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Abstract. The formation of the fusion pore is the first 
detectable event in membrane fusion (Zimmerberg, J., 
R. Blumenthal, D.P. Sarkar, M. Curran, and S.J. Mor- 
ris. 1994. J. Cell BioL 127:1885-1894). To date, fusion 
pores measured in exocytosis and viral fusion have 
shared features that include reversible closure (flicker- 
ing), highly fluctuating semistable stages, and a lag time 
of at least several seconds between the triggering and 
the pore opening. We investigated baculovirus GP64- 
induced Sf9 cell-cell fusion, triggered by external acid 
solution, using two different electrophysiological tech- 
niques: double whole-cell recording (for high time reso- 
lution, model-independent measurements), and the 
more conventional time-resolved admittance record- 
ings. Both methods gave essentially the same results, 
thus validating the use of the admittance measurements 

for fusion pore conductance calculations. Fusion was 
first detected by abrupt pore formation with a wide dis- 
tribution of initial conductance, centered around 1 nS. 
Often the initial fusion pore conductance was stable for 
many seconds. Fluctuations in semistable conductances 
were much less than those of other fusion pores. The 
waiting time distribution, measured between pH onset 
and initial pore appearance, fits best to a model with 
many (~19) independent elements. Thus, unlike previ- 
ously measured fusion pores, GP64-mediated pores do 
not flicker, can have large, stable initial pore conduc- 
tances lasting up to a minute, and have typical lag times 
of <1 s. These findings are consistent with a barrel- 
shaped model of an initial fusion pore consisting of five 
to eight GP64 trimers that is lined with lipid. 

small pore linking two previously separated aqueous 
compartments is the smallest structural intermedi- 
ate that can y~t be measured during membrane fu- 

sion. In whole-cell patch-clamp recording (Hamill et al., 
1981), an increase in cell surface area (as new membrane 
adds during fusion) is measurable as an increase in cell 
membrane capacitance (Neher and Marty, 1982). The slow 
increase in capacitance during the fusion of single large 
granules in beige mouse mast cells reflects the gradual 
growth in conductance of an individual fusion pore (Zim- 
merberg et al., 1987; Breckenridge and Almers, 1987). Af- 
ter opening, exocytotic fusion pores show a wide distribu- 
tion of conductances ranging from 170 pS to >10 nS, they 
open and close before securely opening (flicker phenome- 
non), and they vary in the time course of pore widening 
between 4 and 400 pS/ms (Fernandez et al., 1984; Zimmer- 
berg et al., 1987; Breckenridge and Almers, 1987; Alvarez 
de Toledo and Fernandez, 1988; Spruce et al., 1990; Cur- 
ran et al., 1993). Current discharge through the initial fu- 
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sion pore can also be measured to calculate its conduc- 
tance at higher bandwidth (Breckenridge and Almers, 
1987; Spruce et al., 1990). 

Fusion pores have also been measured for virus-induced 
cell-cell fusion (Spruce at al., 1989; Lanzrein et al., 1993; 
Zimmerberg et al., 1994). Influenza hemagglutinin (HA) t-  
mediated fusion pores are similar to exocytotic fusion 
pores, except flickering is less frequent and the initial fu- 
sion pore conductance is smaller (18-375 pS), and pore 
widening after initial growth at 30-40 pS/ms is temporarily 
arrested at a conductance of ,'.~600 pS (Spruce et al., 1989, 
1991; Tse et al., 1993; Zimmerberg et al., 1994). Initial fu- 
sion pores between HA-expressing fibroblasts and planar 
phospholipid bilayer membranes always flicker, and they 
have a distribution that is shifted to larger sizes (0.5-4 nS; 
Melikyan et al., 1995b). 

As with many enveloped viruses, bacutovirus infection 
leads to early expression of envelope protein (GP64) on 
the cell surface (Hohmann and Faulkner, 1983; Volkman 
and Goldsmith, 1984; Keddie and Volkman, 1985). Con- 
tacting cells infected by baculovirus will fuse together to 

1. Abbreviat ions used in this paper: AM, admittance measurement; 
DWCR, double whole-cell recording; HA, hemagglutinin; KS, Kolmog- 
orov-Smirnov. 
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form syncytia when exposed to acid medium (Leikina et 
al., 1992). Cellular expression of recombinant GP64 also 
produces pH-dependent syncytia formation (Blissard and 
Wenz, 1992). Spikes of budded virions are believed to be 
built of GP64 homooligomers (trimers), and the putative 
fusion peptide of GP64 is not located in a terminal region 
(Monsma and Blissard, 1995), as it is in HA (White, 1992). 

Membrane fusion is complete soon after the initial pore 
opens (Curran et al., 1993; Tse and Almers, 1993; Zimmer- 
berg et al., 1994), so it is the initial fusion pore that holds 
the greatest interest, as differing models of membrane fu- 
sion predict very different initial fusion pore structures 
(Almers and Tse, 1990; Zimmerberg et al., 1991; Nanavati 
et al., 1992). To measure the initial fusion pore directly, 
without the model dependence and assumptions of either 
current discharge or admittance analysis 2, we recorded in- 
tercellular (junctional) conductance using double whole- 
cell recording (DWCR) (Neyton and Trautmann, 1985; 
Turin et al., 1991; Lanzrein et al., 1993). This method al- 
lowed us to control the membrane potential of each cell in 
a pair independently and to measure the current flowing 
between them during fusion. Fusion pore conductance 
data obtained by DWCR were compared to those of ad- 
mittance measurements (AM). 

