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The recent availability of full genomic sequence data for a large number of human influenza A (H3N2) virus isolates
over many years provides us an opportunity to analyze human influenza virus evolution by considering all gene
segments simultaneously. However, such analysis requires development of new computational models that can
capture the complex evolutionary features over the entire genome. By analyzing nucleotide co-occurrence over the
entire genome of human H3N2 viruses, we have developed a network model to describe H3N2 virus evolutionary
patterns and dynamics. The network model effectively captures the evolutionary antigenic features of H3N2 virus at
the whole-genome level and accurately describes the complex evolutionary patterns between individual gene
segments. Our analyses show that the co-occurring nucleotide modules apparently underpin the dynamics of human
H3N2 evolution and that amino acid substitutions corresponding to nucleotide co-changes cluster preferentially in
known antigenic regions of the viral HA. Therefore, our study demonstrates that nucleotide co-occurrence networks
represent a powerful method for tracking influenza A virus evolution and that cooperative genomic interaction is a
major force underlying influenza virus evolution.

[Supplemental material is available online at www.genome.org.]

The rapid evolution of the influenza A virus poses a global chal-
lenge to public health. Recent events, such as induction of sub-
stantial morbidity and mortality by human H3N2 virus during
the 2003–2004 influenza season (Bhat et al. 2005; Ghedin et al.
2005; Holmes et al. 2005) and the spread of highly pathogenic
H5N1 influenza virus, have heightened concerns of potential
pandemics. Thus, there is an urgent need for a better understand-
ing of influenza virus evolution. Numerous full genomic influ-
enza virus sequences are available in public archives, and analy-
ses of these data have significantly enhanced our understanding
of influenza evolution and its disease-causing mechanism (Chen
et al. 2005; Fauci 2005; Ghedin et al. 2005; Holmes et al. 2005;
Obenauer et al. 2006). However, opportunities remain to extract
even more information from these valuable public archives in
order to facilitate influenza prevention and control in the human
populations.

The influenza A genome consists of eight gene segments
that encode 11 proteins (Parrish and Kawaoka 2005). Five gene
segments each encode a single protein: hemagglutinin (HA),
neuraminidase (NA), nucleoprotein (NP), acidic polymerase (PA),
and polymerase basic 2 (PB2). Three gene segments each encode
two proteins: polymerase basic 1 (PB1) for PB1 and PB1-F2, NS for
nonstructural proteins 1 and 2 (NS1 and NS2), and M for matrix
proteins 1 and 2 (M1 and M2). Proteins NP, PA, PB1, and PB2
together mediate viral replication and transcription. The two sur-
face glycoproteins, HA and NA, control viral entry into the cells

and release from the infected cells and are the major antigenic
targets of the host antibody responses. Pre-existing influenza-
specific antibodies largely determine a host’s susceptibility to re-
infection by related strains of virus.

Conventionally, analyses of influenza evolution have fo-
cused on individual viral genes, particularly HA, to understand
and predict viral antigenic evolution (Bush et al. 1999; Ferguson
et al. 2003; Fitch et al. 1991; Grenfell et al. 2004; Plotkin et al.
2002). These approaches effectively identify single mutations, as
well as independent evolutionary behaviors of single genes.
However, the evolutionary behavior of the virus often involves
cooperative changes within and between genes. For example,
mutations in the epitopes of influenza virus proteins that facili-
tate escape from the host immune response sometimes occur at
the cost of viral fitness and thus require amino acid substitutions
outside the epitope to restore optimal function (Rimmelzwaan et
al. 2005). In addition, cooperative activities of both surface pro-
teins, HA and NA, are critical for influenza virus infection and
release (Wagner et al. 2002). Thus, important information about
influenza evolutionary behavior is contained in the correlated
changes between nucleotide positions both within genes and be-
tween genes.

Analysis of correlated mutations in human influenza vi-
ruses, however, can be obscured by its complex evolutionary
events including co-circulation of distinct viral lineages and gene
reassortment events that generate hybrid viruses from distinct
ancestral viruses (Ghedin et al. 2005; Holmes et al. 2005). In this
study, by considering co-occurrences or co-changes of human
influenza genomic information as correlated changes in a loose
sense, we have developed a computational approach that ana-
lyzes nucleotide co-occurrences across all genes to gain insight
into evolution of influenza H3N2 viruses. We report how nucleo-
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tide co-occurrence networks are built and how they can be used
to interpret evolutionary patterns of the influenza A viruses, in-
cluding the significant changes recently observed for H3N2. We
further demonstrate that co-occurring nucleotide modules,
which are clustered preferentially in all five known antigenic
epitopes of HA, likely underlie the dynamics of H3N2 evolution
in humans. Thus, nucleotide co-occurrence networks are novel
tools for tracking human influenza virus evolution.

