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Abstract. The membrane topology of the high affinity, 
Na+-coupled L-glutamate/L-aspartate transporter 
(GLAST-1) of the central nervous system has been de- 
termined. Truncated GLAST-1 cDNA constructs en- 
coding protein fragments with an increasing number of 
hydrophobic regions were fused to a cDNA encoding a 
reporter peptide with two N-glycosylation sites. The re- 
spective cRNA chimeras were translated in vitro and in 
vivo in Xenopus oocytes. Posttranslational N-glycosyla- 
tion of the two reporter consensus sites monitors the 

number, size, and orientation of membrane-spanning 
domains. The results of our experiments suggest a 
novel 10-transmembrane domain topology of GLAST-1, 
a representative of the L-glutamate neurotransmitter 
transporter family, with its NH2 and COOH termini on 
the cytoplasmic side, six NH2-terminal hydrophobic 
transmembrane a-helices, and four COOH-terminal 
short hydrophobic domains spanning the bilayer pre- 
dicted as 13-sheets. 

-Glutamate transporters are integral membrane gly- 
coproteins. They are concentrated in the plasma 
membrane of glial cells and in nerve terminals sur- 

rounding the synaptic cleft, where they regulate the con- 
centration of the excitatory neurotransmitter L-glutamate 
in the cleft of excitatory synapses (Flott and Seifert, 1991). 

Two different families of neurotransmitter transporters 
have been identified. The Na+-/Cl--coupled GAT-1 trans- 
porter family includes the 3,-aminobutyrate transporter 
(Guastella et al., 1990), the noradrenaline (Pacholczyk et al., 
1991), dopamine (Shimada, et al 1991), serotonin (Blakely 
et al., 1991), glycine (Smith et al., 1992), and L-proline 
transporters (Fremeau et al., 1992). They share a 12-mem- 
brane-spanning domain topology (Uhl, 1992) with the car- 
riers of the Na+-dependent glucose transporter (SGLT-1) 
family (Hediger et al., 1987). 

The recently discovered Na+-dependent L-glutamate 
transporter GLAST-11 (Storck et al., 1992), GLT-1 (Pines 
et al., 1992), EAAC-1 (Kanai and Hediger, 1992), and 
EAAT-4, a Na÷/Cl--dependent member isolated by ho- 
mology screening (Fairman et al., 1995), form a second 
family of excitatory neurotransmitter transporters in the 
central nervous system. They catalyze an electrogenic 
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cotransport of L-glutamate and two or three Na + ions cou- 
pled to the counterflow of one K ÷ and probably one OH- 
ion (Bouvier et al., 1992; Kl6ckner et al., 1993, 1994; Kanai 
et al., 1995). The members of this family show an overall 
amino acid identity of about 50%. The L-glutamate trans- 
porters are neither related to the GAT-1 nor to the SGLT-1 
transporter family but show significant similarities (27-37 %) 
to the neutral amino acid transporter ASCT-1 (Arizza et 
al., 1993) or SAAT (Shafqat et al., 1993), to the proton- 
coupled L-glutamate transporter proteins GLTP of Escheri- 
chia coli (Tolner et al., 1992b) and GLTT of Bacillus 
stearothermophilus (Tolner et al., 1992a), and to the C4- 
dicarboxylate carrier DCTA of Rhizobium meliloti (En- 
gelke et al., 1989). 

Three different transmembrane topology models of 
GLAST-1 (Storck et al., 1992), GLT-1 (Pines et al., 1992), 
and EAAC-1 (Kanai and Hediger, 1992) have been pro- 
posed, although the hydropathy plots are almost identical. 
In the NHz-terminal half, they have six hydrophobic mem- 
brane-spanning a-helices and an extended extracellular 
loop (extramembrane region 4 [EMR4]) between transmem- 
brane domain 3 (TMD3) and 4 (TMD4) with two N-glyco- 
sylation sites in common. For GLAST-1, we have shown 
by peptide sequencing (Schulte and Stoffel, 1995) and site- 
directed mutagenesis (Conradt et al., 1995) that two out of 
three putative N-glycosylation sites at N206 and N216 are 
glycosylated. The membrane topology of the highly con- 
served COOH-terminal domain of about 150 residues has 
been discussed controversially on the basis of their ambig- 
uous hydropathy plot. 

Pivotal for understanding the structure-function rela- 
tionship and the regulation of the L-glutamate transporter 
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is the comprehensive knowledge of the membrane topol- 
ogy of these important transporters of excitatory neuro- 
transmitters in the central nervous system. In the present 
study, we investigated the glutamate transporter topology 
by the "reporter glycosylation scanning" strategy. This di- 
rect biochemical method, which has been used successfully 
for topological mapping of polytopic KDEL-receptor (Singh 
et al., 1993), analyzes the glycosylation sensitivity of a to- 
pological neutral reporter epitope placed in positions to 
bracket the proposed transmembrane domains. This ap- 
proach was complemented by the determination of the use 
of N-linked glycosylation sites introduced in the wild-type 
transporter and by immunofluorescent studies. 

Our results with the GLAST-1 glutamate transporter 
demonstrate six membrane-spanning domains of most 
likely a-helical structure (TMD 1-6) in the NH2-terminal 
part of the protein and four shorter transmembrane seg- 
ments (TMD 7-10) in the COOH-terminal part of the pro- 
tein, with both termini residing on the cytoplasmic surface 
of the plasma membrane. We suggest that this novel 10- 
TMD topology might be common to the other members of 
the L-glutamate transporter family. 

Materials and Methods 

Construction of Undeleted and Deleted Fusion Proteins 
The plasmid pSP64-GLAST (Storck et aL, 1992) served as template in the 
creation of the fusion proteins. The AccI site in the multiple cloning site of 
pSP64-GLAST was eliminated by a Sail digestion, filling in reaction with 
Klenow enzyme and blunt-end religation with T4 ligase (Boehringer Mann- 
heim Corp., Indianapolis, IN). The DNA fragment coding for the glycosy- 
lation reporter (D172-R228 of GLAST-1) was amplified in a PCR carry- 
ing in frame at the Y-end a SacI and XhoI and at the T-end a TAG stop 
codon and SacI restriction site. The reporter fragment was cloned into 
the Sacl site downstream of the GLAST-1 gene in pSP64-GLAST re- 
suiting in pSP64-GLAST-REP. Fusions of transporter fragments to the 
glycosylation reporter segment were achieved by replacing COOH-termi- 
nal domains of the full-length GLAST-1 cDNA in pSP64-GLAST-REP 
between a suitable 5' restriction site and the XhoI site 3' in front of the 
glycosylation reporter with PCR-generated DNA cassettes, coding for re- 
spective COOH-terminal parts of graded NH2-terminal stretches of the 
transporter. A NheI 5' restriction site in the GLAST-I gene was used for 
fusion proteins G-E77, G-R122, and G-P233; KpnI was used for G-$273, 
G-Q313, G-N344, G-Q354, and G-T368; AccI was used for G-R385, G-E406, 
G-Q425, G-T434, and G-Q445; and HinclI was used for G-D464, G-D487, 
G-E501, G-I514, and G-M543 (see Fig. 1 B). 

