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We have developed a portable and easily configurable genome annotation pipeline called MAKER. Its purpose is to
allow investigators to independently annotate eukaryotic genomes and create genome databases. MAKER identifies
repeats, aligns ESTs and proteins to a genome, produces ab initio gene predictions, and automatically synthesizes
these data into gene annotations having evidence-based quality indices. MAKER is also easily trainable: Outputs of
preliminary runs are used to automatically retrain its gene-prediction algorithm, producing higher-quality
gene-models on subsequent runs. MAKER’s inputs are minimal, and its outputs can be used to create a GMOD
database. Its outputs can also be viewed in the Apollo Genome browser; this feature of MAKER provides an easy
means to annotate, view, and edit individual contigs and BACs without the overhead of a database. As proof of
principle, we have used MAKER to annotate the genome of the planarian Schmidtea mediterranea and to create a new
genome database, SmedGD. We have also compared MAKER’s performance to other published annotation pipelines.
Our results demonstrate that MAKER provides a simple and effective means to convert a genome sequence into a
community-accessible genome database. MAKER should prove especially useful for emerging model organism
genome projects for which extensive bioinformatics resources may not be readily available.

[Supplemental material is available online at www.genome.org.]

Genome annotation, not genome sequencing, is becoming the
bottleneck in genomics today. New genomes are being se-
quenced at a far faster rate than they are being annotated. As of
2007, there are 126 completely sequenced, but unpublished ge-
nomes, and the backlog of unpublished and unannotated ge-
nomes continues to grow (Liolios et al. 2006). Eukaryotic ge-
nomes are particularly at risk as their large size and intron-
containing genes make them difficult substrates for annotation.
There are currently more than ∼800 Eukaryotic genome projects
under way (Liolios et al. 2006). Many of them belong to emerging
model organisms (http://grants.nih.gov/grants/guide/pa-files/
PA-04-135.html), and are represented by relatively small research
communities. Annotating these genomes and distributing the
results for the benefit of the larger biomedical community is
proving difficult for many of these communities, as they often
lack bioinformatics experience. One solution to this problem is
to outsource the annotation to one of the major annotation da-
tabases such as Ensembl (Stabenau et al. 2004) or VectorBase
(Lawson et al. 2007). This has proven a fruitful strategy for several
groups (c.f. VectorBase), but the numbers of sequenced genomes
far exceeds the capacity and the stated purview of these projects;
Ensembl, e.g., is restricted to vertebrate genomes and VectorBase
to insect vectors of human disease.

In an attempt to ameliorate this problem, many sequencing
centers, data repositories, and model organism databases make
their annotation software available to the public (http://www.

broad.mit.edu/tools/software.html; http://www.tigr.org/
software/genefinding.shtml) (Stabenau et al. 2004). However this
is not their primary mission, and they usually only make subsets
of their internal systems available—and these generally require
significant in-house bioinformatics support (Lawson et al. 2007).
Thus, despite the best efforts of the bioinformatics community,
large numbers of unannotated genomes continue to accumulate,
underscoring an urgent need for simpler, more portable annota-
tion pipelines.

Developing an easy-to-use annotation pipeline imposes sev-
eral design constraints. First, it must be easy to configure and run,
requiring minimal bioinformatics and computer resources. In
other words, external executables and software need to be mini-
mal, and installation must be routine, even for users with only
rudimentary UNIX skills. Second, an easy-to-use pipeline must
also provide both a compute and an annotation engine. In prac-
tical terms, it must be able to identify repeats, to align ESTs and
proteins to the genome, and to automatically synthesize these
data into feature-rich gene annotations, including alternative
splicing and UTRs, as well as attributes such as evidence trails,
and confidence measures. Third, every genome is different and
an easy-to-use annotation pipeline must be, therefore, easily con-
figurable and trainable. If not, the evidence gathered by the com-
pute pipeline will be of poor quality, and the annotation process
will be compromised.

Another essential feature of an easy-to-use annotation pipe-
line is that its output formats must be both comprehensive and
database ready. This task has been simplified by the Generic
Model Organism Database (GMOD) project (http://www.gmod.
org), which provides a generic genome database schema and ge-
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nome visualization tools. GMOD, however, does not provide a
means to produce the contents of a database; these must be cre-
ated by an external annotation pipeline. Therefore, to take ad-
vantage of GMOD tools, annotation pipelines must write their
outputs in GMOD-compatible Generic Feature Format (GFF3;
www.sequenceontology.org/gff3.shtml). However, creating GFF3
files containing all of the information necessary to populate a
GMOD database is a complex task. These files must contain de-
scriptions of EST and protein alignments, repeats, and gene pre-
dictions. They must also include EST and protein alignments not
associated with any annotation, so that false negatives can be
identified. Without such data, downstream automated and
manual annotation management is seriously compromised.

Finally, to qualify as truly user-friendly, an annotation pipe-
line should provide an easy means to annotate, view, and edit
individual contigs and BACs. This allows users to analyze partial
genome assemblies and to independently annotate regions of
interest using their own data sets, ideally without the overhead of
a database and with only minimal compute resources such as a
laptop computer.

We have designed an easy-to-use annotation tool called
MAKER in an attempt to meet all of these design criteria. Our
goal was to provide emerging genome projects with the means to
independently annotate protein-coding genes and to create a
GMOD database. MAKER identifies repeats, aligns ESTs and pro-
teins to a genome, makes gene predictions, and integrates these
data into protein-coding gene annotations. Moreover, its outputs
can be loaded directly into GMOD browsers and databases with
no post-processing. As proof of principle, we have used MAKER
to annotate the genome of the planarian Schmidtea mediterranea
and to create a new genome database, SmedGD (http://smedgd.
neuro.utah.edu). We have also compared MAKER’s performance
to other published annotation pipelines as part of the nGASP
contest hosted by WormBase (http://www.wormbase.org/wiki/
index.php/NGASP). Our results demonstrate that MAKER pro-
vides a simple-to-use, yet effective means to annotate an indi-
vidual contig or BAC or to convert an entire genome sequence
into a community-accessible genome database. MAKER is not
exhaustive: it does not identify noncoding RNA genes, nor is it
intended as a comprehensive solution to every problem in ge-
nome annotation. Rather, MAKER is designed to jump-start ge-
nomics in emerging model organisms by providing a robust first
round of database-ready protein-coding gene annotations.