Results

Construction of nucleotide co-occurrence networks

Influenza virus H3N2 first became widespread in humans during
the 1968 “Hong Kong” flu and have been a major cause of influ-
enza epidemics ever since. The recent availability of full genomic
sequences for >1000 H3N2 isolates provides us an opportunity to
examine how H3N2 viruses have evolved at the whole-genome
level. To build nucleotide co-occurrence networks for human
H3N2 viruses, we used the following five steps (Fig. 1A). In Step
1, genome sequences of 1032 H3N2 isolates from 1968 to 2006
were aligned. In Step 2, the eight gene segments were concat-
enated into a continuous sequence, similar to the approach re-
ported by Ciccarelli et al. (2006). In Step 3, all nucleotide posi-
tions that were conserved in all isolates from all seasons were
removed so that only regions of the concatenated genome that
contained nucleotide variation (40% of all positions) were fur-
ther considered. In Step 4, for each pair of nucleotide positions
that remained after Step 3, the nucleotide pairs that exhibited
perfect co-occurrence were tagged and connected (Fig. 1B). This
resulted in a network for each of the 1032 viral isolates contain-
ing co-occurring nucleotide pairs over the entire concatenated
genome. We termed this network the “nucleotide co-occurrence
network,” in which nodes represent nucleotides at specific posi-

tions in the genome and edges between nodes represent co-
occurring nucleotide pairs. In Step 5, we further clustered nucleo-
tide pairs contained in the networks into co-occurring nucleotide
modules, each of which represents a group of co-varying nucleo-
tides that may reveal cooperative interactions underlying viral
biological activity. Below, we illustrate how the network repre-
sentation of complex viral genomic interactions can be used to
understand and characterize human influenza H3N2 virus evo-
lution.

H3N2 nucleotide co-occurrence networks capture viral
evolutionary patterns

To visualize how H3N2 viruses evolve over time, we examined
the changes in network topology, also known as a connectivity
map, by quantifying the average connectivity (K), or the average
number of co-varying partners per nucleotide, for each of the
1032 nucleotide co-occurrence networks. The connectivity map
shows that the human influenza H3N2 viruses evolve with large
connectivity changes (Fig. 2A). For example, recent H3N2 viruses
of Fujian strain that predominated in 2005 and 2006 underwent
a significant connectivity change from those that predominated
in 2003 and 2004 (Fig. 2A). A phylogenetic tree analysis of the
recent strains revealed that the predominant strains in 2004 and
2005 belong to different branches of the phylogenetic tree (Fig.
2B, orange and blue). These results suggest that the large network
topology changes between consecutive seasons, reflecting the re-
placement of epidemic strains.

Distinct connection topologies were also observed between
strains in the same season. For example, the connectivity map
revealed that the recent H3N2 viruses started to emerge in 2003
(Fig. 2A, orange arrows), which have a big connectivity shift from
the predominant strains in the same season. This result is con-
sistent with the phylogenetic tree analysis, which shows that the

minor strains in the 2003 flu season are
on a different tree branch from those
predominant strains (Fig. 2B; orange ar-
rows indicate same strains as in Fig. 2A).
Therefore, these findings suggest that
the existence of significantly different
topologies in the same season implies
co-circulation of H3N2 strains from mul-
tiple phylogenetic lineages.

The connectivity map further re-
veals that connection topology of
nucleotide co-occurrence networks
evolves in clusters, while genetic evolu-
tion at the sequence level is relatively
continuous (Fig. 2, cf. A and C; colors
indicate network connectivity clusters
for predominant H3N2 strains in con-
secutive seasons). Recently, Smith et al.
(2004) systematically characterized the
antigenic relationships between 273
H3N2 isolates sampled between 1968
and 2003 and showed that antigenic
changes of H3N2 viruses are also clus-
tered (Smith et al. 2004; the antigenic
clusters are replotted in Fig. 2A). To de-
termine if connectivity and antigenicity
patterns of H3N2 strains are similar, we
developed a simple clustering algorithm

Figure 1. Overview of network construction. (A) Flow diagram showing the computational processes
of analyzing H3N2 virus genomic co-occurrence network. (B) Mathematical framework of Step 4,
construction of the viral genomic co-occurrence network. See Methods for details.
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to cluster the predominant strains from each season based on
their connectivities (see Methods). For ease of comparison, we
considered connectivity clusters containing predominant strains
from at least 2 yr from 1968 to 2003, which covers 26 seasons
(Fig. 2A, color-coded connectivity clusters). Approximately 86%
of all season pairs that shared a connectivity cluster also shared
an antigenic cluster (P < 0.001), and only two of the 26 seasons in
the connectivity clusters did not match their placements in the
antigenic clusters (Fig. 2A, red arrows). The tight agreement be-
tween the connectivity and antigenic clusters suggests that
changes in average network connectivity capture the antigenic
drift of the H3N2 viruses. Therefore, it seems that nucleotide
co-occurrence networks are a simple and efficient means of visu-
alizing important characteristics of human influenza evolution.

We noted that the uneven distribution of H3N2 isolates

with complete sequence data (>90% collected between 1993 and
2006) could potentially bias conclusions made for the entire pe-
riod between 1968 and 2006. Therefore, we simulated an evenly
distributed collection of viral isolates by randomly sampling only
one viral isolate from each flu season from 1968 to 2006 and
constructed nucleotide co-occurrence networks following the
same procedure outlined in Figure 1. We calculated the connec-
tivity pattern for these sampled viruses (corresponding to one
dotted-line curve in Fig. 2D). By repeating this simulation many
times, we were able to obtain connectivity patterns statistically
for virus isolates that were evenly distributed among all seasons
(Fig. 2D, bold blue line).

