading frame of a 
cDNA representing this protein and found it to lack the 
peptide used for the generation of the antiserum against 
TRF (Smogorzewska, A., D. Broccoli, and T. de Lange, 
unpublished observations). Therefore, it is unlikely that 
the bands detected by the TRF serum represent this TRF- 
related protein. 

To determine whether TRF is a nuclear matrix protein, 
equivalent numbers of nuclei, nuclear matrices, and nu- 
clear shells from HeLa-S cells were examined by Western 
blotting for TRF and other marker proteins. Compared to 
intact nuclei, nuclear matrices were depleted in histone 
proteins, but otherwise still had a complex protein compo- 
sition, while the composition of nuclear shells was much 
simpler (Fig. 4 A). Western blotting revealed that, as ex- 
pected, A- and B-type lamins were present in equal amounts 
in all fractions (Fig. 4, B and C), whereas pl60, a known 
component of the internal nuclear matrix (de Graaf et al., 
1991), was present in nuclei and nuclear matrices but ab- 
sent from nuclear shells (Fig. 4 D). As further evidence for 
a specific differential fractionation of matrix and shell pro- 
teins, we found the hnRNP proteins D1/D2 in nuclei and 
nuclear matrices, but not in nuclear shells (Fig. 4 E) and 
the hnRNP A2/B1 proteins were only detectable in unex- 
tracted nuclei (Fig. 4 F). Incubation of the same blots with 
the anti-TRF antiserum revealed that TRF is a component 
of the internal matrix structure: the protein quantitatively 
cofractionated with nuclear matrices but could not be de- 
tected in nuclear shells (Fig. 4 G). TRF thus closely fol- 
lowed the fractionation behavior of telomeric DNA (Fig. 1 

B). We note that even after extensive DNase I digestion, 
TRF was quantitatively recovered in the matrix fraction, 
indicating that persistence of TRF in the nuclear matrix 
does not require long regions of telomeric DNA (data not 
shown). 

TRF Colocalizes with Matrix-attached Telomeric DNA 

The association of TRF with telomeric DNA was further 
examined by microscopical analysis of nuclei, nuclear ma- 
trices, and nuclear halos, which represent nuclear matrices 
with all the genomic DNA still attached. Telomeric loci, 
detectable with a telomere-specific CCCUAA riboprobe 
(Fig. 5 C, inset), reveal a discrete punctate pattern in Tri- 
ton-extracted HeLa cell nuclei (Fig. 5, A-C). As was previ- 
ously noted for HeLa interphase nuclei (Chong et al., 
1995), the telomeres appear distributed throughout the 
nuclear volume and are not strongly clustered. This is true 
for over 50 interphase nuclei we have examined in this and 
other studies, including several nuclei that contained dou- 
ble the number of telomeric signals and were therefore 
probably in G2 (data not shown). Thus, it appears that the 
dispersed distribution of telomeric loci is maintained 
throughout interphase. The only exception to this rule was 
noted in cells that were in late telophase or early G1, in 
which case a substantial proportion of telomeric signals 
were observed in a ring pattern at the nuclear periphery 
(data not shown). This peripheral localization may be ex- 
pected for chromosomes just after telophase. 

A dispersed punctate pattern of telomeric DNA is also 
seen with telomere specific FISH in nuclear halos gener- 
ated by in situ extraction with LIS (Fig. 5, D-F)  and in nu- 
clear matrices (Fig. 5, G-/).  In both histone-depleted prep- 
arations the telomeric loci appeared highly condensed and 
their distribution in the nucleus seemed unaltered com- 
pared with Triton-extracted nuclei, indicating that no ma- 
jor rearrangements have taken place during the extraction 
procedure. This conclusion was further corroborated by in 
situ analysis of HeLa nuclear matrices prepared by extrac- 
tion with 2 M NaC1 (Berezney and Coffey, 1974), which 