Results

Benchmarking MAKER on Caenorhabditis elegans

In order to obtain a performance benchmark, we ran MAKER on
a 10-megabase (Mb) portion of the C. elegans genome, as part of
the nGASP competition (http://www.wormbase.org/wiki/
index.php/NGASP). nGASP provided two annotated 10-Mb re-
gions of the C. elegans genome, one for training, and the other for
testing. We trained MAKER using the boot-strap procedure out-
lined in the Methods section and then compared MAKER’s per-
formance on the testing region to three other nGASP partici-
pants: SNAP (Korf 2004), Augustus (Stanke et al. 2006), and
Gramene—an Ensembl-based pipeline (Stabenau et al. 2004)
managed by the Gramene group (www.gramene.org). SNAP was
run in its ab initio gene prediction mode; Gramene is an evi-
dence-based annotation pipeline that assembles its own compu-
tational evidence; and Augustus is a gene-prediction algorithm

that can be used to produce either ab initio or evidence-based
predictions when provided with an external GFF3 file of EST and
protein alignment data. The evidence-based Augustus annota-
tions summarized in Table 1 used GFF3 files of aligned ESTs and
proteins provided by nGASP.

Overall, MAKER’s performance on the C. elegans genome
was comparable to that of Gramene and to Augustus when run in
the evidence-based mode. All three programs had very similar
sensitivity and specificity values for genomic overlap—a mea-
sure of the percentage of genes overlapped by an annotation.
MAKER’s genomic overlap sensitivity (89.81%) was greater than
that of Gramene’s (88.74%) and less than that of Augustus’
(97.05%), indicating that ∼90% of annotated C. elegans genes
were overlapped by at least a portion of a MAKER annotation.
MAKER’s genomic overlap specificity (91.69%) was also interme-
diate between those of Augustus (89.47%) and Gramene
(93.49%).

When considering the remaining categories in Table 1, it
should be kept in mind that these refer to the subset of annota-
tions (32%) that WormBase denoted as complete and confirmed
WB160 genes. The low specificities reported for all three pro-
grams reflect this fact.

MAKER’s weakest performance was in the exon nucleotide
accuracy and exon overlap and categories. For all genes, its exon
level nucleotide accuracy is 61.82%, Gramene’s is 70.8%, and
Augustus’ is 70.83% and 77.62% (evidence-based). For confirmed

Table 1. MAKER’s performance on the C. elegans genome

Performance
category

Ab initio Evidence based

AugustusSnap Augustus Maker Gramene

Genomic overlap (gene)
SP 82.48% 88.09% 91.69% 93.49% 89.47%
SN 95.44% 96.78% 89.81% 88.74% 97.05%

Exon overlap
SP 18.88% 22.87% 25.58% 27.38% 23.54%
SN 87.63% 93.09% 91.17% 94.84% 96.19%

Exact transcript
SP 3.92% 7.51% 6.01% 3.52% 8.65%
SN 12.22% 18.64% 14.97% 10.59% 22.20%

Full exact transcript
SP 0.41% 1.02% 1.91% 0.39% 1.17%
SN 1.22% 2.34% 4.58% 1.02% 2.95%

Exact UTR5
SP 1.38% 2.27% 4.41% 4.43% 3.38%
SN 5.80% 8.04% 11.20% 9.98% 10.08%

Exact UTR3
SP 6.40% 9.86% 11.75% 8.05% 11.40%
SN 31.36% 44.20% 40.53% 23.63% 46.03%

Exact all exons
SP 19.02% 22.08% 22.44% 34.08% 24.19%
SN 93.48% 98.98% 95.62% 91.24% 98.57%

Start stop
SP 7.05% 12.97% 12.69% 11.87% 17.79%
SN 35.95% 51.83% 47.76% 34.42% 72.51%

SP, specificity; SN, sensitivity. Genomic overlap is based upon all anno-
tations; other categories are for complete, confirmed genes only. Overlap
indicates that prediction overlaps reference annotation on the same
strand; exact, coordinates of prediction are identical to reference anno-
tation; full exact transcript, all exons match reference annotation coor-
dinates, as do the start and stop codons. Gramene data are from ensem-
bl.gff; Augustus ab initio results are for augustus_cat1v2.gff; Augustus
evidence-based results are from augustus_cat3v1.gff. SNAP and MAKER
data are from snap.gff, and makerv2_testset.gff, respectively. All data are
from files available at http://www.wormbase.org/wiki/index.php/
NGASP. WormBase release WB160 was used as the reference. Sensitivity
and specificity were calculated using EVAL (Keibler and Brent 2003).
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genes, MAKER’s exon level overlap specificity is similar to that of
the other programs (Table 1), but its sensitivity is still 3.67% less
than that of Gramene and 5.02% less than that of Augustus when
run in its evidence-based mode. On confirmed genes, MAKER’s
exact all exon (Table 1) accuracy is similar to those of the other
two evidence-based programs. MAKER fell squarely between
Gramene and Augustus in correctly annotating entire transcripts
(Exact Transcript) but outperformed the other two programs
when the start and stop of translation is also taken into account
(Full Exact transcript). MAKER also outperformed the other two
programs in accurately identifying 5� UTRs (Exact UTR5). MAKER
was more effective at precisely identifying 3� UTRs (Exact UTR3)
than was Gramene and was only slightly less accurate than Au-
gustus. The last category in Table 1, Start Stop, provides a measure
of how well MAKER did at identifying start and stop codons.
Once, again, MAKER’s performance is comparable to the other
programs. MAKER outperformed Gramene in this category,
though Augustus was the clear winner. In total then, the data in
Table 1 demonstrate that MAKER’s overall performance on the C.
elegans genome is in most instances comparable to that of
Gramene and Augustus.