The initial fusion pore induced by baculovirus Au- 
tographa californica GP64 has features different from 
those derived from other cell fusion systems: its conduc- 
tance is larger; the pore never flickers; and the waiting 
time between triggering of fusion and pore appearance is 
very short. Rather than a small gap junction-like channel, 
we suggest a multisubunit lipid/protein model for this fu- 
sion pore that fits both the initial pore conductance and a 
kinetic analysis of waiting times. 

Materials and Methods 

Cell Culture 
The Sf9 insect cell line, derived from Spodoptera frugiperda ovary, and 
Autographa caliphornica multicapsid nuclear polyhedrosis virus were pur- 
chased from Invitrogen (San Diego, CA). Cells were grown at 27°C in 
Grace's medium plus 10% FBS. For infection, monolayers of Sf9 cells in 
multiwell plates (~106 cells per well) were incubated with wild-type bacu- 
lovirus at 107 infectious U per ml for 15 min (multiplicity of infection = 
3-6 U per cell). Then 0.5 ml of fresh medium were added, and cells were 
incubated for 36-48 h. Medium was purchased from Invitrogen. All incu- 
bations were at 27°C. 

Electrophysiological Experiments 
For whole-cell recordings, solutions had the following composition (mM): 
130 KGIu, 16 KCI, 2 MgCI2, l0 Hepes, 5 EGTA, 50 sucrose, pCa 8 (inter- 
nal); and 55 NaC1, 10 KCI, 4 CaCI2, 5 MgCI2, 5 glucose, 10 MES, 190 su- 
crose, pH 6.2 (external). Fusion triggering acid solutions were delivered to 
cells by slow or fast perfusion, with the same resulting distributions of fu- 
sion pore conductance. Acid solution (pH 5.0) used for slow perfusion was 
identical to the external except for substitution of MES by 10 mM of citric 

2. Target membrane capacitance and fusion pore conductance are calcu- 
lated on the basis of cell admittance (for review see Lindau, 1991). This 
analysis is model dependent: a determination of an appropriate electrical 
equivalent circuit consistent with the observed changes in cell admittance 
is required as a first step before values of target membrane capacitance 
and fusion pore conductance can be calculated. Electrical parameters 
other than these two are assumed constant or negligible. As the target 
membrane capacitance must be known, current discharge technique thus 
includes all assumptions of admittance analysis. 

Figure 1. Principles  of  doub le  whole-cel l  recording.  (A)  A dia- 
g r a m  of  the  pair  o f  cells. (B) Equ iva l en t  circuit: Rsl and  Rs2, the  
ser ies  res i s tances  o f  pa tch  pipet tes ;  Rml, Rm2, Cml, and  Cm2, resis- 
t ances  and  capac i t ances  o f  cells 1 and  2, respect ively;  Rj, t he  resis- 
tance  o f  the  j unc t i on  b e t w e e n  cells. A p p l y i n g  c o m m a n d  vol tage  
AVe b e t w e e n  cells (AVe = V1 - I/'2) causes  two cu r ren t s  to flow 
f rom the  o u t p u t s  of  pa t ch -c l amp  ampl i f ie rs  (11 and  12, respec-  
tively). I1 is equa l  to the  s u m  of  the  cur rents ,  f lowing t h ro u g h  
non junc t iona l  (Ira1) and  junc t iona l  (lj) m e m b r a n e s ,  while I2 repre-  
sen ts  pu re  junc t iona l  current .  W h e n  Ij is m e d i a t e d  by fus ion  pore ,  
its c o n d u c t a n c e  can  be ca lcula ted  as Gp = Ij/AVc. 

acid. A highly buffered acid solution for fast perfusion contained (raM): 
50 sodium citrate, 50 NaCI, 10 KCI, 4 CaC12, 5 MgCI2, 5 glucose, 20 su- 
crose, pH 5.0. This acid solution was ejected from a micropipette, placed 
at about one cell diameter aside a cell pair. Ejections were performed by 
applying 250-ms pulses of positive pressure (10 psi) into a delivery mi- 
cropipette using a PV830 Pneumatic Picopump (World Precision Instru- 
ments, Sarasota, FL). Patch pipettes had resistances of I-2 MOhm. For 
DWCR (see Fig. 1), one cell of each pair was clamped at 0 mV, and the 
other at - 5 0  mV. Short pulses of voltage (17 ms, - 1 0  mV) were simulta- 
neously superimposed on the holding potentials applied to both cells to 
monitor the input conductance of each cell in the pair. Currents from the 
outputs of patch-clamp amplifiers (EPC-7; List Electronics, Darmstadt, 
Germany) were filtered at 5 KHz with an eight-pole Bessel filter (Fre- 
quency Devices, Haverhill, MA) and were acquired at 50 KHz. 

For time-resolved AM, a 1-KHz, 50-mV peak-to-peak sine wave was 
superimposed on the holding potential ( - 3 0  mV). Prior compensations of 
Rsl (pipette resistance) and Cml (clamped cell's capacitance) and adjust- 
ments of the phase angle were done as described earlier (Joshi and 
Fernandez, 1988). Sinusoidal current was filtered at 5 KHz, acquired at 40 
KHz, and separated "on-line" into imaginary (Im), real (Re), and direct 
current (Gnc) components of the pipette-cell admittance (Y) by a com- 
puter program (available upon request). Valve-operating voltage pulse of 
the Pneumatic Picopump was also acquired and stored together with Re, 
Im, and G~c data points. 