The deletion of putative COOH-terminal transmembrane domains was 
introduced into the fusion proteins by overlapping extension PCR (Higu- 
chi et al., 1988). Amplified fragments containing the desired deletions cor- 
responding to GLAST-1 amino acid residues 345-354, 389-397, 407-416, 
and 488-494 were digested with AccI and XhoI present in the undeleted 
fusion protein sequences to obtain DNA cassettes, which were exchanged 
for the respective wild-type cassettes of G-R385, G-E406, G-Q425, G-E501, 
and G-M543. This resulted in the cDNA chimeras coding for AG-R385 
(A345-354), AG-E406 (A389-397), AG-Q425 (A407-416), AG-E501 
(A488-494), and AG-M543 (A488--494) (see Fig. 1 C). All constructs were 
characterized by restriction enzyme analysis and DNA sequencing. 

Insertion of Glycosylation Sites and Single Substitutions 
Unique N-glycosylation sites (consensus sequence N/X/T or N/X/S; Hart 
et al., 1978) were introduced into the GLAST-1 gene of pSP64-GLAST at 
position 1143 and 1303 by overlapping extension PCR. The replacement 
of the sequences GTG and GCC by ACG and AAC  led to the single- 
amino acid substitutions T382V and N435A. The PCR fragments contain- 
ing the desired mutations were cut with KpnI and HincII and inserted into 
the GLAST-1 gene, replacing the respective wild-type cassette. The mu- 
tant transporters G-T382V and G-N435A were obtained. 

The mutant transporters G-EL389FV, G-T382V/EL389FV, and G-T382V/ 
VSV were constructed by site-directed mutagenesis. An Xhol site was 
introduced into wild-type GLAST-1 and the mutant transporter G-T382V 
by the same strategy as for the insertion of N-glycosylation sites. The re- 
placement of TTTGTG by CTCGAG at position 1164 corresponds to the 
amino acid substitutions E389F and L390V and resulted in cDNAs of 
G-EL389FV and G-T382V/EL389FV. Sense and antisense oligonucle- 
otides encoding the COOH terminus (YTDIEMNRLGK) of the vesicular 
stomatitis virus G protein (VSV) (Kreis, 1986) were synthesized to insert 
an extension peptide at the COOH terminus of residue L390 in G-T382V/ 
EL389FV. The annealed double-stranded oligonucleotides flanked by 
sticky-ended XhoI sites were phosphorylated with T4-polynucleotide ki- 
nase (Boehringer Mannheim Corp.) and cloned into the engineered Xhol 
site, resulting in G-T382V/VSV. All mutations and subcloned nucleotide 
sequences were verified by DNA sequencing. 

RNA Transcription 
Plasmids were linearized with EcoRl. The respective methyl-diguanosine- 
triphosphate-capped cRNAs were synthesized from their corresponding 
[inearized templates using SP6 RNA polymerase (Boehringer Mannheim 
Corp.) following standard methods (Colman, 1984). RNA quality was 
checked by electrophoresis in formaldehyde (1.2%) agarose gel. 

Cell-free Translation and Deglycosylation 
In vitro synthesized cRNA (300-500 ng) was translated in micrococcal nu- 
clease-treated rabbit reticulocyte lysate (amino acid depleted; Amersham 
Corp., Arlington Heights, IL) in the presence of canine pancreatic rough 
microsomal membranes (Boehringer Mannheim Corp.) according to the 
supplier's instructions. The reaction mixture (25 ~l total volume) with op- 
timal translation efficiency contained 1,110 kBq [35S]methionine (Amer- 
sham Corp.), 25 IxM of each amino acid except methionine, 100 mM po- 
tassium acetate, and 2 mM magnesium acetate and was incubated at 30°C 
for 60 min. 

After addition of 25 ~1 STPM (0.25 M sucrose, 50 mM triethanolamine, 
140 mM potassium acetate, and 2.5 mM magnesium acetate) membranes 
were pelleted by ultracentrifugation for 10 min and rinsed with 50 ~1 
STPM. One aliquot was resuspended in 50 ~1 Laemmli sample buffer 
(62.5 mM Tris-HCl, pH 6.8, 10% glycerol, 5% mercaptoethanol, 1% SDS, 
and 0.04% bromophenol blue) and the other in 25 ~1 0.75% Triton X-100, 
30 mM Tris-HCl, pH 8, for deglycosylation with endoglycosidase F (Endo F; 
50 mU) (Boehringer Mannheim Corp.) for 1 h at 37°C. The reaction was 
terminated by the addition of 25 ixl 2x  Laemmli sample buffer. Proteins 
were analyzed by SDS-PAGE (Laemmli, 1970) followed by fluorography 
(Laskey and Mills, 1975). 

Alkaline Extraction 
The pH of the in vitro translation assay, carried out in the presence of 
rough microsomal membranes,  was adjusted to 11.5 by the addition of 
25 ixl of carbonate buffer (50 mM potassium acetate, 100 mM Na2CO 3, 
20 mM triethanolamine, and I mM magnesium acetate). The reaction 
mixture was stored on ice for 20 rain and layered over 20 IM STPM con- 
taining 100 mM Na2CO3. Microsomes were sedimented at 49,000 rpm at 
4°C for 20 min. The pellet was washed with 25 ~l STPM and dissolved in 
30/.d Laemmli sample buffer. The supernatant was neutralized with 10 ~l 
acetic acid and proteins were precipitated with two volumes of saturated 
ammonium sulfate for 30 rain at 0°C, sedimented at 14,000 rpm, 4°C for 10 
rain. The pellet was washed with 5% trichloroacetic acid and dissolved in 
50 ~l Laemmli sample buffer for SDS-PAGE. 