A proof-of-principle collaboration

In order to demonstrate MAKER’s suitability as an annotation
tool for the genomes of emerging model organisms, we partnered
with the S. mediterranea genome project to annotate its genome
and create a GMOD-based genome database. S. mediterranea is a
model planarian species, known for its ability to regenerate com-
plete animals from miniscule fragments of its body (Randolph
1897; Morgan 1898). S. mediterranea is an emerging model organ-
ism for regeneration studies following demonstrations that it is
amenable to modern cell (Robb and Sánchez Alvarado 2002),
molecular (Sánchez Alvarado et al. 2002), and RNAi (Sánchez
Alvarado and Newmark 1999) techniques. Its annotated genome
will provide a central resource for the planarian and regenerative
medicine research community.

The S. mediterranea genome and assembly

The S. mediterranea genome was sequenced and assembled by the
Washington University Genome Sequencing Center (St. Louis,
MO). The final assembly is 902,775,852 nucleotides in length,
consistent with Cot and nuclear volume analyses carried out
prior to sequencing, which place the S. mediterranea genome at
∼850 Mb (http://genome.wustl.edu/ancillary/data/whitepapers/
Schmidtea_mediterranea_WP.pdf). S. mediterranea was se-
quenced to a depth of ∼10�. The assembly’s contig length dis-
tributions are similar to those of the human and Drosophila ge-
nomes (data not shown). Its super-contigs, however, are shorter,
as technical issues precluded the construction of a BAC library for
this organism; thus, no BAC end reads were available during the
assembly process; 89.30% of the genome is in super-contigs 10 kb
or longer and 44.62% is in super-contigs longer than 50 kb. The
final assembly contains 43,673 contigs with a median length of
11,260 bp. The genome has a high AT content (67%).

ESTs

At time of compute, there were 78,101 ESTs from S. mediterranea.
These were derived from a variety of libraries (see Methods), and
consist of both 5� and 3� reads. As the S. mediterranea EST collec-
tion was quite redundant, we collapsed the ESTs into contigs
using the CAP3 program (Huang and Madan 1999). This process

yielded 15,011 contigs. MAKER aligned 13,026 (88%) of the EST
contigs to the genome, using the splice-site aware Exonerate al-
gorithm (Slater and Birney 2005). Of the remainder, about half
were not found in the assembly, and low sequence complexity
prohibited alignment of the other half. These numbers provide
an estimate of 90% for the overall completeness of the assembly,
a finding consistent with the experimental estimates of genome
size (http://genome.wustl.edu/ancillary/data/whitepapers/
Schmidtea_mediterranea_WP.pdf) and the size of the assembly.

S. mediterranea repeats

In total, RepeatMasker (http://repeatmasker.org) flagged 22% of
the S. mediterranea genome as low-complexity sequence. MAKER
also uses BLASTX together with an internal library of transposon
and virally encoding proteins to identify mobile-elements (see
Architecture of MAKER section). This process masked an addi-
tional 4.18% of the genome. Finally, we used Muscle (Edgar
2004) and PILER (Edgar and Myers 2005) to identify additional S.
mediterranea specific and highly divergent repeats, missed by the
previous processes. MAKER used these as a RepeatMasker library.
This masked another 1.2% of the genome. In total, 27.4% of the
genome was identified as repetitive. The creation of a custom
library for use with MAKER is optional but recommended.

The S. mediterranea high-confidence gene set

In order to produce a maximally inclusive set of compute data
and annotations for our downstream analyses, we ran MAKER
over every contig in the S. mediterranea genome assembly regard-
less of size. The resulting data are summarized in Supplemental
Table 1. Following procedures similar to those used to annotate
other eukaryotic genomes (Rubin et al. 2000; Venter et al. 2001),
we next sought to assemble a high-confidence (HC) gene set from
among the 65,563 MAKER genes. To do so, we took advantage of
the MAKER Quality Indices generated for each transcript, which
document the number of exons confirmed by EST, and/or pro-
tein evidence (see Methods; Table 2). We included in the HC set
every gene having at least one transcript confirmed by an EST
alignment with at least one canonical splice site. In total, there
were 12,620 genes that met this criteria. We also included in the
HC gene set any MAKER annotation with protein homology
(BLASTX E < 1 � 10�6) to the Swiss-Prot database (Bairoch and
Apweiler 2000); 24,209 MAKER genes met this criterion. We then
used RPS-BLAST (http://web.csb.ias.edu/blast/rpsblast.txt) to
screen the annotations for Pfam (Bateman et al. 2004) domains
(E < 1 � 10�3; minimum coverage >40%). This identified
15,702 domain-containing annotations. We also screened the
128,339 SNAP predictions not overlapping a MAKER annotation
for protein homology with SWISS-PROT (Bairoch and Apweiler
2000) and for Pfam (Bateman et al. 2004) domains using the
same significance thresholds; 378 of them were homologous to
SWISS-PROT proteins, and 1633 had one or more domains. In

Table 2. Maker quality index summary

Length of the 5� UTR
Fraction of splice sites confirmed by an EST alignment
Fraction of exons that overlap an EST alignment
Fraction of exons that overlap EST or Protein alignments
Fraction of splice sites confirmed by a SNAP prediction
Fraction of exons that overlap a SNAP prediction
Number of exons in the mRNA
Length of the 3� UTR
Length of the protein sequence produced by the mRNA
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total, this gave us a set of 31,955 protein-coding genes supported
by combinations of EST, protein, and domain homology.