Figure 4. TRF is a component of the internal nuclear matrix. Proteins (equalized for cell number) from HeLa-S nuclei (N), nuclear ma- 
trices (M), and niaclear sheUs (S) were separated on a 10% SDS-polyacrylamide gel and stained with Coomassie blue (A). The prepara- 
tions also contained cytoskeletal intermediate filament proteins, which tend to persist in nuclear preparations of adherent tissue culture 
cells (Staufenbiel and Deppert, 1982; Payrastre et al., 1992). Western transfers of gels with identical samples were probed with antibod- 
ies recognizing lamins A and C (B), lamin B (C), internal matrix protein pl60 (D), hnRNP D1/D2 (E), hnRNP A2/B1 (F), TRF (G), and 
antibodies to TRF in the presence of the peptide used for immunization (H). 
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Figure 5. Visualization of telomeric DNA in HeLa-L nuclei, nuclear halos, and nuclear matrices by FISH. Nuclei were permeabilized in 
situ with Triton X-100, digested with RNase A, and fixed with 4% formaldehyde (A-C). For the isolation of nuclear matrices (D-F) and 
nuclear halos (G-0,  cells were permeabilized with digitonin, stabilized at 37°C in the presence of Cu 2÷ ions, and extracted with LIS. Re- 
sulting nuclear halos were either fixed directly with 4% formaldehyde or first digested with PvulI plus HinfI to yield nuclear matrices. 
Preparations were hybridized with a biotin-labeled [CCCUAA]27 RNA probe. Hybrids were visualized by immunofluorescence using 
an anti-biotin primary antibody and a secondary antibody coupled to FITC (C, F, and J). The specificity of the hybridization signal was 
verified on spreads of metaphase chromosomes (C, inset). Chromosomal DNA was stained with DAPI (B, E, and H), and A, D, and G 
show corresponding phase contrast images. Arrows in F mark several elongated hybridization signals. 

The Journal of Cell Biology, Volume 135, 1996 874 



resulted in a telomeric pattern that was indistinguishable 
from that of LIS-matrices (data not shown). 

To investigate the colocalization of TRF protein with telo- 
meric D N A  in the nuclear matrix, we used a HeLa cell line 
that was stably transformed with an epitope-tagged ver- 
sion of mouse TRF ([HA]z-mTRF) (Chong et al., 1995; 
Broccoli et al., 1996b). The [HA]2-mTRF protein can be 
detected with an anti-HA monoclonal antibody and was 
previously shown to localize specifically to the ends of 
metaphase chromosomes and to colocalize with telomeric 
DNA in interphase nuclei (Chong et al., 1995). Similarly, we 
found that TRF colocalizes with telomeric D N A  in nu- 
clear matrix preparations. Fluorescent double-labeling ex- 
periments were performed with HeLa-L cells that express 
the tagged TRF protein. Telomeric DNA was visualized 
by FISH, as described above, and TRF was detected by im- 
munofluorescence using an anti-HA antibody. In nuclear 
matrices, isolated in vitro, most telomeric DNA loci colo- 
calized with TRF (Fig. 6, A-C) .  Intriguingly, most matrices 

contained several clear TRF foci that did not coincide with 
detectable telomeric DNA. Since in unextracted nuclei ev- 
ery TRF signal coincides with telomeric sequences (Chong 
et al., 1995), this observation suggests that a minority of 
the telomeric tracts become dissociated from the matrix 
preparations. Biochemical flactionation also indicates that a 
small proportion of the telomeres are disconnected during 
the isolation of nuclear matrices (Figs. 1 and 2). Thus, it 
appears that some of the TRF loci remain bound to the 
nuclear matrix even when the telomeric D N A  is removed. 
Similarly, TRF is retained in nuclear matrix preparations 
that have been treated with DNase I (not shown). The 
simplest interpretation of these observations is that telo- 
meric DNA is tethered to the nuclear matrix by TRF. 

These observations were extended by similar double- 
labeling experiments on nuclear halos isolated in situ (Fig. 
6, D-F).  Also, in these preparations most telomeric D N A  
loci coincided with TRF. In nuclei, as well as in nuclear 
matrices and halos, the telomeric signals and the TRF 