Expression in Oocytes, Immunoprecipitations, and 
Glycosidase Treatment 
Stage V-VI oocytes were defolliculated with collagenase and injected with 
40 nl of cRNA of mutant GLAST-1 construct (0.5 mg/ml) (Storck et al., 
1992). Oocytes were incubated in Barth's modified saline containing 
[35S]methionine (2.5 mCi/ml) for 24 h. Deglycosylation with Endo F and 
immunoprecipitation with polyclonal GLAST-1 antibody was performed 
as previously described (Conradt et al., 1995). Translation products were 
analyzed by SDS-PAGE (Laemmli, 1970) followed by fluorography (Las- 
key and Mills, 1975). 
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Electrophysiology 
Electrogenic transport was assayed by voltage clamp using the two elec- 
trode voltage clamp amplifier (Warner Instruments Corp., Hamden, CT; 
hardware and software package ISO2 from MFK, Frankfurt, Germany). 
Briefly, oocytes were voltage clamped at -90 mV and continuously super- 
fused with Barth's modified saline. Microelectrodes filled with 3 M KCI 
had a resistance ranging from 1-2 Mfl. 

Immunofluorescence Microscopy 
Preparation of oocyte frozen thin sections and immunofluorescence mi- 
croscopy on the fusion proteins and mutant transporters were carried out 
as described previously (Conradt and Stoffel, 1995). 

For immunofluorescence on HEK293 cells, permanently expressing 
GLAST-I (Blau and Stoffel, 1995) cells were grown on coverslips, rinsed 
with PBS, fixed with 2% paraformaldehyde in PBS for 15 min at room 
temperature (RT), permeabilized with 0.25% Triton X-100 in PBS for 5 
min at RT, blocked with 5% BSA in PBS for 1 h at RT, incubated with 
primary antibodies in PBS containing 2% BSA for 3 h at RT, incubated 
with secondary antibody in PBS containing 2% BSA, and then mounted 
with use of glycerol gelatine (Merck, Darmstadt, Germany). 

The primary antibodies were affinity-purified rabbit anti-GLAST-1 
antibody (Storck et al., 1992), monoclonal mouse anti-ct-tubulin antibody 
(Sigma Chemical Co., St. Louis, MO), and polyclonal rabbit anti-P24-40 
antibody. Secondary antibodies were FITC-conjugated goat anti-rabbit/ 
anti-mouse IgG and Cy3-conjugated sheep anti-rabbit IgG (Sigma Chem- 
ical Co.). 

Stained cells and frozen thin sections of oocytes were visualized with a 
fluorescence microscope (Axiophot; Carl Zeiss, Inc., Thornwood, NY) 
equipped with fluorescein and Cy3 optics and photographed with a micro- 
scope camera (model MC 100; Carl Zeiss, Inc.). 

Polyclonal Antipeptide Antibody 
The synthetic peptide corresponding to the NH2-terminal residues 24-40 
of rat GLAST-1 protein (KRTLLAKKKVQNITKED) was synthesized 
on a peptide synthesizer (model 433A; Applied Biosystems, Inc., Foster 
City, CA) following the manufacturer's instructions. The peptide was 
characterized by reversed phase high performance liquid chromatography 
and sequencing. It was coupled to keyhole limpet hemocyanin (Sigma 
Chemical Co.) (Goodfriend et al., 1964). 400 I~1 protein-peptide conjugate 
in PBS (300 jxg peptide) was emulsified with an equal volume of complete 
Freund's adjuvant and injected intramuscularly in a New Zealand White 
rabbit. For booster immunizations (2-wk intervals), Freund's incomplete 
adjuvant and half the amount of antigen were used. The rabbit was bled 
10 wk after the first immunization. 

The antibody was characterized against a purified preparation of 
GLAST-1 protein (Western blot) and chimeric protein G-E77 by immu- 
noprecipitation. For affinity purification (Catty, 1988), the synthetic pep- 
tide was coupled to ethylaminohexyl Sepharose 4B (Pharmacia LKB Bio- 
technology, Piscataway, N J). Ethylaminohexyl-Sepharose (30 i~mol active 
amino groups) was incubated with 10 mg peptide and 90 ~mol N-ethoxy- 
carbonyl-2-ethoxy-l,2-dihydroquinoline (Sigma Chemical Co.) in 6 ml 
50% ethanol overnight at RT. The column material was rinsed three times 
with 50, 100, 50, and 20% ethanol, blocked with 0.2 M glycine, pH 8, for 2 h 
at RT and washed with PBS. l0 ml antiserum was recircled over the affin- 
ity column for 2 h. Unspecific bounded proteins were disrupted by wash- 
ing with 10 mM Tris-HC1, pH 7.5, 0.5 M NaC1. Specific antibodies were 
eluted with 0.2 M glycine-HC1, pH 2.5, neutralized with 1 M Tris-HC1, pH 
8, and dialyzed against PBS for 3 d. 

Results 

Chimeras with a Glycosylation Reporter Probe the 
Sidedness of Membrane Integration of GLAST-1 

Our goal was to identify which of the hydrophobic protein 
segments actually span the membrane (TMDs) and to de- 
termine the cellular orientation of the membrane-flanking 
EMRs. We mapped the luminal or cytoplasmic orienta- 
tion of the intervening hydrophilic loops with an endoge- 
nous reporter of translocation. It was fused in frame to 
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Figure 1. (A) Hydropathy plot of GLAST-1. The Kyte-Doolittle 
method with a window of 10 amino acids was applied. Six ex- 
tended hydrophobic regions are located in the NH2-terminal part 
of GLAST-1 (M1-P345) corresponding to the predicted trans- 
membrane domains TMD1-TMD6. At least seven short, moder- 
ately hydrophobic segments are indicated in the COOH-terminal  
part. (B) Schematic model of the GLAST-1 transporter. Endoge- 
nous N-glycosylation sites are indicated by "trees." Boxes labeled 
with TMD denote topogenic hydrophobic regions as indicated by 
the present study. Identified hydrophilic EMRs are marked as 
E M R 1 - E M R l l .  The vertical lines below the solid heavy line in- 
dicate the COOH termini of NHz-terminal GLAST-1 fragments, 
to which the glycosylation reporter was fused. The vertical lines 
above indicate the positions of substituted amino acids intro- 
duced either to generate additional N-glycosylation sites in the 
primary sequence (T382V, N435A) or to insert the VSV extension 
peptide of 11 amino acids into GLAST-1 (EL389FV). (C) Sche- 
matic presentation of GLAST-1 deletion chimeras. Membrane- 
spanning regions are numbered and marked by empty squares. A 
57-amino acid N-glycosylation reporter derived from EMR4 of 
GLAST-1 was fused in frame to truncated GLAST-1 sequences. 
The deletion chimeras each lack the ultimate COOH-terminal 
transmembrane domain of the corresponding undeleted chimeras 
with identical fusion points. 