Overall, the pattern of changes in the network connectivity
of the simulated networks is similar to that obtained with the
1032 H3N2 isolates (Fig. 2, cf. A and D). However, evolutionary

Figure 2. Evolving network connectivity of human influenza virus strains. (A) The average vertex connectivities (K) for each of the 1032 H3N2
nucleotide co-occurrence networks were calculated and plotted by flu season. Each marker represents one strain’s nucleotide co-occurrence network
isolated from New York (circles), Memphis (asterisks), Hong Kong (squares), or Canterbury (crosses). The connectivity clusters for predominant strains
(see Methods for detailed explanation of calculations) are colored according to their best-matched antigenic clusters in Smith et al’s analysis (Smith et
al. 2004). The title denoted “Antigenicity” indicates the color-coded antigenic clusters in Smith’s work. (B) Phylogenetic tree derived from the
concatenated viral genomes of H3N2 strains isolated between 1968 and 2006. Bootstrap values are shown for key nodes. The strains within a
connectivity cluster in A are mapped to the phylogenetic tree and are shaded with the same color as the connectivity clusters. The clades are labeled
using the season from which the majority of the strains were isolated. (C) Season-by-season analysis of whole-genome sequence evolution of 1032
strains. Genetic (nucleotide substitution) distances relative to A/Hong Kong/1/68 were calculated from the phylogenetic tree in B for each of the 1032
strains. The color and symbol representation are the same as in A. (D) Standardized vertex connectivities (K) for the simulated sampling of nucleotide
co-occurrence networks are plotted by season. The blue line indicates the average K for all strains sampled from that season.
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patterns as indicated by the network connectivity changes be-
came clearer. Namely, the evolution of human H3N2 viruses ex-
hibited distinct features at different times (Fig. 2D). When the
viruses first emerged in humans from 1968 to 1972, the connec-
tivity of these early H3N2 viruses changed rapidly and signifi-
cantly, indicating that viruses had to undergo dramatic and col-
lective evolutionary changes for rapid adaptation to the new
host. From 1972 to 2001, the connectivity was relatively steady
and changed in clusters at a much slower pace, indicating rela-
tively infrequent changes in the influenza activities. Interest-
ingly, no severe diseases were associated with influenza viruses
between 1979 and 1985 (Chakraverty et al. 1986). From 2001 to
2006, the connectivity increased steadily, with significant shifts
during 2001–2002 and 2004–2005 (Fig. 2D, red arrows). The sig-
nificant connectivity shift from 2004 to 2005 may reflect the
combined effects of antigenic novelty and improved host adap-
tation on viral fitness of recent H3N2 viruses, late Fujian strains
(Fig. 2A,D; Wolf et al. 2006). Taken together, these findings sug-
gest that H3N2 whole-genome nucleotide co-occurrence net-
works capture the essential evolutionary characteristics of vi-
ruses.

H3N2 nucleotide co-occurrence networks reveal unique
evolutionary patterns of individual gene segments

Nucleotide co-occurrence networks allow us to reveal the evolu-
tionary pattern of H3N2 viruses at the whole-genome level. How-
ever, individual gene segments may evolve independently
through gradual mutations or gene reassortment, exchange of a
complete gene segment from one virus strain with another (Par-
rish and Kawaoka 2005). Therefore, it would be informative to
follow the evolutionary trajectory of each viral gene segment
separately. To track evolutionary patterns of individual gene seg-
ments, we analyzed changes in the nucleotide co-occurrence net-
work connectivity of individual gene segments in each H3N2
isolate. To avoid biasing our observations, we continued to use
the sampled distribution of H3N2 isolates and considered the
period from 1998 to 2006, which has both most of the sequence
data and the most interesting evolutionary changes of the vi-
ruses.

All individual gene segments have large connectivity shifts
from 2004 to 2005, consistent with the whole-genome results
discussed above. However, in some cases, patterns of connectiv-
ity changes are distinct for different gene segments (Fig. 3A,B).
For example, the connectivity of NS changes significantly from
1999 to 2000, while HA has been changing significantly since
2003. MP evolves relatively slowly between 1997 and 2004 (Fig.
3A; significant changes highlighted in red). In contrast, the con-
nectivity of NA, encoding a surface protein, changes with a pat-
tern similar to gene segments encoding viral replication machin-
ery, particularly NP, PA, and PB1, which all have significant net-
work topology changes from 2001 to 2002 (Fig. 3B).

One method for tracking the evolution of individual gene
segments is to derive gene-segment phylogenetic trees and then
analyze the major changes in their tree topologies, a method
recently applied to influenza A gene segments by Holmes et al.
(2005). When we compared our connectivity results with our
own phylogenetic tree analyses for individual gene segments, the
connectivity changes identified are consistent with transitions
between two slender trunks of its phylogenetic tree (Fig. 3C,D;
Supplemental Fig. S1). For example, the origins of the HA gene in
2004 do not come from strains in 2003, consistent with the con-

nectivity shift in HA between 2003 and 2004 (Fig. 3A,C). In con-
trast, the NA gene shift in the phylogenetic structure occurred in
2001 and 2002 (Fig. 3D). Therefore, analysis of network connec-
tivity relationships of individual gene segments can capture their
evolutionary patterns, indicating that H3N2 nucleotide co-
occurrence networks also present an effective and simple way to
visualize evolutionary patterns of individual viral gene segments.