Calculations 
Pore Conductance andRadius. In double whole-cell experiments, fusion 
pore conductance was calculated as junctional conductance G O = I/AVc, 
where lj is the transjunctional current (response of cell 2 to the potential 
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on cell 1) and AVe is a difference between the command potentials of two 6 - 
cells. The accuracy of double whole-cell recording is limited by the fact nA 

4 -  
that AV c is applied to G i through the series resistances of both recording 
pipettes (Neyton and Trautmann, 1985). In our experiments, 10 nS ap- 2 ~ 
proximates an "upper" level below which pore conductances were mea- 0 
sured with an accuracy of >90%. 

For time-resolved AM, Gp and the capacitance of a second cell (Cm2) -2 
were calculated by computer program on the basis of the simplified equiv- -4 
alent circuit proposed for mast cell degranulation (Zimmerberg et al., 
1987). 3 If this circuit is applicable to virus-induced cell--c.ell fusion, G 0 and -6 
Cm2 could be calculated as described in Lindau (1991): 

G o = (ARe 2 + Alm 2)/ARe (1) 
3 

Cm2 = (ARe 2 + Aim 2)/to. Aim, (2) 
nS 

2 
where ARe and Aim are fusion-induced increments of the real and imagi- 
nary part of the pipette-cell admittance, respectively; to = 2~rf; and f is the 
frequency of the stimulating sine wave. The beginning of fusion was de- 1 
tected automatically as the first point of a signal that exceeded twice the 
SD of a selected base line. To suppress the artifacts of fluid ejection close 0 
to a cell pair, base line segments were adjusted by filtering and subtracting 
filtered points from an initial data segment. A 5-Hz cut-off frequency, 
9-order low pass digital Gaussian filter was used for this purpose. 

The radius of an initial pore, r, was calculated as: 

r = npGp + J(rCpGp) 2 + 16/tphGp (3) 100 

4~ nS 
8O 

(modified from Hille, 1992), where p is the specific resistance of pipette 
solution (70.4 Ohm x cm), and h is the height of a baculovirus spike (~12 60 
nm; Adams et al., 1977). 40 

Kinetics. The waiting time (tw) was measured from the onset of the 
pressure pulse to deliver acid until fusion pore appearance. The probabil- 20 
ity that a fusion pore has not yet appeared at time t was defined as P(t) = 0 
1 - N(t)/N~, where N(t) is the number of pores that have formed by time t 
and N~ is the total number of experiments. A number of kinetic schemes 
were tested for goodness-of-fit. Best results were found with a parallel 
model (Appendix 1) with many identical elements and one unique step 
that was inspired by the approach of Hodgkin and Huxley (1952) for fit- 
ting ionic channel currents and the recent work of Blumenthat and col- 
leagues on HA-mediated fusion (Blumenthal et al., 1996). 

Curve Fitting and Statistical Evaluation. Experimental data were fit with 
the nonlinear Marquardt-Levenberg algorithm as implemented in soft- 
ware (Sigma-Plot; Jandel Scientific, Corte Madera, CA). Commercial 
software was used for statistical analysis (Sigma-Stat; Jandel Scientific), 
with a P < 0.05 level of significance. The one-sample Kolmogorov- 
Smirnov (KS) test was performed to determine the normality of data sam- 
ples. The two-sample, nonparametric KS test was used for comparison of 
two samples of data. For the two-sample KS test, Dma x was calculated as 
Dma x = max Icdfl - cdf21, where cdf 1 and cdf2 are cumulative distribution 
functions of two data samples, and Dtab is a tabulated value (P < 0.05). 
The null hypothesis was rejected if Dma x exceeded Dtab (Hays and Wink- 
ler, 1970). 

Results 

Fusion Pores Are Large, Variable, and Often Stable 

To measure  fusion pore  conductance unambiguously,  we 
used double  whole-cell  recording (Fig. 1). Electrophysio-  
logical parameters  of  individual,  contact ing baculovirus-  
infected Sf9 cells were measured:  the resting membrane  

3. In the equivalent circuit for mast cells, only Gp and Cm2 are taken into 
consideration (Rs~ and Cml are taken as compensated and Rml and Rm2 are 
negligible). For this case, the fusion-induced increment of the real part of 
Y (ARe) equals (toCmz)2/{Gp [l+(toCm2/Gp)2]} and the increment of the 
imaginary part of Y (Aim) equals toCm2/[1 + (toC~z/Gp)Z]. Eqs. 1 and 2 can 
be derived from these expressions for Aim and ARe. Computer simulation 
of fusion pore widening using the parameters of a fusing Sf9 cell instead of 
a mast cell granule gave an excellent representation of the experimental 
admittance data, verifying the use of this equivalent circuit for viral fusion. 
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Figure 2. Time course of cell-cell fusion, studied by double 
whole-cell recording• (A) Perfusion of infected Sf9 cells with acid 
external solution (first arrow indicates the onset of slow perfu- 
sion) caused membrane fusion, displayed as the development of 
two symmetrical currents up to the saturation of the patch-clamp 
amplifiers. Fusion started at '~70 s of recording (second arrow)• 
Transjunctional potential (50 mV) was constantly applied (Vl = 
-50,  Vz = 0 mV). Zero time mark corresponds to the onset of 
DWCR. (B) Initial fusion pore at high time resolution (40-tzs 
point-to-point interval). Zero time mark here and in C corre- 
sponds to initial fusion pore appearance. Second abrupt incre- 
ment of junctional conductance occurred ~9 ms later (arrow). 
(C) Time course of the development of fusion-mediated intercel- 
lular conductance. Transjunctional currents from five such exper- 
iments as shown in A were converted into conductances and plot- 
ted together. Records 1-5 represent stages in fusion: a semistable 
phase (2, 4, and 5), a widening (1, 3, and 5), or final jump (2 and 
4) to the saturation of amplifiers. 