NHz-terminal parts of GLAST-1, truncating the trans- 
porter at various positions in the extramembrane regions 
(Fig. 1 B). This 57-residue N-glycosylation reporter  was 
derived from the large extracellular hydrophilic loop of 
GLAST-1 (D172-R228), which contained the two genuine 
transporter N-glycosylation sites at N206 and N216 
(Conradt et al., 1995; Schulte and Stoffel, 1995). This re- 
porter sequence is considered to be devoid of any target- 
ing information, which might interfere with its transloca- 
tion across the membrane. The cRNAs of the chimeras 
were expressed in the presence of [35S]methionine in vitro 
in reticulocyte lysates with rough microsomes and upon 
microinjection in Xenopus oocytes. The glycosylated 
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translation products were immunoprecipitated and ana- 
lyzed by SDS-PAGE and fluorography. The orientation of 
the polypeptides integrated into the ER membrane is in- 
verted from that in the plasma membrane. Bi-antennary 
N-glycosylation of the reporter sequence proved by the 
mobility shift in SDS-PAGE after digestion with Endo F 
characterized chimeras with the reporter protruding into 
the lumen of the ER. This corresponds to an extracellular 
orientation of the attached hydrophilic region in the 
plasma membrane; the absence of reporter glycosylation is 
indicative of its intracellular orientation. 

Topology of the Six Hydrophobic Segments of the 
NH2- Terminal Domain 

The hydropathy plot of GLAST-1 (Fig. 1 A) clearly subdi- 
vides the protein into two large domains. In contrast to the 
extended moderately hydrophobic stretch (amino acids 
345-500) near the C O O H  terminus of the transporter, the 
NH~-terminal domain of nearly 345 amino acids has six 
distinct hydrophobic domains 20 to 23 residues in length 
(TMD1-TMD6 in Fig. 1 B), bordered by charged residues. 
They have been previously predicted to form transmem- 
brane a-helices. They are connected by six hydrophilic ex- 
tramembrane regions (EMR2-EMR7),  to each of which 
the N-glycosylation reporter was fused at positions indi- 
cated in Fig. 1 B. Corresponding results were obtained in 
both expression systems. N-glycosylation was detected 
only of the reporters linked to residues E77, P233, and 
Q313. Chimera G-E77, truncating the transporter sequence 
at E77 in EMR2, yielded a bi-antennary glycosylated poly- 
peptide as evidenced by the 6-kD mobility shift after Endo F 
treatment (Fig. 2 A, lane 1-4). Fusion proteins G-P233 and 
G-Q313 tagging EMR4 and EMR6 (Fig. 2 A, lane 9-12; 
Fig. 2 B, lane 5-8) were fourfold glycosylated, twice at the 
reporter and at both genuine GLAST-1 glycosylation sites 
(N206 and N216). When digested with Endo F, protein 
size decreased for ~12 kD. On the other hand, N-glycosy- 
lation was not observed for reporters fused to EMR3, 

EMR5, or EMR7. The apparent molecular mass of chi- 
mera G-R122 (Fig. 2 A, lane 5-8) remained unchanged af- 
ter enzymatic deglycosylation. The predominant transla- 
tion product of chimeras G-$273 (Fig. 2 B, lane 1-4) and 
G-N344 (Fig. 2 B, lane 9-12) exhibited only a 6-kD mobil- 
ity shift and were thus only twofold glycosylated at genu- 
ine GLAST-1 consensus sites. In the case of in vitro- 
expressed G-$273, an insignificant amount of three- and 
fourfold glycosylated polypeptides is visible (both upper 
bands in Fig. 2 B, lane 1). A phenomenon we observed for 
most of the in vitro translations performed in this study 
was the appearance of a signal representing unglycosy- 
lated and thus unprocessed protein. This is almost absent 
in the oocyte experiments. Furthermore, all six fusion pro- 
teins were found to be integrated into the lipid bilayer of 
microsomal membranes by the criterion of nonextractabil- 
ity with sodium carbonate at alkaline pH (Fujiki et al., 
1982; Russel and Model, 1982) (data not shown). 

We conclude from these results that the hydrophilic se- 
quences EMR2, EMR4, and EMR6 are exposed to the ex- 
tracellular, EMR3, EMR5, and EMR7 to the cytosolic sur- 
face of the plasma membrane. Each of the hydrophobic 
segments in the NH~-terminal part of GLAST-1 is sand- 
wiched between an extracellular and intracellular region 
indicating six TMDs. TMD1, TMD3, and TMD5 span the 
plasma membrane from the intracellular to the extracellu- 
lar surface, and TMD2, TMD4, and TMD6 span with re- 
verse orientation. 

Membrane Topology of the Conserved COOH-Terminal 
Domain of GLAST-1 

Previous models of three L-glutamate transporters have 
proposed two (GLT-1), four (EAAC-1), or six (GLAST-1) 
hydrophobic domains spanning the plasma membrane in 
the highly conserved COOH-terminal domain, albeit the 
hydropathy blot is too ambiguous for a reliable structure 
prediction. 12 additional reporter chimeras step-wise ex- 
tended the NH2-terminal domain of GLAST-1 by 10-29 

Figure 2. Analysis of the topology of the NH2-terminal part of GLAST-I. N-glycosylation and membrane integration of chimeras with 
the reporter fused at sites located within the NHz-terminal domain of GLAST-I: (A and B) GLAST-1 reporter hybrids were translated 
in the rabbit reticulocyte lysate system in the presence of microsomal membranes and upon microinjection in Xenopus oocytes. Transla- 
tion products were isolated by ultracentrifugation of the microsomal membranes (in vitro) or by immunoprecipitation with a polyclonal 
GLAST-1 antibody from the oocyte lysate in the in vivo experiment. Proteins were separated by SDS-PAGE (10-15%) and visualized 
by fluorography (see Materials and Methods). Concordant results were obtained in both expression systems used. Treatment with Endo 
F reduced the apparent molecular mass of chimeras G-P233 and G-Q313 by ~12 kD, and of G-E77, G-$273, and G-N344 by ~6 kD. No 
mobility shift was observed in the case of G-R122. 
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amino acids, starting at amino acid Q354 near the COOH 
terminus of TMD6 up to M543 (see Fig. 1 B). When trans- 
lated in both expression systems, chimeras G-E406 (Fig. 
3 B, lanes 1-4), G-E501, G-I514, and G-M543 (Fig. 3 D, 
lanes 1-12) exhibited only a 6-kD mobility shift after Endo F 
treatment monitoring nonmodified reporter sites. We con- 
clude that the short hydrophilic region around residue E406 
(EMR9 in Fig. 1 B) as well as the highly charged COOH 
terminus of GLAST-1 (residues E501-M543; E M R l l  in 
Fig. 1 B) are exposed on the cytoplasmic side of the ER or 
plasma membrane. 