Nucleotide co-changes within and between H3N2 gene
segments contribute independently to influenza evolution

To understand the evolutionary patterns of individual gene seg-
ments and their complex evolutionary relationships in a quan-
titative way, we introduced two additional metrics to describe the
degree of co-changes in the nucleotide co-occurrence networks.
In order to quantify the rate of co-changes within and between
gene segments, we calculated R, the rate of a nucleotide losing or
gaining a connection between two seasons. In order to quantify
the extent of co-changes between gene segments from season to
season, we calculated C, the ratio of R between two gene seg-
ments to R within each of the two gene segments. If C is >1, then

Figure 3. Evolutionary patterns of individual influenza gene segments.
(A,B) Average standardized connectivity K of H3N2 nucleotide co-
occurrence networks for gene segments (A) HA, NA, MP, and NS; and (B)
NA, NP, PA, PB1, and PB2 from 1998–2006. The largest changes in
connectivity K in HA, NA, and NS before 2004 are labeled in red and
indicated by arrows. (C,D) Phylogenetic trees of (C) HA and (D) NA
nucleotide sequences from influenza A viruses sampled from 1997 to
2006. Bootstrap values are shown for the key nodes. The clades for strains
during 2000–2006 were labeled using the season from which the major-
ity of the strains were isolated.
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the two gene segments are more likely to evolve together rather
than separately.

When we plotted the rate of nucleotide connection changes
(R) within and between all individual gene segments, we were
able to explore network connection changes at a more detailed
level (Fig. 4A). We have previously shown that the virus under-
went large network connectivity changes from 2001 to 2002 and
from 2004 to 2005 (Fig. 2A,D). Here we observe that co-changes
both within gene segments (Fig. 4A, left side) and between gene
segments (Fig. 4A, right side) contributed to these large connec-
tivity changes.

In particular, we noted that HA uniquely underwent con-
nectivity changes within itself from 2003 to 2004 (Fig. 4A, ar-
row), which indicates that the unique connectivity change of HA
from 2003 to 2004 discussed above is mainly due to the co-
changes within the gene. This independent evolution of HA in-
dicates a gene reassortment event for HA, as has been suggested
previously (Holmes et al. 2005). The highly similar evolutionary
patterns among all gene segments from 2004 to 2005 may sug-
gest a more complicated mechanism, such as multiple gene re-
assortments (Ghedin et al. 2005) or marked accumulated genetic
drift (Parrish and Kawaoka 2005).

In contrast to HA, NA tends to have similar evolutionary
patterns with other gene segments. Using the metric of coopera-
tive evolution (C), we observed highly correlated changes be-
tween NA, NP, PA, PB1, and PB2 (Fig. 4B, C > 1). Proteins NP, PA,
PB1, and PB2 encode the influenza virus replication machinery
(Fodor et al. 2002), and therefore highly cooperative evolution
between these genes is expected; however, the fact that NA also
varies with this group of genes has not been noted before, indi-

cating more complex interactions among viral genes during hu-
man influenza evolutions. By comparing nucleotide co-
occurrence networks at the level of gene segments, we were able
to characterize evolutionary relationships within and between
influenza gene segments.

Co-occurring nucleotide modules identify detailed genomic
changes that underlie human influenza dynamics

The nucleotide co-occurrence networks present a quantitative
and accurate way to describe characteristics of human influenza
evolution. We further sought to determine if these networks
could reveal structural details about H3N2 evolution. We thus
decomposed the viral networks into their 2324 individual co-
occurring nucleotide (CN) modules (Supplemental Tables S1, S2).
The distribution of a CN module among the isolates can be de-
scribed as a vector of ones and zeros, indicating the presence or
absence of this module in each of the H3N2 strains. Because this
representation is similar to a gene phylogenetic profile, which
denotes the distribution of genes across species (Slonim et al.
2006), we named it the strain-module profile.

To elucidate the dynamics of human influenza epidemics at
the level of individual co-occurring nucleotides, we used the
strain-module profiles to identify CN modules that are present in
a majority of strains (�50%) in a season and classified these as
predominant modules. The predominant modules were further
classified into conserved, transition, and transient modules based
on their presence and relations over time from 1968 to 2006
(Supplemental Fig. S2). A conserved module is a predominant
module that is present in every season from 1968 to 2006. The
nucleotides present in the conserved modules may provide in-
formation about which genomic features are required for survival
and predominance of epidemic strains. A transition module con-
sists of two or more predominant modules that share at least one
nucleotide position and alternate in different seasons. A transient
module is a predominant module that shares no nucleotide po-
sitions with any other predominant modules and occurs only in
some seasons. We clustered epidemic strains from 1998 to 2006
based on strain-module profiles for transition and transient mod-
ules only, and the strains cluster into four groups: 1998–1999,
2000–2001, 2002–2004, and 2005–2006. These clusters match
the four phylogenetic groups derived from their genomic se-
quences (cf. Fig. 5A and Fig. 2B), suggesting that transition and
transient CN modules alone contain enough information to cap-
ture the dynamics of strain evolution.