Protein-coding gene numbers

Our purpose in assembling the HC gene set was to produce a set
of gene models suitable for comparison to other annotated eu-
karyotic genomes. Gene number is one such comparison.
Though protein-coding gene numbers have been a subject of
controversy, most annotated model Eukaryotes contain on the
order of 15,000–25,000 protein-coding genes (for discussion, see
Yandell et al. 2005). Drosophila, e.g., is believed to contain fewer
than 15,000 protein coding genes (Yandell et al. 2005), and the
WS160 WormBase release puts the number of C. elegans genes at
slightly less than 20,000. The latest Ensembl (Stabenau et al.
2004) release of the human genome contains 21,724 known pro-
tein-coding genes.

Although there is no a priori reason to assume that S. medi-
terranea might not contain 31,955 protein-coding genes (the
number of genes in the HC set), this possibility is not well sup-
ported by available experimental evidence. We therefore sought
to determine what percentage of the annotations might be split
across the short super-contigs characteristic of the S. mediterranea
genome assembly. To do so, we cloned and sequenced 31 high-
molecular-weight S. mediterranea mRNAs without recourse to the
MAKER annotations. We aligned each mRNA to the genome as-
sembly (30 were found in the assembly) and found that 28 cor-
responded to MAKER annotations, nine of these (30%) were split
across multiple contigs, and four (14%) were annotated as mul-
tiple genes on a single S. mediterranea contig. By comparison,
only 12 of the mRNAs were overlapped by SNAP ab initio pre-
dictions, and three of these were split. Though these are small
numbers, they suggest that 90.3% of S. mediterranea genes corre-
spond to at least one MAKER annotation, 30% of S. mediterranea
genes are split among multiple contigs, and MAKER has incor-
rectly split ∼14% of mediterranea genes into two or more annota-
tions. Taking these percentages as indicative of the genome as a
whole would place the S. mediterranea protein-coding gene num-
ber at 15,570, a number in good agreement with the annotated
gene numbers in other model animals.

Evaluating MAKER’s performance on S. mediterranea

The absence of a large corpus of known S. mediterranea genes and
mRNAs makes it difficult to assess MAKER’s performance by com-
parison to known S. mediterranea gene structures. Instead we have
used the protein domains to gain a rough indication of overall
annotation completeness and quality. Domain data also provide
a measure of how much MAKER’s synthesis procedure improved
upon SNAP’s ab initio predictions for this genome.

We used RPS-BLAST (http://web.csb.ias.edu/blast/rpsblast.
txt) and Pfam (Bateman et al. 2004) to identify protein domains
in S. mediterranea predicted and annotated proteins. In total,
21.54% of MAKER annotations and 38% of HC annotations con-
tain at least one known domain. We used the same procedure to
identify domains in the annotated proteomes of other animals
and found that 35.5% of Drosophila melanogaster, 31.9% of C.
elegans, and 36.4% human annotated proteins contain known
domains. Thus, the percentage of protein domains in the HC set
is comparable to those of other annotated animal proteomes. We
further categorized the annotations using the Gene Ontology
(http://www.geneontology.org) classifications of the domains
they encode and used these data to compare the S. mediterranea

annotations to other annotated animal genomes. These data are
shown in Supplemental Table 2 and demonstrate that the HC
genes contain an unbiased, diverse, and comprehensive sam-
pling of the S. mediterranea proteome.

MAKER improves upon SNAP’s ab initio predictions

As a control, we ran a version of SNAP trained for the AT-rich
genome of C. elegans over the S. mediterranea genome: Only
3.49% of those predictions contained domains, whereas when
trained for S. mediterranea using the universal gene-based proce-
dure (for details, see Methods), 5.17% of SNAP ab initio predic-
tions contained domains. By comparison, 21.54% of MAKER S.
mediterranea annotations and 38% of HC annotations contain at
least one domain (Supplemental Table 1). Of the 128,339 ab ini-
tio SNAP predictions not overlapping MAKER annotations, only
1.27% contained domains.

In contrast to S. mediterranea, MAKER’s training and synthe-
sis procedures produced only modest increases in gene-level
specificity for C. elegans, with most of the improvements to ac-
curacy coming from refinements to transcript structures. In C.
elegans, MAKER’s overall genomic overlap and exon overlap ac-
curacies were similar to SNAP’s (Table 1). Real gains, however,
were observed in the other categories. MAKER’s exact transcript
sensitivity was 6.01% compared with SNAP’s 3.92%; exact tran-
script specificity also showed gains, rising from SNAP’s 12.22% to
14.97%. Likewise, full exact transcript sensitivity and specificity
increased by a factor of four. The synthesis process also improved
the accuracy of UTR annotation; in fact, Table 1 somewhat mis-
represents the nature of the improvement, as EVAL (Keibler and
Brent 2003) considers stop codons to be part of the 3� UTR; like-
wise, it also considers an incomplete codon preceding the anno-
tated translation to be 5� UTR. Excluding UTRs of less than four
nucleotides in length, the Exact UTR5 and UTR3 values are 0%
for SNAP. MAKER’s synthesis procedures also improved upon
SNAP’s ability to correctly identify start and stop codons; for
these features, specificity rose from 7.05% to 12.69% and sensi-
tivity from 35.95% to 47.76%.