potent ia l  was - 3 8  ___ 13.4 mV (n = 7), membrane  capaci-  
tance was 16.6 + 5.2 p F  (n = 33), input  resistance was 1.8 
-+ 0.6 G O h m  (n = 21), and series resistance was 4.8 +-- 2.6 
M O h m  (n = 30). A t  the high t ime resolut ion (100 Ixs), our  
noise was half that  of  the signal of gap junct ional  channels 
with the conductance of 100 pS (Z immerbe rg  et al., 1995). 
In three exper iments  when such channels were observed,  
fusion was t r iggered after spontaneous  electrical  uncou- 
pling ( irreversible closure of gap junct ional  channels)• 
Thus, the junct ional  conductance before  fusion pore  open-  
ing was undetec table  (<100 pS). 

In 31 of 33 experiments ,  slow perfusion of low p H  solu- 
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tion outside of a pair of cells induced a current flowing out 
of one cell into another (Ij in Fig. 1 B). This current re- 
flected an increase in junctional conductance. Ij was re- 
corded as the symmetrical signal from both patch-clamp 
amplifiers (Fig. 2 A). In control experiments, treating un- 
infected cells with low pH solution failed to induce any de- 
tectable I i (n = 5). Junctional current never developed 
when infected cell pairs were perfused with physiological 
solution (pH 6.2 for insect cells). Thus, such increases in 
junctional conductance were induced by fusion. 

A few characteristic stages of fusion could be deter- 
mined, beginning with an abrupt opening of the fusion 
pore (Fig. 2 B). In 86% of the experiments, pore conduc- 
tance subsequent to its opening was remarkably stable for 
a period of time that ranged from 0.01-70.80 s (median = 
1.28 s). Surprisingly, in Sf9 cells infected with Autographa 
californica baculovirus, we did not observe any 4 flickering 
of the fusion pore, which is typical for exocytosis (Breck- 
enridge and Almers, 1987; Curran et al., 1993) and HA-  
induced fusion (Spruce et al., 1989; Zimmerberg et al., 
1994): each GP64-induced fusion pore opened irrevers- 
ibly. After  this first stage, the junctional conductance in- 
creased, typically through the development of additional 
abrupt pores (Fig. 2 B, arrow), an initial phase of pore wid- 
ening, a semistable phase of conductance at the level of a 
few to tens of nS (Fig. 2 C; records 2, 4, and 5), a second 
widening phase (Fig. 2 C; records 1, 3, and 5), or a final 
jump (Fig. 2 C; records 2 and 4) to the saturation of patch- 
clamp amplifiers, s 

We characterized fusion pores in terms of their initial 
conductances (Fig. 3 A) and waiting times. Fusion pores 
had a broad distribution of  initial conductance in the range 
of 300-1,700 pS with a mean of  1.0 +-- 0.3 nS (Fig. 3, B and 
C), corresponding to initial pore radii of 1.8 ___ 0.3 nm (Eq. 3). 

Admittance Measurements and Double Whole-CeU 
Recordings Yield the Same Results 

To validate the model-dependent  admittance analysis and 
to collect data on fusion kinetics, fusion pore conductance 

4. Our time resolution was mainly limited by the pipette-cell low pass fil- 
ter of Rs and C m. Flicker events much shorter than 75 Ixs could not be de- 
tected at all as a result of the analog low pass filter. 

5. Second pores (Fig. 2 B) were seen in 52% of recordings. The dwell time 
of a second pore was 0.02-9.61 s with a median of 0.79 s. Detection of sub- 
sequent fusion pores was impeded by noise, which increased with each fu- 
sion pore. Third pores were observed in 14% of the experiments, and 
fourth pores were observed in 7% of experiments. Whether these current 
transients reflect changes in conductance of the same pore or are medi- 
ated by independent pores remains unclear. In comparison, for HA- 
induced cell--cell fusion, the lack of fluorescent aqueous dye flux despite 
multiple stepwise increases in Gp suggests the opening of multiple small 
pores (Zimmerberg et al., 1994), Fusion pore widening (nonabrupt in- 
creases of junctional conductance) could occur at any time, regardless of 
the number of fusion pore openings at the time widening started. Widen- 
ing was seen in 76% of recordings and could be observed within a range of 
0.013-36.70 s (median = 3.37 s). Unlike pore opening, fusion pore widen- 
ing was reversible: junctional conductance came back to the level of the 
initial fusion pore in 7% of experiments, While widening of the initial fu- 
sion pore could continue beyond our ability to measure Gp, in most cases 
(62%), stabilization of junctional conductance occurred (range: 0.67-59.60 
s; median = 9.8 s). Stabilization was often followed by a second widening 
of a pore (observed in 38% of recordings: range: 0.14-22.50 s; mean = 8.47 
s) or a final jump of conductance beyond measurement (35% of record- 
ings: range: 0.002-0.031 s, mean = 0.013 s). 
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Figure 3. The conductance of the initial fusion pores, measured 
by double whole-cell recording. (A) The algorithm of calculation. 
A point, which is two times above an SD of base line segment, 
was assumed as first belonging to a fusion pore. Linear regression 
was applied to a "plateau" segment, situated after a fast transient 
of conductance. A regression line was extended to the intersec- 
tion with a vertical line, drawn through a point that precedes fu- 
sion. It was assumed that initial pore conductance is equal to the 
distance between an intersection point and a mean of a base line 
segment. This approach helped to restore a signal, distorted by 
our instrumentation bandwidth and/or low pass filter of a cell. 
(B) A "family" of initial fusion pores. Four recordings from dif- 
ferent experiments are shown. Zero time mark corresponds to 
the onset of fusion. (C) A histogram of initial conductance values. 