By identifying amino acid substitutions corresponding to
nucleotide changes within transient and transition modules,
namely, predominant module-based amino acid substitutions
(Supplemental Fig. S3), we hoped to gain functional insights into
influenza virus evolution. When a colorgram of predominant
module-based amino acid substitutions observed for human
H3N2 virus from 1998 to 2006 was constructed, we observed that
two transition modules, 225/1746 and 239/1522, underwent sig-
nificant amino acid changes from 2004 to 2005 (Fig. 5B, arrows).
The transition module 239/1522 consists of nine co-mutations
involving nonstructural proteins and the viral RNA replication
machinery. Interestingly, this module change has occurred re-
currently, that is, the strains in 2001 had the same module struc-
ture as the strains in 2005. The transition module 225/1746 in-
cludes 10 co-substitutions from NA, M2, and subunits of viral
RNA replication machinery. In contrast to the recurrent changes
in module 239/1522, the changes in module 225/1746 in 2005

Figure 4. Quantification of correlated changes between H3N2 gene
segments between 1998 and 2006. (A) Heat map of the rates (R) of
season-to-season intragenic (left panel) and intergenic (right panel) con-
nection changes for the simulated sampling of H3N2 strains from 1998 to
2006. Significant intragenic HA change is labeled with an arrow. See
Methods for detailed calculations. (B) The extent of cooperative changes
(C) between gene segments for the simulated sampling of H3N2 strains
from 1998 to 2006. See Methods for detailed calculations.
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resulted in amino acids that are mostly in NA, have not been
found in this module before, and therefore are more likely to
contribute to the recent influenza epidemics. Thus, strain-
module profiles can help distinguish detailed genomic changes
contributing to viral activities.

Module-based amino acid substitutions determine
the antigenic structures

We reasoned that if the genomic changes contained in CN-
modules underlie the evolution of viral activities, the structural
positions of these changes on major surface antigen, HA, should

correspond to known antigenic positions (Wiley et al. 1981).
Thus, for transient and transition modules with nucleotide
changes that resulted in amino acid substitutions in HA, we
mapped those substitutions onto the HA structure (Fleury et al.
2000). As shown in Supplemental Table S3 and Figure 6, these
predominant module-based amino acid substitutions mostly oc-
curred at the exposed side of the trimeric complex (∼86%) and are
preferentially clustered in the five known antigenic epitopes of
HA (∼72%, P < 0.001). In contrast, nonpredominant module-
based amino acid changes were uniformly distributed across the
entire HA protein (Fig. 6, yellow; Supplemental Table S3). These
results suggest that predominant module-based amino acid sub-
stitutions may have been selected to interfere with antibody rec-
ognition by reshaping the antigenic structures of HA, whereas
non-co-changes, or changes from CN modules that are present in
only a low number of epidemic strains, are randomly distributed.

We next determined to what extent the co-occurring
nucleotide pairs captured in the predominant CN modules reflect
functional correlations. Because there is little knowledge about
functional correlations between these nucleotide pairs, we used
the known antigenic features of HA to address this question.
Numerous examples have shown that simultaneous two or more
mutations at the five known epitope regions can help influenza
virus evade host immunity more effectively than a single muta-
tion (Wilson and Cox 1990; Jin et al. 2005). Thus, we regarded
the amino acid co-substitutions as correlated changes when both
mutations occur at the five known epitope regions, and used
them to assess functional correlations of the CN modules. We
only considered the nucleotide pairs in predominant CN mod-
ules whose changes are accompanied by pairs of amino acid sub-
stitutions on HA. Among the 77 pairs of co-occurring nucleotides

Figure 5. Characteristics of co-occurring nucleotide modules. (A) Heat
map of the distribution of transient and transition modules from 1998 to
2006 subject to hierarchical clustering based on the strain-module pro-
file. Rows correspond to transient and transition modules, and columns
correspond to the indicated season. If a transient module is present in a
majority of strains in a season, it is blue; otherwise it is gray. Transition
modules are labeled according to which of the two member modules is
present in the majority of strains in a season (first member, blue; second
member, red). (B) Module-based amino acid changes corresponding to
the nucleotide changes in transient and transition modules from 1998 to
2006. Each row represents a single amino acid position in a viral protein
(labeled on the right). Amino acids (single-letter abbreviations) are also
color-coded, so that mutations can be seen as changes both in amino
acid identity and color. See Supplemental Figure S3 for all module-based
amino acid changes from 1968 to 2006.

Figure 6. Module-based H3N2 amino acid substitutions mapped onto
the HA structure. Amino acid substitutions from 1968 to 2006 are
mapped onto the (left panel) exposed and (right panel) buried surface of
the HA monomer. Residues are colored by module-based amino acid
changes (red), non-module-based changes (yellow), and intact residues
(purple). The five antibody epitopes (Wiley et al. 1981) and the receptor-
binding site (Skehel and Wiley 2000) are circled. The module-based
amino acid substitutions carrying two or more residues in 1998–2006 are
labeled.
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that are accompanied by amino acid co-substitutions on HA dur-
ing 1968–2006, 67 (87.0%, compared with 13.0% in other amino
acid co-substitutions) pairs of amino acid co-substitutions oc-
curred in the antigenic sites, indicating the ability of the nucleo-
tide co-occurrence network to capture the correlated genomic
changes during human influenza evolution. Furthermore, these
CN modules involved co-substitution of amino acids located in
distinct antigenic sites (Fig. 6A, left panel). Therefore, it appears
that CN-module-based amino acid mutations can capture func-
tional coordinations between different antigenic sites that are
required for influenza virus to effectively evade the host immune
response.