Improvements were greater for the emerging genome

MAKER’s synthesis procedure resulted in a far greater enrichment
for protein-domain containing annotations in S. mediterranea
than it did in C. elegans. In total, only 5.17% of S. mediterranea ab
initio SNAP predictions encode proteins with domains, whereas
21.54% of the MAKER annotations do. In C. elegans, by compari-
son, 38.65% of ab initio SNAP predictions and 44.81% of MAKER
annotations have domains. Hence, the enrichment (16%) of
MAKER annotations compared with SNAP predictions for do-
mains in C. elegans is modest compared with 315% enrichment
seen in S. mediterranea. The difference appears to be due primarily
to the lower specificity of SNAP on the S. mediterranea compared
with the C. elegans genome. Three lines of evidence support this
conclusion. First, the ratio of SNAP to MAKER transcripts is much
higher in S. mediterranea than C. elegans, 2.5� compared with
1.3�, respectively. Second, there is a greater correspondence be-
tween SNAP predictions and MAKER annotations in C. elegans
than there is in S. mediterranea—only 22.39% of SNAP predictions
do not overlap a MAKER annotation in C. elegans, whereas 76%
fail to do so in S. mediterranea. Third, of the SNAP predictions not
overlapping an S. mediterranea MAKER annotation, only 1.27%
contain domains (RPS blast to PFAM E < 1 � 10�3; percent cov-
erage > 40%), again suggesting that many are false positives. De-
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spite these differences, 38% of genes in the S. mediterranea HC
gene-set encode protein domains, a value quite similar to the
32% in the WB160 release of the C. elegans proteome. These facts
demonstrate that the ability of MAKER to screen and improve upon
SNAP’s ab initio predictions is greatest in emerging model organ-
isms such as S. mediterranea for which there is limited training data.

SmedGD

We used the GFF3 output from MAKER to jump-start SmedGD, a
publicly available resource for the planarian and regeneration
research communities. SmedGD houses the S. mediterranea ge-
nome assembly, its MAKER annotations, and their associated
computational evidence (Robb et al. 2007). Because SmedGD
conforms to GMOD specifications (http://www.gmod.org), its
contents can be queried and viewed over the Web using GMOD
tools such as GBrowse (http://www.gmod.org). The use of GMOD
schemas ensures interoperability of database contents, allowing
them to be shared and compared with the contents of other
GMOD databases such as FlyBase, WormBase, and SGD. Figure 1
shows a screen shot from SmedGD, showing a MAKER annota-
tion and its accompanying compute data. SmedGD is located at
http://smedgd.neuro.utah.edu.

Discussion

We used MAKER on the genomes of both an established and an
emerging model organism. Our results for the C. elegans genome
demonstrate that the accuracy of MAKER on a model organism
genome is comparable to that of other annotation pipelines,
whereas our work on the S. mediterranea genome shows that
MAKER provides an effective means to annotate an emerging
genome and to create a genome database.

MAKER’s performance on established genomes

We compared MAKER’s sensitivity and specificity to those of Au-
gustus (Stanke et al. 2006) and Gramene (www.gramene.org)—an
Ensembl-based pipeline (Stabeneau et al. 2004) in eight different
categories using the EVAL program (see Table 1) (Keibler and
Brent 2003). Two categories, genomic overlap and exon overlap,
give an indication of what percentage of annotated C. elegans
genes were overlapped by a MAKER annotation. MAKER’s perfor-

mance in the first category was similar to the other two pro-
grams; its accuracy was 90.75% compared with 91.12% and
93.26% for Gramene and Augustus, respectively. However,
MAKER faired worse in the Exon overlap category, exhibiting a
slight tendency to drop exons, resulting in a 3.67% and 5.02%
underperformance for sensitivity in this category relative to
Gramene and Augustus, respectively. MAKER was the most effec-
tive of the three annotation pipelines at calling entire transcripts,
including start and stop codons (full exact transcript; Table 1). Its
performance in the remaining categories was comparable to
Gramene and Augustus.

MAKER’s performance on emerging genomes

Emerging genomes place particular demands on annotation
pipelines. The differences in the C. elegans and S. mediterranea
annotations illustrate many of the challenges unique to anno-
tating an emerging genome. Our results make it clear that good
performance on an established genome is no guarantee of similar
performance on an emerging genome. Poor ab initio gene-finder
performance—even when retrained—makes an evidence-based
process to inform and filter gene predictions absolutely crucial.
As judged by domain content, MAKER was only able to improve
upon SNAP’s C. elegans ab initio predictions by 16%, whereas in
S. mediterranea MAKER’s annotations are enriched 315% for pro-
tein domains compared with the SNAP ab initio predictions. The
differences are due to ab initio gene finder performance. In C.
elegans, the ab initio predictors did well, and the evidence as-
sembled by the compute pipeline usually did little more than
confirm their structure. In S. mediterranea, the situation was very
different, and MAKER’s synthesis procedure played a much
greater role. These facts demonstrate the necessity of a trainable,
evidence-based process to inform and filter gene predictions
when annotating emerging genomes; MAKER’s quality indices
proved instrumental in this regard, both for training and for
assembling the HC gene set.

MAKER outputs are GMOD and Apollo compliant

The S. mediterranea genome project used MAKER’s GFF3 outputs
to create SmedGD, a GMOD database (http://www.gmod.org) for
the S. mediterranea genome. SmedGD is available at http://
smedgd.neuro.utah.edu and is intended to provide a basic re-

source for planarian functional and
comparative genomics. In total, less
than 60 d were required to convert the S.
mediterranea genome assembly into a ge-
nome database. SmedGD thus demon-
strates the power of MAKER to jump-
start genomics in emerging model or-
ganisms by providing a first round of
database-ready, protein-coding gene an-
notations.

MAKER is ideal for smaller projects

MAKER can also be used to annotate in-
dividual contigs and BACs. For S. medi-
terranea, MAKER ran on a single-core
MAC laptop (2 GHz CPU with 2 GB
RAM) at a rate of 4.1 h/Mb of sequence;
this means that a 100 KB BAC can be
annotated on a laptop computer in less
than half an hour. Furthermore, the out-

Figure 1. SmedGD, the GMOD-based S. mediterranea genome database constructed directly from
MAKER’s outputs (http://smedgd.neuro.utah.edu).

Cantarel et al.

192 Genome Research
www.genome.org



puts can be immediately viewed and edited in Apollo (see Fig. 3)
(Lewis et al. 2002) without the added overhead of a genome
database. These features make MAKER ideal for small-scale appli-
cations and will prove useful for researchers working in emerging
model organisms for which only partial assemblies are available.