during baculovirus-mediated Sf9 cell-cell fusion was cal- 
culated from admittance measurements. A M  requires only 
one recording pipette, which facilitates the use of a second 
pipette for fast delivery of  low pH solution. The algorithm 
for fusion pore calculation is described in Materials and 
Methods (Eq. 1). 

Acidification of the external solution induced a change 
in the admittance of a pair of cells infected with baculovi- 
rus. Typically, the out-of-phase (imaginary) part of Y rises 
and reaches its maximum, whereas the in-phase (real) part 
reaches its maximum and then declines (Fig. 4 A), as ex- 
pected. 3 In nineteen experiments, the pH of external solu- 
tion was changed by slow perfusion, the same technique as 
used with DWCR.  The general time course of baculovirus- 
induced fusion in these experiments, as well as in the ex- 
periments with fast delivery of acid (see below), revealed 
the same variability and common motifs: flicker-free initial 
fusion pore opening followed by other small abrupt con- 
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Figure 4. Baculovirus-induced Sf9 cells fusion, studied by time- 
resolved admittance measurement technique. (A) Perfusion of 
the experimental chamber with acid solution (first and third ar- 
rows indicate perfusion switching on and off) induces alterations 
in both real (Re) and imaginary (Im) components of pipette-cell 
admittance. The beginning of fusion is indicated by the second ar- 
row. Direct current conductance (Goc) shows no drastic change 
during fusion. Recording was started after pipette resistance and 
cell capacitance were electronically compensated (zero time 
mark). Between 25 and 75 s, readjustment of Rs compensation 
was done (not shown). (B) Acidification-induced alterations of 
Im, Re, GDC are shown in fast time scale. Notice that in this ex- 
periment, fusion was triggered by ejection of acid solution from a 
delivery pipette (first and second arrows indicate a pressure pulse 
applied to a pipette). Signals were conditioned as discussed in 
Materials and Methods. Third arrow indicates the beginning of 
fusion. (Inset) Fusion pore conductance, calculated on the basis 
of the increments of Im and Re according to Eq. 1. 

ductance jumps and/or pore widening, semistabilization of 
the junctional conductance, further pore growth, or a final 
jump to the microsiemen range (not shown). 

Pores were detected as an abrupt increment of Re, coin- 
ciding with current discharge seen on the GDC trace (Fig. 4 
B). This current discharge is caused by the difference of 
the holding potential of cell 1 ( - 3 0  mV) and the mem- 
brane potential of cell 2, and it vanishes as Cm2 charges to 
- 3 0  mV. Unlike the short current transients used to calcu- 
late exocytotic and HA-induced fusion pores (Brecken- 
ridge and Almers, 1987; Spruce et al., 1991), current dis- 
charges in our experiments lasted longer since the fusing 
Sf9 cell's capacitance is much larger. A current transient 
was not observed when the holding potential of the first 
celt was close to.t-he membrane potential of the second cell. 

10 

8 

l -  

Q) 
> 6 G) 

4 
.ci 
E 
= 2 

0 

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 nS 

Figure 5. Time-resolved admittance measurements of the initial 
pore conductance. (A) Variability of initial conductance. Here, as 
in Fig. 3 B, four recordings were taken from different experi- 
ments. Zero time mark corresponds to a pore appearance. (B) A 
histogram of initial pore conductance. (Inset) Cumulative distri- 
bution function of initial pore conductance measured by DWCR 
technique after opening (1) and 1 ms later (2) vs one that was cal- 
culated using AM (3). 