In addition, CN-module-based amino acid mutations may
be required to maintain viral functionality. The two mutations
W222R and G225D in a transition module, 3/1744 (Figs. 5B and
6, left panel) provided such an example. These two mutations
were located in the receptor-binding region and coevolved in the
predominant strains from 2003 to 2004. Multiple groups have
shown experimentally that both the W222R and G225D single
mutations reduce human H3N2 HA receptor-binding activity
and viral replication efficiency (Skehel and Wiley 2000; Nakajima
et al. 2005), indicating that the co-substitution of these sites
maintains human H3N2 HA receptor-binding affinity. Thus, co-
occurring nucleotide modules can also identify amino acid sub-
stitutions that result in functional changes in human influenza
evolution.

Discussion

Analyses of viral sequence evolution, and influenza virus evolu-
tion in particular, have traditionally relied on phylogenetic tech-
niques. In this report, we have developed a network model that
can complement traditional methodologies by representing a vi-
rus as a complex genomic interaction network based on the co-
occurring nucleotide pairs over the entire genome. The network
representation of viral sequence provides new perspectives on
the structure of their whole-genome evolution, which cannot be
easily characterized by the traditional methodologies.

We have shown that large connectivity changes in the viral
networks match both the antigenic changes and the transitions
of side lineages in phylogenetic analyses. However, in many
cases, the transitions of phylogenetic side lineages do not corre-
spond to remarkable connectivity changes and antigenic shifts
(Fig. 2, cf. B and A). For example, predominant strains from 1977
to 1985 split into several distant side lineages in the phylogenetic
tree (Fig. 2B, green), but those isolates have very close connec-
tivity (Fig. 2A, green) and similar antigenicity. This indicates that
our network model has an advantage over the phylogenetic al-
gorithms to detect such clusterwise antigenic evolutionary fea-
tures.

Recently, Plotkin et al. (2002) used HA sequence clusters to
describe the antigenic evolution of influenza A viruses. To deter-
mine how well the connectivity clusters correspond to the HA
sequence clusters, we followed the same clustering method as
developed by Plotkin et al. and clustered the HA sequences for
the 1032 H3N2 isolates (see Methods). Overall, the connectivity
clusters have a good correspondence (∼65.7%; 23 out of 35 sea-
sons with data available from 1968 to 2006) with HA sequence
clusters (Supplemental Fig. S4), but they match the antigenic
clusters better than the HA sequence clusters. Moreover, by trans-
forming viral genomic information into a network representa-
tion, we were able to study how influenza A evolves at multiple

levels of complexity, from whole-genome, individual genes to
specific amino acid residues.

We have demonstrated that the network connectivity for
the entire viral genome provides a simple and effective way to
associate a viral genomic sequence with its antigenic properties.
The network model also provides a quantitative method to com-
paratively analyze the evolutionary patterns of individual genes
and assess their coevolution. The distinct evolutionary patterns
of individual gene segments for epidemic strains can be easily
observed by visualizing the network connectivity of individual
gene segments (Fig. 3A,B). Although different gene segments ex-
hibit distinct evolutionary patterns, we observed extensive co-
evolution between gene segments, which may indicate their
functional relatedness.

CN modules, the component clusters of the nucleotide co-
occurrence networks, provide a means of organizing viral com-
plex interactions of genomic information into units of potential
biological activity. Two recent analyses of human H3N2 evolu-
tion suggest that epistatic or context-dependent interactions of
amino acids in HA were largely associated with significant anti-
genic change that leads to an increase in viral fitness (Koelle et al.
2006; Wolf et al. 2006). Consistent with these analyses, CN mod-
ules also shed light on the organization of such context-
dependent interactions of amino acid substitutions that under-
pin the evolution of human influenza. By mapping amino acids
of predominant CN modules to their structural locations on the
HA protein, we found that these module-based amino acids clus-
ter in the known regions of HA antigenic structures, suggesting
an evolutionary strategy used by influenza virus to reshape its
antigenic structures. Therefore, the complex composition of gene
segments involved in many CN modules may reveal even more
complicated combinatorial effects of nucleotides/residues on hu-
man influenza evolution.

The key element of the network model construction re-
quires identification of the correlated genomic information in
terms of nucleotide or amino acid pairs. In this work, we regard
the nucleotide co-occurrence as correlated changes in a loose
sense. We found that many of these co-occurring nucleotide
pairs are, indeed, correlated changes. In the case of 2003–2004
H3N2 isolates, our data suggest that a CN-module-based amino
acid compensatory mutation maintains the receptor-binding
specificity of the virus. In addition to compensating for func-
tional losses, multiple mutations in antigenic structures are also
more effective than a single mutation in enabling the virus to
evade host immune response (Wilson and Cox 1990; Jin et al.
2005). We found that co-substitutions of amino acids in pre-
dominant CN modules mostly occur in the five known epitope
regions on HA, indicating that the genomic co-changes captured
in our network model are much more likely to be correlated
mutations. However, we note that our simple method to com-
pute co-occurring nucleotide pairs may introduce uncorrelated
mutations due to gene reassortments or by chance. Correlated
mutations of amino acids have been widely investigated and im-
plicated in the evolution of protein stabilities, structures, and
functions (Gobel et al. 1994; Pollock 2002; Choi et al. 2005; Chen
and Lee 2006; Shapiro et al. 2006). Recently, numerous groups
have also explored the correlated mutations in sequence evolu-
tion of some RNA viruses, including vesicular stomatitis virus
(VSV), human immunodeficiency virus type 1 (HIV-1), and hu-
man influenza viruses (Rimmelzwaan et al. 2005; Shapiro et al.
2006; Shih et al. 2007). Accordingly, numerous factors have been
explored to identify the correlated changes. In light of these
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works, a variety of ways should be considered to improve the
capture of correlated genomic changes in the network construc-
tion. We have attempted some. One was to try different degrees
of stringency of co-occurrence. Indeed, we obtained a higher cov-
erage of co-occurring nucleotide pairs, but coverage of the corre-
sponding amino acid pairs is only marginally improved (data not
shown). In another analysis, based on the same method, we also
constructed a network by identifying amino acid co-occurrence
directly. The evolution of both networks for protein and genomic
sequences observes exactly the same patterns, and the amino
acid pairs captured in both networks are almost the same (data
not shown). Future directions may also need to take into consid-
eration the effect of gene reassortment and the structure of viral
phylogenies.