Unexpectedly, in vitro and in vivo translation of chi- 
meras G-Q354, G-T368, G-R385, (Fig. 3 A, lanes 1-12), 
G-Q425, G-T434 (Fig. 3 B, lanes 5-12), G-Q445, G-D464, 
and G-D487 (Fig. 3 C, lanes 1-12) generated two differ- 
ently glycosylated polypeptides of approximately equal in- 
tensity in autoradiography. Endo F reduced their apparent 
molecular mass by roughly 12 and 6 kD and resulted in a 
single band of deglycosylation product. The weak signals 
in the in vitro translations of G-T368 and G-R385 (Fig. 3 A, 
lanes 5 and 9) represent trace amounts of one- and three- 
fold glycosylated polypeptides. However, these results in- 
dicated that the reporter of nearly one half (40-55%) of 
each expressed chimeric protein was fully glycosylated, 
yielding a tetra-antennary glycoprotein with the COOH- 

terminal reporter protruding into the lumen of the ER 
(upper band in Fig. 3, A and C, lanes 1, 3, 5, 7, 9, and 11; 
Fig. 3 B, lanes 5, 7, 9, and 11). The reporter of the rest of 
the integrated polypeptides remained unglycosylated on 
the cytoplasmic side of the membrane represented by bi- 
antennary glycoprotein. Reflecting the random orienta- 
tion of the reporter, this glycosylation pattern seemed to 
be devoid of any topological information. Nevertheless, 
we obtained evidence to indicate the lumenal localization 
of the tagged EMRs from the following experiment. 

A third N-glycosylation signal at N380 (G-T382V) and 
N435 (G-N435A) was introduced in wild-type GLAST-1 
using site-directed mutagenesis (see Fig. 1 B). Tri-anten- 
nary glycosylation would probe the lumenal/extracellular 
orientation of the new consensus sites in membrane-inte- 
grated GLAST-1. However, polypetides synthesized in 
Xenopus oocytes from G-T382V and G-N435A cRNAs had 
the same size as the wild-type transporter. Enzymatic de- 
glycosylation reduced the molecular mass from 60--63 to 
54-57 kD (Fig. 4, lanes 1-6). N-glycosylation of the engi- 
neered consensus sites should fail if they are located in the 
cytosolic compartment or if their close proximity to the lu- 
menal membrane surface prevents access for the N-glyco- 
sylation machinery. We favored the second possibility and 
extended the short distance between residue N380 and the 

Figure 3. Analysis of the topology of the COOH-terminal part of GLAST-1. N-glycosylation and membrane integration of in vitro- and 
in vivo-translated chimeras with the reporter fused at sites located within the COOH-terminal domain of GLAST-I: (A-D) Protein ex- 
pression, deglycosylation, and sample analysis was performed as described in Fig. 2. The chimeras G-E406, G-E501, G-I514, and 
G-M543 were twofold glycosylated as indicated by their reduced apparent molecular mass of ~6 kD after treatment with Endo F. Note 
that chimeras G-Q354, G-T368, G-R385, G-Q425, G-T434, G-Q445, G-D464, and G-D487 showed a random distribution of bi- and 
tetra-antennary glycosylated translation products, indicated by their apparent SDS-PAGE mobility shifts relative to the deglycosylated 
proteins of ~6 and 12 kD, respectively. 
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membrane surface by a short peptide consisting of the 11 
COOH-terminal amino acids of the VSV glycoprotein (Kreis 
et al., 1986). The two-step cDNA synthesis (see Materials 
and Methods) yielded two different transporter mutants. 
The intermediate construct G-T382V/EL389FV carried 
the amino acid substitutions E389F and L390V, G-T382V! 
VSV in addition to the VSV extension peptide (see also 
Fig. 1 B). Xenopus oocytes microinjected with the respec- 
tive cRNAs generated threefold glycosylated polypeptides 
(Fig. 4, lanes 7-10). The apparent molecular mass of N63- 
66 kD exceeded by ~3  kD that of the mutant G-EL389FV, 
which lacked the engineered N-glycosylation site at N380 
(Fig. 4, lanes 11-12), and was reduced to 54-56 kD by 
Endo F treatment. These findings provide strong evidence 
for the lumenal orientation of the hydrophilic region 
around residue N380 (EMR8 in Fig. 1 B). Because the fu- 
sion point of the chimera G-R385 was also located in this 
domain, we interpret its random bi- and tetra-antennary 
glycosylation in strong support of the extracellular orien- 
tation of respective reporter-attached residues located in 
the COOH-terminal domain of GLAST-1 (residues 345- 
543). We had observed the same glycosylation pattern for 
chimeras with the reporter linked to residues Q354, T368, 
and R385, as well as to Q425, T434, Q445, D464, and 
D487, and therefore suggest two additional extramem- 
brane regions, EMR8 and EMR10, on the extracellular 
surface of the plasma membrane (Fig. 1 B). Keeping in 
mind the cytosolic placement of EMR7, EMR9, and 
E M R l l ,  the alternating cytosolic and extracellular orien- 
tation of the five identified extramembrane regions EMR7-  
E M R l l  demands four hydrophobic transmembrane do- 
mains (TMD7-TMD10) spanning the plasma membrane 
in the COOH-terminal part of GLAST-1. 

Deletion of  Transmembrane Segments in the 
COOH-terminal Domain of  GLAST-1 

The hydropathy plot (Fig. 1 A) of the four COOH-termi- 
nal TMDs identified by the experiments described above 
suggests short hydrophobic segments of 7-10 residues. To 

confirm their topogenic activity, we deleted each of these 
segments and examined the effect of this manipulation on 
the glycosylation reporter fused COOH-terminal to the 
respective TMD (Fig. 1 C). It is expected that an extracel- 
lular location of the fusion site of chimeras with the re- 
porter linked to TMD7 and TMD9, being randomly two- 
and fourfold glycosylated, will switch to the intracellular 
surface in the deletion mutant, thus preventing reporter 
glycosylation. We synthesized the deletion chimeras AG- 
R385 (A P345-Q354) and AG-Q425 (A A407-V416) in the 
in vitro and in vivo system. The size of the single glycosy- 
lated translation product was reduced by 6 kD after Endo 
F treatment (Fig. 5 A, lanes 1-8). This indicated that the 
reporter remained unglycosylated on the cytosolic side of 
the membrane. To show that deletion of TMD8 and 
TMD10 also changes the glycosylation pattern of the re- 
porter fused COOH-terminal to these TMDs, we excised 
residues F389-I397 in chimera G-E406 and residues $488- 
V494 in G-E501 and G-M543 (Fig. 1 C). Unlike the unde- 

Figure 4. N-glycosylation of wild-type and mutant GLAST-1 
proteins expressed in Xenopus oocytes. Protein expression, de- 
glycosylation, immunoprecipitation, and sample analysis were 
carried out as described in Fig. 2. The equal SDS-PAGE mobility 
shifts of mutants G-T382V and G-N435A of,-,~6 kD after treatment 
with Endo F as compared with wild-type GLAST-1 indicated a 
twofold glycosylation of the proteins. The apparent molecular mass 
of constructs G-T382V/EL389FV and G-T382V/VSV exceeded that 
of G-EL389FV by ~3 kD, indicating threefold glycosylation of 
both mutants. 