The initial pore conductance studied by A M  showed the 
same characteristic features demonstrated by D W C R  (Fig. 
5 A). In AM, the mean value of the initial fusion pore con- 
ductance was 1.3 --- 0.6 nS (Fig. 5 B). To compare A M  to 
DWCR,  we prepared cumulative distribution functions for 
initial pore conductance (Fig. 5 B, inset, arrows 1 and 3). 
Kolmogorov-Smirnov statistics revealed a significant dif- 
ference between these two samples ( D m a  x = 0.301; D t a  b = 

0.289). We postulated that this difference was due to time 
resolution: D W C R  (100 IXS) is 10-fold faster than A M  
(1 ms). Unlike an ionic channel, a fusion pore can dilate 
immediately after abruptly opening, so the conductance of 
nonstable fusion pores measured by 1 ms after pore open- 
ing may be larger than its initial value. Comparison of ini- 
tial fusion pore conductance measured by D W C R  at 1 ms 
after pore opening (Fig. 5 B, inset, arrow 2) and calculated 
by A M  (Fig. 5 B, inset, arrow 3) showed no significant dif- 
ference ( O m a  x = 0.091; D t a  b = 0.289). In addition, we cal- 
culated the capacitance of  the fusing cell, using admittance 
analysis (see Eq. 2). Cm2 was equal to 17.5 --_ 6.7 pF (n = 
51). KS two-sample test showed no significant difference 
between this value and Sf9 cell capacitance, measured us- 
ing the "C-slow" potentiometer  of a patch-clamp amplifier 
(Cml  = 16.6 _+ 5.2 pF; O m a  x = 0.113, O t a  b = 0.302). The fact 
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that AM gave the same values of fusion pore conductance 
as DWCR validates the method of admittance analysis for 
the purpose of quantifying fusion pore conductance in this 
system. 

Fusion Pores Form Quickly after Triggering 

To collect data for kinetic analysis, the time of application 
of the acidic solution was controlled by pressure injection 
directly to the cell's surface. Fast delivery of acid solution 
to cell pairs allowed us to measure waiting times (tw) from 
triggering to initial pore formation: tw ranged from 0.2-3 s 
with a median value of 0.6 s (Fig. 6 A). To better delineate 
the deviations of tw points from a single exponential, wait- 
ing times were displayed as a semilog survival plot (see 
Materials and Methods for details). A parallel model (Ap- 
pendix 1) was devised to fit P(t), the probability that a fu- 
sion pore has not yet appeared at time t (survival probabil- 
ity). The crux of the model is that after triggering, several 
independent identical elements move from non-fusion- 
permissive to fusion-permissive positions. Following this 
approach, we postulated that fusion is controlled by two 
species of activation elements: a and b, For fusion to occur, 
n independent a-type elements and one b element should 
move to their permissive state. Experimental waiting times 
were fit to the equation, derived on the basis of these as- 
sumptions (Eq. A3; see Appendix 1 for details). The fol- 
lowing fitting parameters were obtained (given with stan- 
dard error values): n = 19.2 + 3.82, kl = 6.7 -+ 0.42 s -1, k_~ 
= 0.03 -+ 0.001 s -1, k2 = 1.78 _+ 0.008 s -1, where kl, k - t  are 
forward and backward rate constants for a, respectively, 
and k2 is the rate constant for b.. The model gave a satisfac- 
tory fit to the data (Fig. 6 A; R 2 = 0.9943). 

Discussion 

Using both time-resolved admittance measurements and 
double whole-cell recording, we have characterized the fu- 
sion pore formed by the baculovirus envelope glycopro- 
tein GP64, a fusion protein with a putative internal fusion 
peptide. Direct current measurements of syncytia forma- 
tion allowed resolution of pore conductance opening at 
the speed of ~100 Ixs and confirmed calculations of fusion 
pore conductance using" cell admittance data. The GP64- 
induced fusion pore differs from other fusion pores in four 
important ways: first, the initial fusion pore conductance is 
very large, ranging one order of magnitude larger than the 
smallest pores of HA-mediated cell-cell fusion (Spruce et 
al., 1991), mast cell exocytosis (Spruce et al., 1990), neu- 
trophil exocytosis (Lollike and Lindau, 1995), or the single 
gap junctional channel conductance measured in the same 
cells with the same time resolution (Zimmerberg et al., 
1995). Second, unlike other viral systems, the GP64-medi- 
ated fusion pore forms within seconds after acidification of 
the medium. Third,,GP64 fusion pores, once open, do not 
completely close (they do not flicker). Fourth, the initial 
configuration of this pore complex could be relatively sta- 
ble for up to 70 s, as judged by fusion pore conductance. 
Subsequent conductance growth is of two types: formation 
of more pores with abrupt rise times like the first pore, and 
variable increases in conductance that we interpret as wid- 
ening of pores. 

Kinetics of Fusion Pore Opening Are Fit by a 
Multielement Parallel Model 

Electrophysiological study of HA-mediated fusion be- 
tween transformed fibroblasts and erythrocytes reveals a 
lag between triggering and initial pore appearance with a 
median delay of 27 s at 30.4°C (Spruce et al., 1989). Wait- 
ing times were much shorter for GP64-induced fusion 
(median of 0.6 s). Attempts were made to find a reaction 
scheme that describes GP64-mediated fusion. We fit tw to 
theoretical probability functions derived on the basis of se- 
quential or branched reaction schemes, including up to 
five elements. None of them provided a satisfactory fit, de- 
fined as R 2 > 0.99 and SEM of parameters <20% of the 
mean (e.g., see Appendix 1). However, a model proposing 
that activation of fusion requires the parallel activity of 
many identical elements and one unique element provides 
a probability function that fits our data (see Fig. 6 A). 

