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To investigate the dependence of the number of regulatory sites per intergenic region on genome size, we developed
a new method for detecting purifying selection at noncoding positions in clades of related bacterial genomes. We
comprehensively quantified evidence of purifying selection at noncoding positions across bacteria and found several
striking universal patterns. Consistent with selection acting at transcriptional regulatory elements near the
transcription start, we find a universal positional profile of selection with respect to gene starts and ends, showing
most evidence of selection immediately upstream and least immediately downstream from genes. A further set of
universal features indicates that selection for translation initiation efficiency is the major determinant of the
sequence composition around translation start in all clades. In addition to a peak in selection at ribosomal binding
sites, the region immediately around translation start shows a universal pattern of high adenine frequency,
significant selection at silent positions, and avoidance of RNA secondary structure. Surprisingly, although the
number of transcription factors (TF) increases quadratically with genome size, we present several lines of evidence
that small and large genomes have the same average number of regulatory sites per intergenic region. By comparing
the sequence diversity of the most and least conserved DNA words in intergenic regions across clades we provide
evidence that the structure of transcription regulatory networks changes dramatically with genome size: Small
genomes have a small number of TFs with a large number of target sites, whereas large genomes have a large
number of TFs with a small number of target sites each.

[Supplemental material is available online at www.genome.org.]

What is the global structure of transcription regulatory networks
in bacteria of disparate genome size? In this study we address this
question through a comprehensive and quantitative analysis of
conservation statistics at noncoding positions, both in intergenic
regions and within genes, across sequenced bacterial genomes.
Our main motivation stems from the observation (Stover et al.
2000; van Nimwegen 2003) that the number of transcription
regulators grows approximately quadratically as a function of the
total number of genes in the genome. For example, according to
the DBD database (Kummerfeld and Teichmann 2006), the num-
ber of transcription factors (TFs) per genome in bacteria varies
from only three (of a total of 504 genes) in Buchnera aphidicola, to
801 (of a total of 7717 genes) in Burkholderia sp. 383. To put the
latter number in perspective, the vastly bigger genomes of Cae-
norhabditis elegans and Drosophila melanogaster have a lower esti-
mated total number of TFs according to the same database.

The simplest interpretation for the large range in the num-
ber of TFs across bacteria is that it reflects a large range in com-
plexity of gene regulation across bacteria. For example, as an
endosymbiont of aphids, Buchnera lives in a very stable environ-
ment and some evidence suggests it shows little transcriptional
regulation (Moran et al. 2005). In contrast, Burkholderia can live
under extremely diverse ecological conditions including soil, wa-
ter, as a plant pathogen, and as a human pathogen, which most
likely require complex regulatory mechanisms.

Quantitatively, the approximately quadratic scaling of the

number of TFs thus means that the largest bacterial genomes
have about a 20 times higher fraction of genes involved in tran-
scriptional regulation than the smallest, i.e., increasing from
∼0.5% in Buchnera to ∼10% in Burkholderia. Put differently, the
number of TFs “per gene” increases from one per 200 genes to
one per 10 genes. This has important implications for the struc-
ture of transcription regulatory networks. One can think of the
transcription regulatory network as a graph, with nodes corre-
sponding to genes, and directed edges going from TFs to their
target genes. The total number of edges in this network is given
by the number of TFs times the average number of outgoing
edges per TF, but also by the total number of genes times the
average number of incoming edges per gene. That is, if r is the
number of TFs, g the number of genes, 〈i〉 the average number of
incoming edges per gene, and 〈o〉 the number of outgoing edges
per TF we have r〈o〉 = 〈i〉g. Since the number of TFs “per gene”
grows linearly with the total number of genes, i.e., r/g � g, we
cannot have that both the average number of outgoing edges per
TF and the number of incoming edges per gene are the same in
bacteria of different genome size. In particular, we must have
〈i〉/〈o〉 � g. That is, either the number of incoming edges per gene
must increase with genome size, i.e., genes are regulated by more
TFs in larger genomes, or the number of outgoing edges per TF
must decrease with genome size, i.e., the regulon size decreases
with genome size (or of course a combination of these two). The
main aim of this study was to investigate how the number of
incoming edges per gene and the number of outgoing edges per
TF depends on the genome size across bacteria.

Transcription regulation is generally implemented through
the sequence-specific binding of transcription factors (TFs) to
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transcription factor binding sites (TFBSs) located mostly in inter-
genic regions upstream of genes (Wagner 2000). Therefore, the
average number of incoming regulatory edges per gene is directly
related to the average number of TFBSs per intergenic region.
Here we will assume that the average numbers of regulatory sites
can be estimated by comparing conservation statistics of non-
coding positions in alignments of orthologous sequences from
clades of related bacterial genomes. For a large number of se-
quenced bacterial genomes one can find other sequenced ge-
nomes that are closely related, meaning that orthologous genes
and intergenic regions can be identified for a large number of
genes, and the intergenic regions show enough conservation to
be aligned, yet are sufficiently diverged such that a substantial
fraction of nucleotides has undergone substitution since they
diverged from their common ancestor. Under the assumption
that much of the regulation of orthologous genes is conserved
across closely related species within a clade, we below infer the
presence of regulatory sequences from the conservation statistics
at noncoding positions in genes and intergenic regions.