Figure 6. Matrix-attached telomeric DNA colocalizes with TRF. Confocal laser scanning microscopic projections of optical sections of a 
nuclear matrix, isolated in vitro (A-C), and nuclear halos, isolated in situ (D-F), from HeLa-L cells that were stably transformed with a 
[HA]2-tagged mTRF gene. Telomeric DNA was detected by FISH using a biotin-labeled [CCCUAA]27 RNA probe, an anti-biotin anti- 
body and a secondary antibody coupled to FITC (A and D). Simultaneously, [HA]2-mTRF protein was visualized by immunofluores- 
cence using an anti-HA antibody and a secondary antibody coupled to Sy-3 (B and E). The merged image of the two fluorochromes in A 
and B is shown in C, and that of D and E is shown in F. The arrow in D-F marks a partially decondensed telomere that extends out of 
the residual nucleus. The x-symbol in D-F marks a nuclear halo from a cell that does not express the [HA]2-mTRF protein. 
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staining foci are very discrete (Figs. 5 and 6; Chong et al., 
1995). This suggests that telomeres are highly condensed 
and that, despite the fact that the majority of histone pro- 
teins are extracted by LIS, no unfolding occurs during pro- 
cessing of the nuclei. However, in a number of nuclei a few 
telomeres display an alternate structure, revealing long 
linear tracts of telomeric sequences that extend outwards 
to the periphery of the halos (see arrowheads in Figs. 5 F 
and 6 F). Since this linear configuration is never observed 
in Triton-extracted nuclei, these strings probably represent 
experimental decondensation of previously folded telo- 
meres. It is noteworthy that the linear telomeric signals 
were never coated with TRF (Fig. 6 and data not shown). 
In many cases a TRF spot could be detected at the base of 
the fluorescent string inside the residual nucleus and there 
appeared to be a strong correlation between the condensa- 
tion of telomeres, their interaction with the nuclear ma- 
trix, and colocalization with TRF. 

Electron Microscopy of Telomeric Loci in 
Interphase Nuclei 

To investigate the ultrastructure of interphase telomeres 
and their location with respect to known nuclear substruc- 
tures, telomeric DNA was visualized by pre-embedding 
electron microscopical in situ hybridization (EM-ISH). 
Nuclear extraction with Triton X-100 and annealing of te- 
lomeric riboprobe were executed identically to the FISH 
experiments. Biotin-labeled hybrids were detected using 
antibodies coupled to ultrasmall gold particles and subse- 
quently enlarged by silver enhancement. After the detec- 
tion, samples were embedded and sectioned. Hybridiza- 
tion signals consisting of fewer than ten clustered gold 
particles appeared not specific for telomeric T T A G G G  re- 
peats, since they were also present outside the nucleus and 
in mock hybridized preparations (data not shown). 

Consistent with the light microscopy of interphase telo- 
meres in Figs. 5 and 6, telomeric loci appear highly con- 
densed in electron micrographs. EM analysis also con- 
firmed the presence of telomeres throughout the nuclear 
volume of permeabilized interphase nuclei (Fig. 7, A and B). 
While telomeres were sometimes observed near the nu- 
clear envelope (5-10% of the signals), none of these telo- 
meric loci appeared to make extensive contact with the 
nuclear lamina (Fig. 7 C). This result is consistent with the 
lack of enrichment of telomeric DNA in nuclear shell 
preparations. No specific association of telomeric DNA with 
nucleoli or clusters of interchromatin granules was observed. 

The ultrastructural data in Fig. 7 are also consistent with 
our inference from biochemical fractionation that telo- 
meric DNA is bound to the inner nuclear matrix. In EM 
analysis of nuclear matrices, telomeric gold clusters were 
associated with the internal granular material (Fig. 7 E), 
but we could not discern underlying telomere-specific pro- 
tein structures. A notable feature of the telomeric gold 
clusters was their frequent occurrence in doughnut- or 
horse shoe-shaped configurations that may indicate that 
telomeres have a coiled conformation. This configuration 
was notably enhanced upon prolonged extraction of nuclei 
with Triton X-100 (for instance, Fig. 7 D). Whether these 
structures represent a specific conformation of the telo- 
meric domains in vivo remains to be determined. 

We determined the average number of telomeric hy- 
bridization signals per EM section, and calculated that per 
interphase nucleus 152 - 39 (n = 22) telomeric signals are 
detected. Since HeLa-L cells contain 76 _ 6 (n = 10) chro- 
mosomes (Chong et al., 1995; this work), this number sug- 
gests that telomeres in these cells occur largely nonclus- 
tered. The subnuclear distribution of telomeres in the 
horizontal plane was analyzed on nonsequential EM sec- 
tions cut parallel to the substratum. We found no evidence 
for a preferential peripheral position of the telomeric sig- 
nals. In fact, the signal density in the outer 25 % radial seg- 
ment was somewhat lower than expected for a random dis- 
tribution based on surface area or volume (Table I). It 
should be stressed that this type of analysis does not give 
any information about the distribution of telomeres in the 
vertical plane. 