Although the connectivity model can accurately describe
the evolutionary patterns of human H3N2 viruses based on their
networks of nucleotide co-occurrences, it fails to take into ac-
count highly correlated changes, particularly those with co-
occurrence of any nucleotide pair at a pair of positions. To in-
vestigate whether the connectivity model can reflect all corre-
lated changes in the networks of nucleotide co-occurrence, we
introduced another metric, S, similar to R, to denote the rate of
network changes by considering not only the changes in connec-
tivity but also the changes when a pair of nucleotides of co-
occurrence changes to another pair of nucleotides of co-occurrence.
It was found that in the viral networks, the changing pattern of
S correlates well with that of connectivity (Pearson correlation
coefficient = 0.87) (also see Supplemental Fig. S5), indicating that
the connectivity model can reflect the pattern of the entire cor-
related changes in the networks. Despite this, how to develop a
novel network metric that can capture the dynamical nature of
genomic correlation networks more accurately and comprehen-
sively presents an important direction in our future work.

The influenza virus constantly mutates, making prediction
of its evolutionary trajectory difficult (Smith 2006). As a prom-
ising step to overcome this difficulty, we present a method of
constructing nucleotide co-occurrence networks to capture evo-
lutionary information encoded in the viral genome. The nucleo-
tide co-occurrence networks accurately capture influenza evolu-
tion from genomic sequence data, and thus would be valuable for
influenza prevention and control, such as strain surveillance and
vaccine strain selection. Our findings suggest that nucleotide co-
occurrence networks, by modeling the complex co-changes at
the nucleotide level, present an efficient means of studying in-
fluenza virus evolution.

Methods

Influenza virus sequences used
Sequence data of 1032 complete genomes of influenza A virus
(H3N2) sampled from Hong Kong of China, Memphis, and New
York of the United States, and Canterbury of New Zealand during
1968–2006 were downloaded from the Influenza Sequence Data-
base (Fauci 2005) (see complete list in Supplemental Table S2).

Construction of viral nucleotide co-occurrence networks
and co-occurring nucleotide modules

Step 1
Coding regions for each gene segment were compiled by per-
forming multiple nucleotide sequence alignments separately
on the eight individual influenza virus gene segments using

ClustalW (Thompson et al. 1994). In cases of incomplete se-
quencing near the start or stop codons, nucleotides were added
to the ends of the sequences based on the consensus sequence.

Step 2
A single alignment was generated by concatenating the coding
regions of the eight viral gene segments, resulting in a whole-
genome sequence of 13,115 nt.

Step 3
All conserved nucleotide positions within the 1032 H3N2 isolates
(7869 positions) were removed, so that only variable positions
(5246 positions) remained.

Step 4
For all possible nucleotide position pairs (i, j), we first eliminated
the nucleotide pairs (xiyj) (where x, y ∈{A, T, G, C, –}) that oc-
curred with a frequency of <5% in every season, then calculated
the frequency of occurrence for all nucleotide pairs f(xiyj) and
single nucleotides f(xi),f(yj), disregarding the eliminated nucleo-
tide pairs. The extent of co-occurrence of two nucleotides at po-
sition (i, j) is denoted as

f�xiyj�
2

f�xi� · f�yj�
.

Finally, for each viral isolate, we defined a pair of its nucleo-
tides at position (i, j) as perfectly co-occurring if the extent of
their co-occurrence was 1. In this way, a nucleotide co-
occurrence network for each H3N2 isolate was created by retain-
ing the perfect co-occurring nucleotide pairs.

Step 5
We obtained co-occurring nucleotide modules by simply group-
ing all nucleotides with at least one connection. Thus, there are
no connections between any two modules. In total, we obtained
2324 co-occurring nucleotide modules from the 1032 viral
nucleotide co-occurrence networks, and each viral nucleotide co-
occurrence network contained on average 280 co-occurring
nucleotide modules.

Strain data simulation
To simulate the nucleotide co-occurrence networks for evenly
distributed viral isolates from 1968 to 2006, we randomly
sampled one viral strain from each season between 1968 and
2006 and constructed nucleotide co-occurrence networks for this
sampled group of strains using the same procedure as we used for
all 1032 strains (Fig. 1 and the method described above). The
above simulation was repeated 1000 times, and all simulation
results were plotted in Figure 2D. All computations in our study
were performed using custom-written programs in Perl or Matlab
on a Linux cluster of dual 2.8G Hz CPU machines with 2 GB of
RAM, and simulation calculations were distributed to 20 CPUs at
a cost of ∼13 h for each CPU.