The short waiting times of baculovirus-induced fusion 
may reflect either the intrinsic properties of the GP64 mol- 
ecule or a high surface density of fusion protein on in- 
fected cells. The dependence of tw on surface density is 
well documented for HA-mediated fusion both by fluores- 
cence dye transfer (Clague et al., 1991; Danieli et al., 1996) 
and by electrophysiological assays (Melikyan et al., 1995a). 
Delays between triggering and fusion have been attributed 
to the aggregation of trimers into fusion-competent com- 
plexes (Bentz, 1992). One can speculate that, under condi- 
tions of high GP64 surface density expected for cells that 
are producing viral envelope, fusion-competent aggregates 
are already formed (or their formation is fast and does not 
contribute to tw), and the kinetics reflect downstream con- 
formational changes of the complex. If so, the a element of 
our model could correspond to a fusion peptide, of which 
there is thought to be only one per monomer. Then the re- 
sult of our fit for n ~ 19 --_ 4 would correspond to 15-23 
monomers (five to eight trimers) of GP64 to provide 
enough fusion peptides to form a fusion-competent com- 
plex. In other words, fusion occurs only when such a com- 
plex exposes 15-23 hydrophobic peptides. The b element 
of the proposed scheme could represent a lipid-dependent 
step. Thus, delays could be generated even with preassem- 
bled fusion complexes. 

Our model, which belongs to the same class as that of 
Hodgkin-Huxley (1952), is preferable for comparing dif- 
ferent processes through its convenient parametrization. 
An interpretation of parallel model parameters as micro- 
scopic descriptions of a protein should be made with cau- 
tion (Armstrong, 1981; Hille, 1992). However, the recently 
described homotetrameric structure of Shaker potassium 
channel (MacKinnon, 1991) gives hope that such model 
parameters (four "gating particles" for K + current) repre- 
sent actual molecular events. 

Implications for Models of Fusion Pore Structure 

DWCR can be used for determining if viral fusion is leaky 
because with DWCR one can measure the electrical con- 
ductance of the wall of a fusion pore. Ionic leakage be- 
tween the inside of the fusion pore and the extraceUular 
space would be detected as unequal currents I1 and I2 (see 
Fig. 1 B). Since there was no detectable loss of transjunc- 
tional current, the pore wall was tight (detection limit was 

The Journal of Cell Biology, Volume 135, 1996 1836 



Figure 6. The analysis of fusion kinetics and hypothetical struc- 
ture of the initial fusion pore. (A) Survival plot of waiting times 
between triggering of fusion and pore appearance. Experimental 
data points were fit to a theoretical probability function, derived 
on the basis of a parallel model. Residuals of fit are shown in the 
inset. (B) Cross-section diagram of a hypothetical baculovirus fu- 
sion pore complex showing only two GP64 trimers. The fusion 
pore is located in the middle of the complex. The number of 
GP64 monomers required to line a given pore radius can be esti- 
mated from ~r/arcsin[rl/(r+rl+l)], where rl is the radius of a 
monomer, I is the thickness of a lipid layer (5 nm), and r is the ra- 
dius of a fusion pore. If we approximate the shape of a GP64 
monomer as a cylinder (Adams et al., 1977), then 

rl M I ,  rr-~-~A 

where  Mw is a molecular  weight ,  h is a m o n o m e r  height  ( ~ 1 2  nm; 
Adams et al., 1977), v is a specific partial volume for proteins 
(0.74 g/cm3), and N A is Avogadro's number. For the mean con- 
ductance of GP64-induced initial fusion pores, these calculations 
yield rl ~ 2.0 nm and 14 monomers in the circumference of the 
fusion pore complex. 

<100 pS). For HA-media ted  fibroblast-erythrocyte fu- 
sion, a similar conclusion was reached based on a compari- 
son of  Gp, measured with permeable vs impermeable solu- 
tions (Spruce at al., 1991). 

On the basis of the quasi-abrupt opening of a small pore, 
the hypothesis was developed that the fusion pore opens 
initially as a proteinaceous pore, akin to a gap junction, 
and lipids add to the pore during its subsequent widening 
(Almers and Tse, 1990). Recent  data from high resolution 
measurements of neutrophil degranulation have been in- 
terpreted to support this notion (Lollike et al., 1995). In 

contrast, the high degree of  variability in fusion pore con- 
ductance in mast cells led us to hypothesize that the sur- 
face lining the fusion pore was lipidic in nature, and it rep- 
resented a more fluid, lipid/protein complex (Zimmerberg 
et al., 1991). In the third hypothesis of membrane fusion, 
the stalk-pore model, the initial pore forms within a single 
hemifusion diaphragm (Chernomordik et al., 1995a, 1987; 
Monck and Fernandez, 1992; Nanavati et al., 1992). The 
last hypothesis is supported by the fact that a mutation of  
influenza hemagglutinin leads to hemifusion (Kemble et 
al., 1994; Melikyan et al., 1995c) and the correlation of 
lipid intrinsic curvature with inhibition and promotion of 
fusion (Chernomordik et al., 1995b). Regardless of the 
pathway, at later times semistable fusion pores represent 
coplanar, bent bilayers (Curran et al., 1993). 