These data demonstrate that human telomeres are con- 
densed elements that predominantly occupy nonperiph- 
eral sites in interphase nuclei, and are associated with the 
granular structure of the nuclear matrix. 

Discussion 

Mammalian chromosomes offer a unique opportunity for 
the structural analysis of telomeres because their telomeric 
T T A G G G  repeat tracts are both well-defined and exceed- 
ingly long. As a result, their presence in interphase nuclei 
is readily detectable with telomere-specific hybridization 
techniques allowing for unequivocal identification and lo- 
calization not afforded by other systems. The present study 
on the structure and localization of mammalian telomeres 
has revealed the close association of telomeric DNA with 
the telomeric protein, TRF, and the presence of these 
complexes in the internal network of interphase nuclei and 
nuclear matrix preparations. Telomeres appear to form 
compact structures that are attached to the nuclear matrix 
through multiple interactions along the T T A G G G  repeat 
array, possibly through binding of TRF to the nuclear ma- 
trix. 

Characterization of TRF on Telomeres 

TRF is the major duplex telomeric DNA-binding activity 
in mammalian cells and the only telomeric specific protein 
so far identified in vertebrates (Zhong et al., 1992; Chong 
et al., 1995). In agreement with results obtained during pu- 
rification of TRF from HeLa cells, Western analysis indi- 
cates that human TRF is a nuclear protein of N60 kD that 
can be extracted from nuclei with 0.4 M KCI. TRF displays 
a strong association with the nuclear matrix, specifically 
with its inner fibrous network. TRF protein was not de- 
tectable in preparations enriched for nuclear envelope 
lamin proteins. These results are in agreement with immu- 
nostaining experiments in which epitope-tagged exoge- 
nous TRF is found in the internal compartment of the nu- 
cleus. 

The present results indicate that TRF is predominantly 
associated with telomeric DNA. In fractionation experi- 
ments, TRF and telomeric sequences are both recovered 
in the inner nuclear matrix. Neither the telomeric protein 
nor the telomeric DNA is found to be enriched in nuclear 
shells which represent a peripheral substructure of nuclei. 
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Figure 7. Visualization of telomeric DNA in HeLa-L nuclei and nuclear matrices by EM-ISH. For the isolation of permeabilized nuclei 
(A-D), cells were extracted in situ with Triton X-100 for either 3 (A-C) or 10 min (D), digested with RNase A, and fixed with 4% form- 
aldehyde plus 0.05 % glutaraldehyde. For the isolation of nuclear matrices (E) cells were permeabilized with digitonin, stabilized at 37°C 
in the presence of Cu 2÷ ions, and extracted with LIS. Resulting nuclear halos were digested with PvulI plus Hinfl and fixed with 4% 
formaldehyde plus 0.05% glutaraldehyde. Preparations were hybridized with a biotin-labeled [CCCUAA]27 RNA probe, and hybrids 
were visualized by immunolabeling using an anti-biotin primary antibody and a secondary antibody coupled to ultrasmall gold particles. 
Gold particles were enlarged by silver enhancement, and preparations were embedded and cut into 280-nm thick sections. N, nucleus; 
Nu, nucleolus; C, cytoskeletal element; Ig, interchromatin granule cluster. Bars: (A, B, and E) 1 txm; (C and D) 0.2 i~m. 
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Table L Horizontal Distribution of Telomeres in HeLa-L 
Nuclei 

Random distribution ~ 

Fraction of Telomerie Based on 
nuclear radius* signals* Based on volume surface area 

% % 

0-0.25 8.0 ----- 7.1 1.6 6.25 

0.25-0.50 24.7 ----- 10.1 10.9 18.75 

0.50-0.75 33.8 ----- 13.2 29.7 31.25 

0.75-1 33.3 -- 8.9 57.8 43.75 

*Given as relative distance from the nuclear center. 
*The horizontal location of telomeric signals was scored in 22 nonsequential nuclear 
EM sections as a fraction of the local nuclear radius. Each section contained in the or- 
der of 10 signals. The relative distribution of telomeric signals over four concentric 
nuclear rings is expressed as mean + SD. 
0 Since the HeLa nuclei used in these experiments have a flattened shape, the random 
distribution is represented by values in between those calculated based on volume and 
based on surface area. 