Future improvements to MAKER

At present, MAKER uses only a single ab initio gene predictor and
creates only protein-coding annotations. MAKER’s modular
structure means that any gene predictor can be integrated into its
architecture with minimal software development. To date, we
have focused on integrating SNAP, as it was designed with easy
trainability in mind (Korf 2004), but additional predictors could
be integrated as well. Augustus is also trainable and comes with
an optimization script that tries to find values for the meta-
parameters, such as splice window sizes (Stanke and Morgenstern
2005). MAKER should be able to manufacture this information
automatically as part of an extended training procedure, and we
are currently exploring the feasibility of doing so. Extending
MAKER to produce ncRNA annotations is another area of devel-
opment. Tools for tRNA gene prediction exist (Lowe and Eddy
1997), as do ncRNA gene-finders (Holmes 2005; Rivas and Eddy
2001). These improvements will make for more complete ge-
nome databases and help end the annotation bottleneck.

Methods

Architecture of MAKER
MAKER has a modular architecture that abstracts sequence analy-
ses in a standardized object model. MAKER uses the CGL (Yandell
et al. 2006) common object model, which extends the Bioperl
(http://www.bioperl.org) GenericHit and GenericHSP classes
with methods that facilitate comparative analyses and automatic
annotation. MAKER’s modular construction allows it to break the
annotation process down into a series of five discrete activities
that are easily interoperable: compute, filter/cluster, polish, synthe-
sis, and annotate (Fig. 2). MAKER performs these actions on se-
quences of any length by automatically cutting the input se-

quence into series of chunks (default is 100 kb), running each
compute, and then merging the results.

Step 1: Compute phase
A battery of sequence analysis programs is run on input genomic
sequence. The purpose of these computes is to identify and Mask
repeats and to assemble protein EST and mRNA alignments that
will be used to inform MAKER’s gene-annotation process, which
is outlined in steps 4 and 5 below. The default MAKER configu-
ration uses four external programs: RepeatMasker (http://
repeatmasker.org), BLAST (Altschul et al. 1990; Korf et al. 2003),
Exonerate (Slater and Birney 2005), and SNAP (Korf 2004). Each
is publicly available and free for academic use. All four programs
are also easy to install and run on UNIX, Linux, and OS X.

Unless repeats are effectively masked, gene predictions and
gene annotations will contain portions of transposons and vi-
ruses. MAKER uses a two-tier process to avoid this problem. First,
RepeatMasker is used to screen the genome for low-complexity
repeats; these are then “soft-masked,” e.g., transformed to low-
ercase letters rather than to Ns. Soft masking excludes these re-
gions from nucleating BLAST alignments (Korf et al. 2003) but
leaves them available for inclusion in annotations, as many pro-
tein-coding genes contain runs of low complexity sequence.
MAKER also uses BLASTX together with an internal library of
transposon and virally encoding proteins to identify mobile-
elements. This process has been shown to substantially improve
repeat masking as it identifies genome regions that are distantly
related to the protein coding portions of transposons and viruses;
these tend to be missed by RepeatMasker’s nucleotide-based align-
ment process, even when genome specific repeat libraries are avail-
able (Smith et al. 2007). Repeat regions identified in this process are
masked to Ns. MAKER performs all of the actions automatically.

BLAST is used throughout the compute phase, first for re-
peat identification with RepeatMasker (as described above) and
then to identify EST, mRNAs, and proteins with significant simi-
larity to the input genomic sequence. Because BLAST does not
take splice sites into account, its alignments are only rough ap-
proximations. MAKER therefore uses Exonerate (Slater and Bir-
ney 2005), a splice-site aware alignment algorithm to realign, or
polish, sequences following filtering and clustering (see steps 2
and 3, below). Exonerate’s ability to align both protein and
nucleotide sequences to the genome make it an economical
choice for this task.

Step 2: Filter/cluster
Filtering consists of identifying and removing marginal predic-
tions and sequence alignments on the basis of scores, percent
identities, etc. Filtering criteria for each external executable are
set by modifying the text-based maker_bopts.ctl file (see configu-
ration README distributed with MAKER). New users are not ex-
pected to edit this file, but advanced users may do so to change
the behavior of the program. After filtering, the remaining data
are then clustered against the genomic sequence to identify over-
lapping alignments and predictions. Clustering has two pur-
poses. First, it groups diverse computational results into a single
cluster of data, all of which support the same gene or transcript.
Second, it identifies redundant evidence. For example, highly
expressed genes may be supported by hundreds if not thousands
of identical ESTs. Clustering criteria are set in the maker_bopts.ctl
file, which instructs MAKER to keep some maximum number of
members within each cluster, sorted on some series of filtering
attributes such as score or fraction of the hit-sequence aligned.
The default parameters are appropriate for most applications but
can be easily modified.

Figure 2. MAKER Overview. MAKER uses four external executables:
RepeatMasker, BLAST, SNAP, and Exonerate. Actions corresponding to
the five basic steps of automatic annotation are shown in red.
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Step 3: Polish
This step realigns BLAST hits using a second alignment algorithm
to obtain greater precision at exon boundaries. MAKER uses Ex-
onerate (Slater and Birney 2005) to realign matching and highly
similar ESTs, mRNAs, and proteins to the genomic input se-
quence. Because Exonerate takes splice-sites into account when
generating its alignments, they provide MAKER with informa-
tion about splice donors and acceptors. This information is es-
pecially useful in the synthesis and annotation steps (see below).
The thresholds in the maker_bopts.ctl file earmark BLAST hits for
polishing and are suitable for most applications but can be easily
altered if desired (see configuration README distributed with
MAKER).