Figure 5. N-gtycosylation of in vitro- and in vivo-synthesized 
chimeric GLAST-1 proteins with the deletion of TMD7, TMD8, 
TMD9, or TMD10. Protein expression, deglycosylation, and sam- 
ple analysis were performed as described in Fig. 2. (A) The ap- 
parent molecular masses of deletion mutants AG-R385 and AG- 
Q425 were shifted after deglycosylation to a molecular mass re- 
duced by ~6 kD, which revealed a bi-antennary glycosylation 
only compared to the respective undeleted GLAST-1 constructs 
with their random tetra- and bi-antennary glycosylation (see Fig. 
3, A and B). (B) The reporter of AG-E501 is partially glycosy- 
lated in both expression systems as demonstrated by the two 
bands with different mobilities. The same observation was made 
for in vitro-synthesized AG-E406. Note that AG-E406 expressed 
in the oocyte, as well as AG-M543 in both expression systems, 
showed only one signal of a twofold glycosylated protein indi- 
cated by the 6-kD shift like in the undeleted chimeras (see Fig. 3). 
No glycosylation of the reporter sites had occurred. 
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leted fusion proteins, which are only twofold glycosylated, 
the deletion chimera AG-E406 translated in the reticulo- 
cyte lysate and AG-E501 regardless of the expression sys- 
tem used showed the expected random bi- and tetra-anten- 
nary glycosylation (Fig. 5 B, lanes 1 and 2 and 5--8; compare 
Fig. 3 B, lanes I and 2, and 3 D, lanes 1-4). This glycosyla- 
tion pattern indicates the extracellular orientation of the 
fusion points, which had switched from the intracellular to 
extracellular side. AG-E406 synthesized in the oocyte car- 
ried only two carbohydrate chains at endogenous N206 
and N216, like the undeleted fusion protein (Fig. 5 B, lanes 
3 and 4; compare Fig. 3 B, lanes 3 and 4). The upper band 
in lane 4 of Fig. 5 B reflects incomplete enzymatic deglyco- 
sylation. Unexpectedly, the deletion of TMD10 in the chi- 
mera G-M543 did not invert the cytosolic orientation of 
the fusion point (Fig. 5 B, lanes 9-12; compare Fig. 3 D, 
lanes 9-12). These results prove that the deleted hydro- 
phobic segments P345-Q354, A407-V416, and $488-V494 
are core sequences of the membrane-spanning domains 
TMD7, TMD9, and TMD10. The topogenic activity of 
TMD8 (F389-I397) could not be concluded with certainty 
from these experiments. 

GLAST-1 Fusion Proteins Are Correctly Targeted to the 
Plasma Membrane but Inactive Transporters 

The impact of the truncation and COOH-terminal tagging 
by a reporter sequence of GLAST-1 on the electrogenic, 
Na+-dependent L-glutamate transport function was ana- 
lyzed with the whole cell voltage clamp technique in Xenopus 
oocytes expressing the respective transporter cRNAs. The 
inward current of oocytes synthesizing the different chime- 
ras was measured at 100 IxM L-glutamate and 90 mM so- 
dium [Na +] extracellular concentrations as previously de- 
scribed (Kl6ckner et al., 1993). Neither wild-type GLAST-1 
linked to the N-glycosylation reporter (G-M543) nor any 
of the other fusion proteins showed any neurotransmitter 
transport activity (data not shown). The loss of function 
could either be due to a reduced expression level, to a re- 
duced stability of the mutant transporters, to an impaired 
targeting to the plasma membrane, or to the COOH-ter- 
minal truncation of GLAST-1 and tagging by the reporter 
sequence. Comparable intensities of the [35S]methionine- 
labeled and immunoprecipitated translation products of 
GLAST-1 (Fig. 4, lanes I and 2) and chimeric transporters 
(Figs. 2 and 3) expressed in Xenopus oocytes ruled out the 
first possibility. The correct targeting to the plasma mem- 
brane of Xenopus oocytes was traced by immunofluores- 
cence microscopy. Oocytes expressing wild-type GLAST-1 
and the chimeras G-M543 and G-N344 were strongly la- 
beled along their perimeter by GLAST-1 antibodies and 
fluorescent second antibodies (Fig. 6 A, 2, 3, and 4), con- 
sistent with the localization of the hybrid transporters at 
or close to the cell surface. Identical results were observed 
for all of the other chimeras with the fusion point between 
residue N344 and M543 (data not shown). In the case of 
water-injected control oocytes, no fluorescence was ob- 
served (Fig. 6 A, 1). We conclude that the deletion of indi- 
vidual COOH-terminal sequences and/or the fusion of 
the reporter to the COOH terminus of full-length wild- 
type GLAST-1 (M543) or truncated GLAST-1 polypeptides 
abolish the glutamate transport properties of the ex- 

pressed membrane-integrated glycoproteins. It should be 
noted that the point mutations in the transporter G-T382V/ 
EL389FV, which was fully glycosylated at residue N380 
and in G-EL389FV, which lacks the engineered N-glycosy- 
lation consensus site, also lead to a complete loss of the 
glutamate transport activity (data not shown). Both mu- 
tants are normally expressed (Fig. 4, lanes 9-12) and 
correctly targeted to the plasma membrane (Fig. 6 A, 5 
and 6). In contrast, the functional properties of the mu- 
tated transporter G-T382V are comparable to wild-type 
GLAST-1 (data not shown) (Kl6ekner et al., 1993). This 
underlines the substantial influence of the amino acid sub- 
stitution E389F combined with the exchange L389V on 
the activity of GLAST-1. 

The NHz Terminus of GLAST-1 Is Exposed to 
the Cytosol 

The orientation of the NH2 terminus (EMR1 in Fig. 1 B) 
of GLAST-1 was examined by indirect immunofluores- 
cence epitope mapping in a HEK cell line, permanently 
expressing wild-type GLAST-1 (HEK-GLAST) (Blau and 
Stoffel, 1995). If the first extramembrane region EMR1 is 
located in the cytoplasm, this domain should be accessible 
for a specific antibody only after permeabilization of the 
plasma membrane. 