A minor fraction of the telomeric DNA can become dis- 
lodged from the nuclear matrix and is recovered in the sol- 
uble fraction. Since this fraction appears devoid of TRF, it 
is possible that the disconnected telomeric fragments rep- 
resent telomeric complexes that were disrupted by the iso- 
lation procedure. 

Immunostaining experiments further demonstrate the 
colocalization of TRF with telomeres. In nuclei, as well as 
in nuclear matrices, double labeling for TRF protein and 
telomeric DNA results in overlapping patterns in which 
the majority of the signals coincide. The only exceptions 
are found in nuclear matrix preparations where occasional 
TRF foci appear to lack telomeric DNA. Most likely these 
sites represent previous attachment points of the minority 
of telomeric DNA fragments that become disconnected 
during isolation of nuclear matrices. Thus, the results fur- 
ther corroborate the view that TRF is a structural compo- 
nent of all telomeres and that most TRF in cells is actually 
complexed with telomeric DNA. 

The immunostalning experiments presented here relied 
on the expression of an epitope-tagged version of mouse 
TRF. We have recently been able to demonstrate endoge- 
nous human TRF in association with telomeric DNA in in- 
terphase nuclei (Sch~ifer, M., B. van Steensel, and T. de 
Lange, unpublished data). In an examination of endoge- 
nous human TRF in cells transfected with the epitope- 
tagged mouse TRF, we have been unable to discern any 
differences in the localization of these two proteins or a 
change in localization compared to untransfected cells. In 
addition, it should be noted that the overexpression of 
the epitope-tagged TRF from the construct used here is 
moderate (approximately fivefold; Sch~er, M., B. van 
Steensel, and T. de Lange, unpublished data), making it 
unlikely that this system introduces major artifacts due to 
overexpression of the protein. 

Anchoring of  the Telomeric Complex in the 
Nuclear Matrix 

Human and mouse telomeres are attached to the nuclear 
matrix. The present work establishes that this interaction 
involves multiple matrix attachment sites along the dou- 
ble-stranded T T A G G G  repeat region. We estimate that a 

nuclear matrix binding site occurs at least once in every kb 
of the telomeric tract. Large regions of telomeric DNA 
display this type of interaction. According to rough esti- 
mates, human telomeres with up to 20-30 kb of 'VI 'AGGG 
repeats are decorated along their entire length with such 
dispersed nuclear matrix interaction sites. From these ob- 
servations a picture emerges in which most mammalian te- 
lomeres have frequent multiple interactions with the nu- 
clear matrix over a large domain that encompasses the 
whole telomere at most chromosome ends. Thus, telo- 
meres are not only repetitive in their DNA sequence but 
also have reiterated properties in terms of their interac- 
tions in the nuclear matrix. 

Extended regions that are not bound to the nuclear ma- 
trix were detected in one mouse cell line with telomeric 
tract of >50 kb. In these telomeres, approximately half of 
the telomeric DNA can be released as long soluble frag- 
ments. The remainder of the telomeric sequences behave 
as attached domains in which nuclear matrix attachment 
sites occur every 1-2 kb. Whether these two domains coex- 
ist within individual telomeres is not clear at present. In 
addition, since this particular configuration was only ob- 
served in a single cell line, it remains to be seen whether a 
domain of unattached telomeric DNA is a general prop- 
erty of very long telomeres. 

The array of nuclear matrix attachment sites along the 
duplex telomeric DNA tract can be explained if a double- 
stranded T I 'A G G G  repeat binding factor is responsible 
for the tethering. Since TRF binds duplex telomeric DNA 
and fractionates to the nuclear matrix, it is a likely candi- 
date for the anchorage factor. If TRF binds the telomeric 
tract to the nuclear matrix, its abundance must be suffi- 
cient to provide at least one tethering site per kb of telo- 
merle DNA. TRF activity was previously estimated at ,,~5- 
10 binding units per telomere based on the abundance of 
the binding factor in nuclear extracts of HeLa cells. If TRF 
binds at dispersed sites along the T T A G G G  repeat array, 
this expression level would represent sufficient TRF to an- 
chor telomeric tracts once every kb. A dispersed binding 
mode for TRF is consistent with the fact that TRF does 
not display strong cooperative interactions in vitro (Zhong 
et al., 1992; Chong, L., and T. de Lange, unpublished 
data). In addition to TRF, the anchorage of telomeres may 
well involve other, as yet unidentified, telomere-associ- 
ated proteins. An obvious candidate to be considered is 
the TRF-related protein that emerged from genome se- 
quencing efforts (Genbank X93512; Bilaud et al., 1996). 
Whether this protein, like TRF, binds telomeric DNA in 
vivo remains to be determined. 