Network property calculations
The basic measures for analysis, including network connectivity,
clustering coefficients and path length, have been described pre-
viously (Watts and Strogatz 1998; Luscombe et al. 2004; Wuchty
and Almaas 2005). The average vertex connectivity (K) of a
nucleotide co-occurrence network is defined as

K =
1
N

· �
i=1

N

ki
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where N is the total number of nodes, and ki is the number of
neighbors for node i. The average connectivity of all viral net-
works is computed as

1
M

· �
i=1

M

Ki,

where M is the total number of H3N2 strains in the given season.
We performed data standardization of K values derived from the
simulated co-occurrence network to generate zero mean and unit
variance.

The average per-season rate of connection changes R(m,n)
when a network evolves from season m to season n (n > m) is
computed as

R�m,n� = �
i=m+1

n

Xi��
i=m

n−1

Yi,

where i is the time in seasons, Xi is the number of edges changed
when a network evolves from season i � 1 to season i, and Yi is
the number of total edges of a network in season i. R(m,n) is the
mean across 1000 simulated networks. For example, to produce
Figure 4A, we considered edges between a pair of gene segments
(i.e., HA:NA) or within a gene segment (i.e., HA:HA) as a subnet-
work, and then computed its average R with one-season resolu-
tion (i.e., RHANA(98,99) denotes the rate of connection changes
between gene segment HA and NA from 1998 to 1999).

To quantify the extent of cooperative evolution between
gene segments a and b, we introduce a measure, Cab(m,n), defined
as the ratio of average rate of intergene segment connection
changes, Rab(m,n), to that of intragene segment connection
change, Raa;bb(m,n). Therefore, Cab from 1998 to 2006 is com-
puted as

Cab�1998 − 2006� = Rab�1998,2006��Raa;bb�1998,2006�.

Connectivity clusters and HA sequence clusters
To follow the evolution of network connectivities of predomi-
nant H3N2 strains over time, we developed a simple algorithm to
cluster predominant strains in consecutive seasons. We ignored
seasons with no samples (1970, 1979, 1989, and 1991), such that
1969 and 1971 are considered consecutive seasons. To represent
the predominant strains in a season, we used a meta strain with
a connectivity that is averaged over all strains in that season.
Unfortunately, the number of H3N2 strains sampled in most of
the seasons before 1993 is no more than five (Supplemental Table
S2), which could cause the connectivity of the meta strain to
deviate significantly from that of the actual predominant strains.
Therefore, we use network connectivities for actual individual
strains sampled before 1993 and only consider the predominant
strains of a season as belonging to a cluster when it covers at least
50% of H3N2 strains from that season. All strains within a con-
nectivity cluster are consecutive. Therefore, for a new strain to be
placed in a cluster, we first require that the connectivity differ-
ence between the new strain and all other strains in the cluster be
below a threshold (0.1 in our case); then we further require that
the connectivity difference between the new strain and existing
strains in the cluster from the same or adjacent seasons be below
a more stringent threshold (0.03 in our case). A cluster contain-
ing predominant strains in consecutive seasons is obtained when
at least 50% of H3N2 strains in any of these seasons are covered.
The clustering runs iteratively until strains are reliably clustered.
For a fair comparison with the antigenic clusters, the above two
thresholds are chosen to ensure that the clustering generates the
number of connectivity clusters close to that of antigenic clus-

ters, 11, in the analysis of Smith and coworkers (Smith et al.
2004). Clusters that include the predominant strains from at least
two seasons are plotted in Figure 2A.

The clustering of HA sequences for 1032 H3N2 isolates fol-
lowed the method described by Plotkin et al. (2002). We tried a
range of threshold distances and took the threshold distance
(d = 4) that resulted in the best match between HA sequence
clusters and the antigenic clusters by Smith et al. (2004). A com-
parison of the HA sequence clusters with connectivity clusters
and antigenic groups by Smith et al. is shown in Supplemental
Figure S4.

Phylogenetic analysis and genetic distance calculation
Phylogenetic trees of eight individual gene segments, the con-
catenated complete genome, and the strain-module profiles for
1032 H3N2 strains were inferred with the maximum likelihood
(ML) method using PHYML (Guindon and Gascuel 2003). Such
phylogenetic trees are also called ML-trees. The parameters use
the default as provided by the software. To assess the reliability of
key nodes on the phylogenetic trees, a bootstrap resampling
analysis was also undertaken, which involved the inference of
1000 replicate ML-trees using neighbor-joining procedures. To
estimate the genetic distance between two strains, we calculated
the ML-tree distance between the two strains from the phyloge-
netic tree of the concatenated complete genome.

Classification of co-occurring nucleotide modules
The 2324 genomic modules were obtained using the method
described above. A genomic module was defined as a predomi-
nant module if it occurred in at least 50% of the strains in at least
one season during 1968–2006, and 417 out of 2324 modules were
classified as predominant modules. Of the predominant mod-
ules, 153 were classified as conserved because they occurred pre-
dominantly in all seasons from 1968 to 2006. The remaining 264
nonconserved predominant modules were classified as transition
modules if they shared at least two of the same positions occu-
pied by different nucleotides. We obtained 114 transition mod-
ules. The remaining 39 modules were denoted as transient mod-
ules. For each module in transition and transient modules, we
further identified the module-based amino acid substitutions
corresponding to the nucleotide changes. Clustering analysis is
done using hierarchical clustering algorithm implemented in the
software EXPANDER (Shamir et al. 2005).
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