Step 4: Synthesis
MAKER synthesizes information from the polished and clustered
EST and protein alignments to produce evidence for annotations.
To do so, it identifies ESTs that it judges correspond to the same
alternatively splice transcript. This is accomplished by compar-
ing the coordinates of each polished sequence alignment on the
genomic sequence in the same way that a human annotator
might, e.g., by looking for internal exons with differing bound-
aries. Next MAKER identifies those protein alignments whose
coordinates are consistent with each of the EST splice forms.
Once a set of EST and protein alignments—all consistent with the
same spliced transcript—has been identified, positions on the
genomic input sequence upstream and downstream of the align-
ments are labeled as possible intergenic regions. Those bases on
the genomic sequence that fall between exons are labeled as pu-
tative introns, and bases overlapping the protein alignments are
labeled as putative translated sequence. MAKER then calculates a
score for each of these nucleotides on the query sequence based
upon the percentage of similarity of the alignment, type of align-
ment, and a query nucleotide’s position within the alignment.
These scores together with their putative sequence types, e.g.,
Intergenic, Coding, Intron, and UTR, are then passed to SNAP.
Based upon this information, SNAP then modifies its internal
Hidden Markov Model (HMM). In the absence of any supporting
EST or protein alignments, MAKER uses SNAP’s ab initio predic-
tion (for additional details, see Training SNAP).

Step 5: Annotate
MAKER also post-processes the synthesis-generated SNAP predic-
tions and recombines them with evidence to generate complete
annotations. Each synthesis-generated SNAP prediction is
checked against all ESTs and mRNAs, and 5� and 3� UTRs consis-
tent with the prediction are identified based upon their coordi-
nates relative to the predicted coding exons. The coordinates of
the SNAP prediction are then altered to include these regions.
This process is repeated for each of the synthesis-based predic-
tions. Finally, compute evidence supporting each exon is added,
and alternatively spliced forms are documented.

Additional details regarding MAKER’s architecture and
implementation can be found in the release materials. All
MAKER source code is publicly available; the current release
along with installation instructions and documentation is avail-
able at http://www.yandell-lab.org/maker.

Inputs and outputs
The input to MAKER is a genomic sequence (of any length) in
fasta format and three configuration files describing external ex-
ecutable, sequence database locations, and various compute pa-
rameters (see configuration README distributed with MAKER).

MAKER also uses four sequence database files during the com-
pute phase: a transposons file, an optional repeatmasker database
file, a proteins file, and an ESTs/mRNAs file. Each file is in fasta
format. The transposons file is bundled with MAKER and contains
a selection of known transposon and virally encoded protein
sequences. This file is used to identify and mask repeats missed
by RepeatMasker, as this has been shown to substantially im-
prove accuracy (Smith et al. 2007). In cases where no organism-
specific repeat library is available, MAKER will automatically use
the transposon file to mask mobile elements and the RepeatMas-
ker program to identify and mask low-complexity sequences. The
repeatmasker file is an optional fasta file containing organism spe-
cific repeat sequences, if available. The proteins file contains any
proteins users would like aligned to the genome. We recommend
they use the latest version of the SWISS-PROT database for this
purpose (Bairoch and Apweiler 2000). Finally, users should also
supply a file of ESTs and/or mRNAs sequences derived from the
organism being annotated. Assembling these into contigs is help-
ful, but it is not required.

MAKER outputs GMOD-compliant annotations in GFF3 for-
mat (http://www.sequenceontology.org/gff3.shtml) containing
alternatively spliced transcripts, UTRs, and evidence for each
gene’s annotated transcript and protein sequences. This file can
be directly imported into genome browsers and databases that
adhere to Sequence Ontology (Eilbeck et al. 2005) and GMOD
(http://www.gmod.org) standards. For convenience, MAKER also
outputs multifasta files of transcripts and protein sequences for
both annotations and ab initio SNAP predictions.

MAKER also writes a GAME XML file (http://www.fruitfly.
org/annot/apollo/game.rng.txt) containing the same contents as
the corresponding GFF3 file (http://www.sequenceontology.org/
gff3.shtml); this file can be directly viewed in the Apollo genome
browser (Figure 3) (Lewis et al. 2002). Apollo can also be used to
directly edit annotations and to save them to GFF3 format, thus
changes to MAKER annotations can be saved prior to uploading
them into a GMOD browser or database. Apollo can also directly
export the revised transcripts and protein sequences in fasta for-
mat. This is an especially useful feature for those seeking to an-
notate a single contig or BAC rather than an entire genome, as it
circumvents the overhead associated with creating and main-
taining a GMOD database. Figure 3 shows a portion of an anno-
tated contig viewed in Apollo genome browser. Compute evi-
dence assembled by MAKER is shown in the top panel; its result-
ing annotation, below. This figure demonstrates how MAKER
synthesizes data gathered by its compute pipeline into evidence-

Figure 3. Apollo view of a MAKER gene annotation and its associated
evidence. Evidence gathered by MAKER’s compute pipeline (upper panel)
is synthesized into the resulting MAKER annotation (lower panel).
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informed gene annotations; while SNAP produced two ab initio
predictions in this region, the EST and protein alignments clearly
support a single gene. Note too the 3� UTR on the MAKER anno-
tation derived from the EST alignments.

The MAKER mRNA quality index
Compute data are essential for discriminating real genes from
false positives. To simplify the quality evaluation process, each
MAKER-annotated transcript has an associated quality index in-
cluded in its GFF3 and GAME XML outputs. This is a nine-
dimensional summary (Table 2) of a transcript’s key features and
how they are supported by the data gathered by MAKER’s com-
pute pipeline. The quality index associated with the mRNA
shown in Figure 3 is QI:0|0.77|0.68|1|0.77|0.78|19|462|824.

Quality indices play a central role in training MAKER for a
particular genome, where they are used to identify transcripts
that are well supported by EST and protein evidence but poorly
supported by ab initio SNAP predictions. These cases are used
to retrain SNAP via the bootstrap procedure outlined below.
MAKER’s quality indices also provide an easy means to sort and
rank transcripts by key features such as number of exons, pres-
ence or absence of UTR, or degree of computational support.
Quality indices were used to assemble the HC S. mediterranea
genes described in the Results section.