Previous work showed no nuclear matrix attachment for 
a 0.8-kb stretch of T-FAGGG repeats that was integrated 
at a chromosome-internal site by transfection (de Lange, 
1992). Similarly, we found that a stretch of 1.6 kb of inter- 
nal T T A G G G  repeats was not bound to the nuclear ma- 
trix (Lundtrus, M.E.E., and T. de Lange, unpublished re- 
suits). One possibility is that the TTAGGG repeats require 
the proximity of a telomere terminus (or a terminus-asso- 
ciated factor) to initiate or maintain interaction with the 
matrix. A second possibility, raised by the current work, is 
that the chromosome-internal T T A G G G  repeat frag- 
ments fail to capture TRF. If binding of TRF is a limiting 
factor in the attachment process, a 1-2-kb internal 
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T r A G G G  repeat array may fail to compete for TRF with 
~500-kb of telomeric tracts at the telomeres in the trans- 
fected cells. 

Condensed Telomeric Loci 

Ultrastructurally, telomeres appear as compact nucleopro- 
tein structures. EM-ISH detection revealed individual telo- 
meres as tight clusters of gold particles. The apparent com- 
pressed configuration was also obvious in FISH analysis of 
interphase nuclei. Cytological evidence was obtained that 
the interaction of human telomeres with the nuclear ma- 
trix contributes to their condensation. Fluorescent labeling 
of telomeric D N A  in nuclear halos from HeLa  cells re- 
vealed that the majority of the telomeres remained tightly 
condensed as discrete spots within the nuclear matrix. In 
addition, there was a minor population of unfolded telo- 
meres which were labeled as fluorescent strings extending 
out of the residual nucleus. These decondensed telomeres 
are likely to represent the minority of telomeric fragments 
that are released from the nuclear matrix in vitro (de 
Lange, 1992; this report, Fig. 1). 

A correlation between the level of DNA packaging and 
the interaction with the nuclear matrix has also been re- 
ported for nontelomeric sequences. By fluorescence hy- 
bridization to nuclear halos, Gerdes et al. (1994) reported 
that a given sequence either remained condensed as a sin- 
gle spot within the residual nucleus or produced a fluores- 
cent string on the extended portion of the DNA halo. In 
most of these cases, the observed configuration correlated 
with the functional status of the sequence; only replicating 
D N A  and transcriptionally active sequences were tightly 
packaged and matrix-attached. These observations extend 
earlier findings that many key nuclear processes, including 
DNA replication (Dijkwel et al., 1979; Pardoll et al., 1980; 
Nakayasu and Berezney, 1989; H6zak et al., 1993) and 
RNA synthesis and processing (Ciejek et al., 1982; Jackson 
and Cook, 1985; Xing and Lawrence, 1991), are matrix- 
bound (for review see van Driel et al., 1995). Thus, it will 
be of interest to examine whether telomere replication ac- 
tivities, such as telomerase, are similarly associated with 
the nuclear matrix. 

Subnuclear Distribution of Human Telomeres 

Our cytological observations failed to reveal strong clus- 
tering of telomeres in interphase. Although we cannot ex- 
clude that ;elomere dimers occur, our data argue against 
wide-spread occurrence of higher order clusters. In situ 
hybridization with telomere specific probes or the applica- 
tion of more sensitive detection techniques are required to 
further address the question of telomere-telomere associa- 
tions in interphase. In addition, it will be of interest to de- 
termine whether telomere clustering occurs in other cell 
types. 