We can draw a speculative cartoon of an initial fusion 
pore that is made entirely of  bent bilayers enclosed within 
a fusion complex formed by a ring of  monomers  from 
GP64 trimers. For  such a structure, the number  of GP64 
monomers  required to line a pore with a mean conduc- 
tance of 1 nS is ~14  (Fig. 6 B). Adding the peripheral 
monomer  of each trimer, the total number  of  monomers  
involved would be ~21. It is notable that this speculative 
number  based upon the mean Gp value matches the num- 
ber of monomers  estimated in the kinetic model (n ~ 19). 
In contrast, to form initial fusion pores with a mean con- 
ductance of 1 nS with protein alone requires approxi- 
mately six monomers  (nine monomers  total with three 
needed to pack a ring of three trimers). In this hypotheti- 
cal proteinaceous initial fusion pore, variation of the num- 
ber of monomers  in the pore circumference could explain 
the wide distribution of initial conductance observed (Fig. 
3 C). However,  the predicted conductance histogram 
would be multipeaked, not continuous. Since Gp has a 
continuous distribution, the variation in pore conductance 
may result from a randomly variable distribution of mem- 
brane components  lining the ion-conducting pathway of 
the fusion pore, as in Fig. 6 B. 

For those ionic channels that are composed of aggre- 
gates of protein subunits, conductance tends to increase 
along with the number  of their constitutive units (Unwin, 
1989). Analogous to ionic channels, the difference in ini- 
tial pore conductance mediated by H A  and GP64 could be 
determined by a distinct subunit stoichiometry of corre- 
sponding fusion complexes. Three to four H A  trimers 
were suggested for the initiation of fusion event (Danieli 
et al., 1996). However,  six H A  trimers were derived from 
the kinetic analysis of  transitions of  HA-media ted  fusion 
pores from the initial size to a larger size (Blumenthal et 
al., 1996). Our model best fits a baculovirus-induced fusion 
pore composed of five to eight GP64 trimers. Of  course, 
we do not know the actual geometric arrangement of 
GP64 within the fusion complex. Further analysis would 
benefit from knowledge of the chemical nature of the lin- 
ing of the fusion pore. 

A p p e n d i x  1 

A parallel model was devised to fit P(t). Suppose that fu- 
sion is controlled by two kinds of independent activation 
elements, a and b. For fusion to occur, several (n) a ele- 
ments and one b element should move to their permissive 
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states, a* and b*, respectively. An acidification induces 
these transitions: 

k 1 
a----> a .  

bk2 t , ,  

where kl, k-1 are forward and backward rate constants for 
a, and k2 is a rate constant for b. This reaction scheme 
leads to the following differential equations and solutions 
for a* and b*: 

da* 
dt - k l a - k - l a *  

db* 
dt k2b 

F 
a* = a0 ]  k I { exp [ t  ( k l + k _ l ) ] - I  }, 

e x p [ - t ( k I + k k l  + k - I  1)] I 
(A1) 

b* = b 0 [1 - exp ( -  k 2 t)  ], ( A 2 )  

where a0 and b0 are amounts of a and b in nonpermissive 
state at t = 0. Let us define the probabilities for a and b to 
be in their permissive state, Pa* and Pb*, as a*/ao and b*/bo. 
Assuming all elements are independent, P(t), the probabil- 
ity that a fusion pore has not appeared at time t, equals 1 - 
(Pa*) n " Pb*" Dividing Eq. 4 by a0 and Eq. 5 by b0, yields: 

P ( t )  = 1 -  [k ~ {exp [t (k l + k _ l ) ] - l } .  

e x p [ - t  (kl + k - I ) ] ] n  [1 - e x p ( - k z t  ) ] .  ( A 3 )  
k I + k _  I 

Other  attempts were made to find a reaction scheme 
that would fit our fusion kinetic data. Several sequential or 
branched schemes were tried unsuccessfully. For example, 
for HA-induced fusion, Bentz (1992) introduced the fol- 
lowing reaction scheme: 

KH Ko KF 
o'to ----> ii -----> Fp ----) FS, 

K~ $ 

IHA 

where ~0, denotes the number of fusion protein aggregates 
that are capable of forming intermembrane intermediates 
(II), IHA stands for inactivated HA, FP denotes fusion 
pores, and FS stands for fusion sites, which are structures 
that can be monitored by fluorescent dye redistribution. 
The author assumes (a) viral particle H A  aggregates into 
preformed fusion-competent complexes, and (b) inactiva- 
tion, if it occurs, starts from aggregated HA. The kinetic 
equation based on this reaction scheme fits experimental 
data for the fusion of influenza virus with ganglioside lipo- 
somes at low temperature. 

We tried to adopt this reaction scheme to fit our waiting 
time distribution. Obviously, the last reaction step was not 
taken into consideration. Thus, the scheme reduces to: 

kl k2 

A----> II---) FP, 

k3,1, 

I 

where A denotes aggregates and I denotes inactivated 
proteins. The probability function for such a reaction 
scheme was calculated as 

P ( t )  = 1 FP( t )  
A (0) ' 

which leads to: 

k l k 2  { e x p [ - k 2  ( t - A t ) ]  
P ( t )  - k 2 - k l - k 3  k2 - 

e x p ( k l  +k3)  ( - t + A t ) - l }  

kl + k 3  ' 

where At is the offset correction on the time axis (see Fig. 6 
A). After  fitting tw to this theoretical probability function 
(not shown), the following parameters were obtained: At 
= 0.21 +_ 0.02, k l  = 3.26 +- 2.02, k2 = 4.61 _+ 3.79, and k3 
= 0.43 _+ 0.29. Although the R 2 value for this fit was ac- 
ceptable (0.9903), standard errors for parameter  values 
were much higher than in the case of the parallel model. 
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