Affinity-purified antibodies raised against a synthetic 
peptide comprising residues 24--40 (P24--40) of GLAST-1 
were generated. Only permeabilized HEK-GLAST cells 
were strongly labeled by immunofluorescence by these im- 
munoglobulines (Fig. 6 B, 3 and 6). Therefore the NH2 ter- 
minus (EMR1) of GLAST-1 must be exposed to the cyto- 
solic surface of the plasma membrane. 

Fig. 6 B also visualizes the results of the control experi- 
ments. Intact HEK-GLAST cells were labeled with poly- 
clonal rabbit anti-GLAST-t antibodies (Storck et al., 1992), 
which also recognized extracellular transporter epitopes, 
and were impermeable for mAbs raised against a-tubulin. 
Permeabilization of cells with Triton X-100 was required 
to allow labeling with specific antisera against both a-tubu- 
lin and GLAST-1. Untransfected wild-type HEK cells showed 
no reaction with GLAST-1 antibodies (data not shown). 

Discussion 

We applied "reporter glycosylation scanning" to establish 
the complete topology of GLAST-1 in the plasma mem- 
brane. The localization of hydrophilic extramembrane re- 
gions was mapped to determine the number and orienta- 
tion of membrane-spanning domains. We provide here 
experimental evidence for six presumably a-helical trans- 
membrane domains in the NH2-terminal part of GLAST-1, 
flanked by seven hydrophilic extramembrane regions. 
Fourfold glycosylated chimeras with a lumenal reporter in- 
dicated the inside-out orientation (cytosolic to extracellu- 
lar) of TMD1, TMD3, and TMD5, and the twofold glyco- 
sylation of fusion proteins probed the reverse orientation 
of TMD2, TMD4, and TMD6. The specific fourfold gly- 
cosylation of chimeras G-P233 and G-Q313 proved that the 
reporter sequence placed at the COOH terminus of trun- 
cated GLAST-1 polypeptides is readily translocated across 
the ER membrane. The efficient N-glycosylation makes the 
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Figure 6. Wild-type, chimeric, and mutant GLAST-1 are located in the plasma membrane, and the NH2 terminus of GLAST-1 resides 
in the cytoplasm. (A) Cryosections (15-20 ixm) of Xenopus oocytes were incubated with anti-GLAST-1 antibody and stained with fluo- 
rescein isothiocyanate-conjugated second antibody. Wild-type GLAST-1 (2), G-M543 (3), G-N344 (4), G-EL389FV (5), and G-T382V/ 
EL389FV (6) were expressed and targeted to the surface of oocytes with similar intensity. In the case of water-injected control oocytes 
(1), no fluorescence labeling was observed. (B) HEK 293 cells, permanently expressing wild-type GLAST-1, were immunostained with 
(4-6) and without (1-3) permeabilization of the plasma membrane (Triton X-100) as described under Materials and Methods. Cells 
were either doubly labeled with mouse monoclonal antitubulin and rabbit polyclonal anti-GLAST-1 antibodies (1 and 2, 4 and 5) or la- 
beled with rabbit polyclonal P24-40 antibodies (3 and 6). Second antibodies were fluorescein-anti-mouse IgG (1 and 4), fluorescein- 
anti-rabbit IgG (3 and 6) and cy3-anti-rabbit IgG (2 and 5). Staining of the cytosolic tubulin was only observed after disruption of mem- 
brane structures with Triton X-100 (4). Labeling of GLAST-1 at the cell surface was observed regardless of the integrity of the plasma 
membrane (2 and 5). The NH2 terminus of GLAST-1 was labeled with P24-40 antibodies only after permeabilization of the plasma 
membrane (6), indicating its cytosolic orientation. Bar, 10 Ixm. 

reporter sequence a reliable indicator of the extracellular 
or cytoplasmic sidedness of the tagged hydrophilic loops. 
Consistent with cell surface immunostaining of oocytes ex- 
pressing G-N344 and G-M543, the reporter has no substan- 
tial influence on the folding of the transporter. Misfolded 
proteins would be retained in the biosynthetic compart- 
ments and then rapidly degraded. The signal for protein 
targeting from the ER via Golgi to the plasma membrane 
seems to be present within the NH2-terminal 344-amino 
acid sequence. Immunostaining of HEK cells permanently 
expressing GLAST-1 gave evidence for the cytosolic local- 
ization of the NH2 terminus (EMR1) of GLAST-1. This was 
expected from the absence of a cleavable signal sequence 
and from immunocytochemical labeling of astrocytes (Lehre 
et al., 1995). Phosphorylation of Sl13 by protein kinase C 
in GLT-1 (Casado et al., 1993) also agrees with intracellu- 
lar localization of EMR3 connecting TMD2 and TMD3. 

The extended, moderately hydrophobic COOH-termi- 
nal region of GLAST-1 is a feature uncommon for trans- 
porter proteins known so far. This domain is strongly con- 
served in the L-glutamate transporters GLAST-1, GLT-1, 
EAAC-1, and EAAT-4. The hydropathy plot exhibits at 
least seven short hydrophobic sequences 7-10 residues 
long (Fig. 1 A), implying that membrane-spanning seg- 
ments in this region might be of shorter length. Our exper- 
iments with undeleted and deleted chimeras identified 

four of them as the core of the transmembrane domains 
TMD7-10, which are flanked by polar and charged resi- 
dues. The topology of TMD8 could not be assigned with 
certainty by deleting residues F389-I397 in the fusion pro- 
tein G-E406. Reporter  inversion in the deletion mutant 
AG-E406 occurred only after in vitro translation but failed 
in the oocyte. We suggest that this might be due to an in- 
herent topogenic activity keeping the tagged extramem- 
brane region EMR9 on the cytoplasmic side of the ER 
membrane in the oocyte. The same observation was made 
for the deletion chimera AG-M543 with the reporter fused 
to the C O O H  terminus of wild-type GLAST-1. Positively 
charged residues, accumulating here in the tagged hydro- 
philic region E M R l l ,  are known as a dominant topogenic 
determinant, which may prevent translocation of protein 
domains from the cytosol into the lumen of the ER (Boyd 
and Beckwith, 1989; von Heijne, 1989). 