The telomeric signals were generally detected through- 
out the nuclear volume. EM-ISH showed that matrix- 
attached telomeres are embedded in the granular material 
of the internal nuclear matrix. No significant association of 
telomeric loci with nucleoli or intcrchromatin granules 
clusters was observed. EM-ISH analysis of the horizontal 
distribution of telomeric loci in interphase nuclei revealed 
that these appear to be located significantly more inter- 

nally than would have been expected from a random 
distribution. This finding is similar to the subnuclear distri- 
bution of telomeres reported for G1 phase mouse lympho- 
cytes (Vourc'h et al., 1993) but contrasts the situation in 
plants (Rawlins et al., 1991) and Drosophila (Mathog et al., 
1984; Hochstrasser et al., 1986) where chromosome ends 
are preferentially positioned near the nuclear envelope. 
By EM-ISH we sometimes observed telomeres at the pe- 
riphery of the HeLa-L nuclei, but these did not appear to 
make extensive contact with the nuclear lamina. In agree- 
ment, our biochemical analysis indicates that only a minor 
fraction of the telomeric DNA is associated with nuclear 
shells, peripheral substructures enriched for the nuclear 
lamins. 

Previous in vitro DNA binding studies have indicated 
that isolated lamin proteins (A, C, and B) can bind telo- 
meric sequences. Initial studies demonstrated weak inter- 
action of lamin polymers with short telomeric oligonucle- 
otides (Shoeman and Traub, 1990). Further analysis 
indicated a specific, length-dependent, high affinity inter- 
action between G-rich telomeric repeat arrays and mam- 
malian lamin aggregates. However, these interactions de- 
pend on the presence of single stranded telomeric DNA 
within the binding probes (Lud6rus, M.E.E., unpublished 
data). The binding affinity of lamin polymers for single 
stranded DNA has been noted before (Lud6rus et al., 
1994). In light of the finding that mammalian telomeres 
have no extensive contacts with the lamina in interphase 
of mitotic cells, the significance of the propensity of lamins 
to associate with single-stranded telomeric DNA remains 
to be determined. 

Comparison with Yeast Telomeres 

It is of interest to compare our findings on the mammalian 
telomeric complex with observations on the telomeres of 
yeast, which like mammalian telomeres are known to com- 
plex with a duplex telomeric DNA-binding protein (Buch- 
man et al., 1988; Longtine et al., 1989). Although the yeast 
telomeric protein, Raplp,  is not a homologue of the mam- 
malian TRF proteins, these factors have a number of 
shared properties. Both recognize telomeric sequences us- 
ing a Myb-type three helix bundle, bend DNA, and bind 
along the length of the telomeric tract (for review see 
Smith and de Lange, 1997). Similar to the requirement for 
TRF binding sites for telomere formation (Hanish et al., 
1994), binding sites for Rap lp  promote efficient telomere 
healing in yeast (Lustig et al., 1990). The present work re- 
veals an additional similarity of these factors, their associa- 
tion with the nuclear matrix. Although it has not been 
shown that yeast telomeres bind to the nuclear matrix, 
Rap lp  fractionates with this structure (Hofmann and Gas- 
ser, 1989). 

However, prominent differences between the yeast telo- 
meric complex and what is reported here for mammalian 
telomeres should be noted as well. Specifically, the subnu- 
clear distribution of yeast telomeres has been inferred to 
be radically different. The subnuclear distribution of yeast 
telomeric loci was first inferred based on Rap lp  staining 
patterns (Klein et al., 1992) and recently verified by in situ 
hybridization with subtelomeric sequences (Gotta et al., 
1996). These data suggest that unlike mammalian telo- 
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meres, yeast telomeres are highly clustered in groups of 
four. Furthermore, while yeast telomeres do not associate 
directly with the nuclear envelope, they do occur predomi- 
nantly in the outer 50% volume segment of yeast nuclei. 
No such preferential distribution at the outskirts of nuclei 
was noted for human telomeres in this study. Thus, while 
peripheral positioning and clustering of yeast telomeres 
may be important for their function, this aspect of telo- 
mere biology is unlikely to be conserved in somatic mam- 
malian cells. 

Telomerase and the Telomeric Complex 

Mammalian chromosomes terminate in a conserved large 
complex of telomeric DNA and telomere associated pro- 
teins, including TRF. This complex functions to protect 
chromosome ends and plays an important role in the repli- 
cation of telomere termini. Mounting evidence suggests 
that changes in telomere length maintenance, in particular 
the activation of telomerase, play a role in malignant 
transformation. It will be of interest to study the subnu- 
clear localization of telomerase in normal and in tumori- 
genic mammalian cells vis ~ vis the telomeric complex we 
have described here. 
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