Training MAKER
For optimal accuracy, a gene finder must be trained for a specific
genome (Korf 2004), generally using several hundred existing
gene-annotations drawn from a body of experimental data gath-
ered over many years. Unfortunately, many emerging genomes
do not have a history of experimental molecular biology. It has
therefore become a common practice to use gene finders trained
in one genome to predict genes in another—a far from optimal
solution to the problem (for discussion, see Korf 2004). Informa-
tion gathered from ab initio predictions is essential for the an-
notation process, even when other evidence is available. More-
over, in the absence of experimental evidence and sequence simi-
larities, the probabilistic models produced by ab initio gene
prediction programs offer the best guesses at gene structure. The
SNAP (Korf 2004) gene finder was designed from the outset to be
easily configured for any genome; hence its use in MAKER.

MAKER is trained for a genome using a two-step process.
First, SNAP is trained by aligning a set of universal genes to the
input genome (Parra et al. 2007). These universal genes are
highly conserved in all eukaryotes and can be identified using
pairwise and profile-HMM alignment methods. The resulting
gene structures are used to create a first-pass version of SNAP for
use in the next stage of the training process. This initial stage of
the training procedure is automated, and complete details of the
process can be found in the MAKER README. More extensive
documentation is provided by Parra et al. (2007).

The genome-specific HMM produced in the first stage of
SNAP training is further refined with a second stage of training.
This is accomplished by running MAKER on a few megabases of
genomic sequence (enough to result in a few hundred annota-
tions). The resulting GFF3 outputs are then used as inputs to a
script called maker2zff.pl, whose output is a ZFF file that can be
used to automatically create a revised HMM. The maker2zff.pl
script uses the quality index MAKER attaches to each annotation
to identify a set of gene models with intron-exon structures that
are unambiguously supported by EST alignments and protein
homology. These genes are then used to further refine the SNAP
HMM. The maker2fzff.pl script is bundled with MAKER, and pro-
grams necessary to create the HMM are included in the SNAP

package. To train MAKER for the S. mediterranea genome, we first
trained SNAP using the universal gene set as outlined above. We
then ran MAKER on a randomly selected 100-Mb portion of the
S. mediterranea genome (∼10% of the entire genome). The result-
ing GFF3 files were used as inputs to maker2zff.pl, and the re-
fined SNAP-HMM was used in the final annotation run.

Manufacturing an S. mediterranea specific
RepeatMasker database
Repeat sequences were identified for the S. mediterranea genome
by two methods. First, RepeatRunner (Smith et al. 2007) identi-
fied and masked sequences that had similarity to previously iden-
tified repeated elements. Second, PILER-DF (Edgar and Myers
2005) was used to find novel dispersed repeats. Settings for the
various programs in the PILER suite are as follows: PALS was run
with the parameter length = 150 (minimum hit length) and
pctid = 94 (minimum percentage identity). PILER was run with
the parameter famsize = 10 (minimum size of the repeat family).
MUSCLE (Edgar 2004) was run with maxiters = 1 and diags = 1 as
recommended in the documentation for PILER. There were 295
repeat families found by this method; most were helitrons (Kapi-
tonov and Jurka 2001).

Manufacturing EST contigs from S. mediterranea ESTs
The 78,101 EST sequences from S. mediterranea were clustered
into 15,011 contigs using CAP3 (Huang and Madan 1999).

Manufacturing the protein database
The reference proteins file consisted of proteome sequences from
seven organisms and all known Platyhelminthes proteins. The C.
elegans (W160), D. melanogaster (v4.3), Escherichia coli
(NC_000913), Homo sapiens (v36.1), Mus musculus (v36.1), and
Saccharomyces cerevisiae (08/2006) proteome sequences were
downloaded from NCBI (http://ftp.ncbi.nih.gov/genomes). The
Ciona intestinalis proteome (v1.0) was downloaded from the Joint
Genome Institute downloads site (http://genome.jgi-psf.org/
ciona4/ciona4.home.html). Platyhelminthes protein sequences
were downloaded from NCBI’s Entrez in August 2006.

Compute times
We clocked MAKER on a 2.236-Mb sequence. On a 32 GB-RAM
machine, with eight dual-core 2-GHz processors, the annotation
took MAKER 549 min on one processor and 299 min using two
processors. When external programs, such as BLAST are pre-run,
the process time for MAKER on one processor was 31.33 min. For
this test, MAKER produced a 3.7-Mb GFF3 file, a 60 MB GAME
XML document, and four fasta files totaling 560 kilobytes. For S.
mediterranea, MAKER ran on a single-core MAC laptop (2 GHz
CPU with 2 GB RAM) at a rate of 4.1 h/Mb of sequence—this
value includes all compute steps, e.g., compute phase, filter/
cluster, polish, synthesis, and annotate.

Downloading and installing MAKER
MAKER is available for download from http://www.yandell-
lab.org/downloads/maker/maker.tar.gz. Once downloaded, the
MAKER package should be unzipped and untared. Full instal-
lation and usage instructions are available in the file called
README.

Creating SmedGD
The GFF3 output files generated by MAKER were used to populate
SmedGD. The files were uploaded into a mySQL database, using
a standard Bioperl (http://www.bioperl.org) loading script,
bp_seqfeature_load.pl. This script converts GFF3 formatted an-
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notations to Bio�SeqFeatureI objects, which are stored in the
mySQL database. GBrowse, a tool distributed by GMOD (http://
www.gmod.org) implementing a Bio�DB�SeqFeature�Store da-
tabase adaptor, accesses and displays rows of data or tracks that
are mapped to specific locations in the genome. SmedGD con-
sists of MAKER annotations as well as project specific features,
such as additional protein homology, human curated genes, and
RNA interference phenotype data. The database is available at
http://smedgd.neuro.utah.edu.
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