The shorter extension of TMD7 and TMD9 as com- 
pared to TMD1, TMD3, and TMD5 is likely to be re- 
flected in the different glycosylation pattern of chimeras 
with the reporter sequence fused at the C O O H  terminus 
of inside-out-oriented transmembrane domains. The ran- 
dom distribution of bi- and tetra-antennary glycosylated 
fusion proteins, consistent with a random orientation of 
the COOH-terminal reporter to either side of the mem- 
brane, might be explained by the sequential insertion 
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Figure 7. Proposed GLAST-1 topology in the plasma membrane. Native N-glycosylation sites are indicated by arrow heads. Filled cir- 
cles mark the sites of GLAST-1, to which the reporter was fused, and arrows at residues 382 and 435 indicate the sites, that were mutated 
to obtain N-glycosylation mutants G-T382V, G-N435A, G-T382V/VSV, and G-T382V/EL389FV. The arrow at residues 389-390 points 
to the site where the ll-mer extension peptide was inserted. Exon boundaries are marked by roman numbers. Transmembrane domains, 
numbered TMDs 1-6, are likely to form tx-helices, whereas TMDs 7-10 are considered to form B-sheets. 

mechanism proposed for type IV membrane proteins like 
GLAST-1 (Blobel, 1980; Wessels and Spiess, 1988). In 
analogy to the translocation of secretory proteins and in- 
sertion of type II membrane proteins (Shaw et al., 1988), 
we suggest that during the last insertion cycle of chimeric 
GLAST-1 protein, the ultimate transmembrane domain 
acting as a signal anchor sequence and the translocating 
COOH-terminal portion of the growing polypeptide chain 
form a loop like structure in the proteinaceous (G6rlich et al., 
1992a, b; Mothes et al., 1994) and aqueous (Crowley et al., 
1993, 1994) translocation channel (ER translocase) across 
the ER-membrane, with the attached reporter remaining 
in the cytoplasm. The interactions of the traversing signal 
anchor sequence with the proteins of the ER translocase 
and the degree of the lateral opening of the channel to the 
lipid core vary presumably with its length and hydropho- 
bic properties (von Heijne, 1985, 1986; Nilsson et al., 1994; 
Martoglio et al., 1995). The efficient reporter glycosylation 
of chimeras G-E77, G-P233, and G-Q313 demonstrates 
that TMD1, TMD3, and TMD5, 20-23-hydrophobic resi- 
dues-long, are firmly anchored in the lipid bilayer. After 
chain termination, the channel opening apparently re- 
mains wide enough to allow the reporter to translocate 
into the ER lumen. If the reporter is linked to TMD7 or 
TMD9, its random orientation toward the cytoplasmic or 
the lumenal surface of the ER membrane might be caused 

by two reasons. Membrane integration of the TMD par- 
tially fails because of a moderate hydrophobicity and 
therefore reduced interaction with the lipids, or mem- 
brane integration takes place.but the narrow gated chan- 
nel imposes a steric hindrance to the translocation of the 
COOH-terminal reporter into the lumen of the ER. 

Since our experimental results combined with these con- 
siderations suggest shorter extensions of membrane span- 
ning TMD7-TMD10 other than a-helical structures must 
be considered. [3-Sheets require 7-10-amino acid residues 
to span the hydrophobic core of a membrane bilayer 
(Schirmer and Cowan, 1993). Intrabilayer 13-sheet struc- 
tures have been unequivocally demonstrated by x-ray 
analysis in porins (Cowan et al., 1992) and have also been 
proposed to occur in the acetylcholine receptor (Akabas 
et al., 1992), in the VDAC ion channel (Blachly-Dyson et al., 
1990), and in lac permease (Radding, 1991). We propose 
13-sheet structures of the four COOH-terminal membrane- 
spanning regions of GLAST-1 but cannot rule out other 
conformations. Our experimental results and their inter- 
pretation fit best the membrane integration of GLAST-1 
depicted in Fig. 7. 

The topology profile proposed here facilitates the anal- 
ysis of specific GLAST-1 domains or single-amino acid 
residues essential for neurotransmitter binding and trans- 
location. Aromatic residues border the ends of transmem- 
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brane TMD7 (W346; F348), TMD8 (F389), and TMD9 
(Y405; F412), similar to porins composed solely of a non- 
polar surface of 13-sheets buried in the lipid bilayer. Phe- 
nylalanine residues are oriented toward the lipid core 
whereas tyrosine hydroxy groups and tryptophan side 
chains point toward the lipid polar headgr0ups (Weiss et al., 
1991; Cowan et al., 1992). The hydrophobic side chain of 
F389 of GLAST-1 is thought to be involved in the mem- 
brane anchorage of TMD8. Substitution of F389 by E389 
combined with the conservative substitution L390V led to 
the GLAST-1 mutant transporters G-T382V/EL389FV 
and G-EL389FV, which have lost glutamate transport ac- 
tivity. The negative charge of E389 might shift the trans- 
membrane segment TMD8 partially into an extracellular 
location. The distance between the membrane surface 
and the highly charged hydrophilic region surrounding 
residue N380 will thereby be enlarged and give access for 
the N-glycosylation machinery. This interpretation is con- 
sistent with the observation that N380 is only glycosylated 
in the triple mutant G-T382V/EL389FV, but not in the ac- 
tive single substitution mutant G-T382V carrying the in- 
tact transmembrane domain TMD8. 

F389 is located in the most strongly conserved domain 
of the four cloned L-glutamate transporters, GLAST-1, 
GLT-1, EAAC-1, and EAAT-4. 29 out of 33 residues 
(amino acids 383-415) are identical. This sequence con- 
tains the transmembrane domains TMD8 and TMD9, 
which are joined by the short cytosolic loop EMR9. The 
adjacent side chains of Y405 and E406 in this EMR have 
recently been recognized to be essential for L-glutamate 
transport. In GLAST-1, the hydroxy group of Y405 is 
thought to interact with the ~/-carboxylate group of the 
neurotransmitter glutamate passing through the channel 
(Conradt and Stoffel, 1995). For GLT-1, the correspond- 
ing E404 has been suggested to line the glutamate/aspar- 
tate permeation pathway (Pines et al., 1995). The deduced 
cytosolic localization of both residues (Fig. 7) excludes 
their direct participation in substrate binding but suggests 
an essential contribution to substrate translocation or dis- 
sociation on the inside of the plasma membrane. Further- 
more, the close neighborhood of residues Y405 and E406 
to TMD8 and TMD9 implies that both transmembrane 
segments might directly contribute to the formation of the 
translocation pore. 

The topology model of GLAST-1 consisting of six mem- 
brane spanning a-helices and four shorter transmembrane 
domains presumably forming a 13-sheet cluster is unique 
and defines a new class of transporter proteins. The as- 
sumption that clusters of transmembrane 13-sheet struc- 
tures are involved in the transport of neurotransmitter 
substrate will provide new dimensions for understanding 
the transport mechanism of the Na+-coupled high affinity 
L-glutamate transporters. The highly conserved domain 
structure of all L-glutamate transporters isolated so far 
suggests that the 10-TMD model of GLAST-1, deciphered 
by these studies experimentally, might represent a novel 
membrane topology of transporter molecules common to 
the other L-glutamate transporters GLT-1, EAAC-1, and 
EAAT-4, and the neutral amino acid transporter ASCT-1. 
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