In particular, by calculating the likelihood of alignment col-
umns under “foreground” and “background” evolutionary mod-
els, we quantify the evidence for purifying selection at different
classes of noncoding positions (silent position within genes, po-
sitions upstream of genes, and positions downstream from genes)
and as a function of position relative to starts and ends of genes
across 22 clades of bacteria. Apart from allowing us to investigate
the overall density of regulatory sites in intergenic regions, this
analysis also reveals several universal characteristics in the pat-
terns of purifying selection at noncoding positions in bacteria.

Results

Operon number and intergenic region sizes

Before turning to the analysis of conservation patterns, one
might ask to what extent the large range in the number of TFs is
reflected in the overall organization of intergenic regions across
bacteria. In prokaryotes, genes are organized in operons which
are transcribed together and are under the control of common
regulatory elements that occur in the intergenic region upstream
of the first gene in the operon. Thus, as TFBSs likely occur pre-
dominantly upstream of the first gene in each operon, it is rel-
evant to ask how the total number of operons grows as a function
of the total number of genes. Previous studies have shown that
the number of operons increases only slightly faster than linear
with the total number of genes (Cherry 2003; van Nimwegen
2004). In the Supplemental Material we redo this analysis for 416
currently sequenced bacteria, using operon predictions from a
recent Bayesian method (Price et al. 2005), and find that the num-
ber of operons grows approximately as the number of genes to the
power 1.09. This implies that the number of TFs “per operon”
still grows almost quadratically with the total number of genes.

Another relevant question is how the lengths of intergenic
regions depend on genome size. In eukaryotes, there is a trend for
more complex organisms to possess larger amounts of intergenic
DNA per gene, and one might expect that large bacterial ge-
nomes, with their much larger number of TFs, may also have
longer intergenic regions. This question has been investigated
previously (Rogozin et al. 2002; van Nimwegen 2004) and, some-
what surprisingly, no correlation was found between the average
size of intergenic regions and overall genome size. Figure 1 shows
the median size of intergenic regions across currently sequenced

bacteria as a function of the total number of genes in the ge-
nome. We classified the intergenic regions into three different
types: nonregulatory (NR) regions that are downstream from two
convergently transcribed genes (blue dots), single-regulatory (SR)
regions upstream of the first gene in an operon and downstream
from another gene (green dots), and double-regulatory (DR) that
are between two divergently transcribed genes (red dots).

In none of the three classes have we found evidence of cor-
relation between intergenic region size and the number of genes.
What we did find was that NR regions are significantly smaller
than SR regions and that SR regions are smaller than DR regions.
In Rogozin et al. (2002) it was suggested that intergenic regions in
bacteria are under selection pressure to minimize their size while
maintaining the necessary regulatory sites. This view is sup-
ported by our observation that DR regions, which contain regu-
latory signals for two genes, are largest, and that the NR regions
are the smallest. Interestingly, if intergenic region length indeed
reflects the number of regulatory sites that occur in it, then the
absence of a correlation between intergenic region length and
genome size would imply that the average number of regulatory
sites per intergenic region is the same in small and large ge-
nomes. We now investigate this in more detail by analyzing the
evidence for purifying selection across noncoding positions in 22
clades of closely related bacterial genomes.

Quantifying evidence of purifying selection at noncoding
positions

We briefly outline our procedure for quantifying evidence of pu-
rifying selection across noncoding positions genome-wide in
bacterial genomes. Details are described in the Methods section
and additional technical details can be found in the Supplemen-
tal Material. Our procedure takes as input a set of related bacterial
genomes (a “clade”) as provided by the NCBI Microbial Genome
Database (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi), of
which one is denoted as the “reference species.” For each gene
and each intergenic region of the reference species we extract
orthologous genes and intergenic regions from the other species
and produce multiple alignments. We determine cliques of or-
thologous proteins (sets of genes that are all mutual orthologs

Figure 1. Average lengths of intergenic regions (vertical axis) as a func-
tion of the total number of genes (horizontal axis) for intra-operonic
regions (red), NR regions (blue), SR regions (green), and DR regions (red)
across all sequenced bacteria. Each dot corresponds to one genome. Both
axes are shown on logarithmic scale. The horizontal lines correspond to
average region lengths averaged over all genomes.
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between all species in the clade) and infer the topology of the
phylogenetic tree from the concatenated alignment of all cliques.

For each alignment column we calculate the likelihood un-
der two evolutionary models: a “foreground” and a “back-
ground” model. The background model assumes a simple F81
substitution rate model (Felsenstein 1981) which is parametrized
by the branch lengths of the phylogenetic tree and a vector w of
nucleotide frequencies, with w� being the frequency of nucleo-
tide �. In the F81 model the rate of substitution r�� from base �

to base � is simply proportional to w� and independent of �. As
nucleotide frequencies vary significantly between intergenic po-
sitions, coding positions, and third positions of fourfold degen-
erate codons, we separate positions into 12 different categories
and construct a background model for each. The categories we
distinguish are first, second, and third codon positions in genes,
intergenic positions, and third positions in each of the eight
fourfold degenerate codons (silent positions). To estimate the
parameters of the background models we determine the overall
nucleotide frequencies w� in each of the 12 categories of posi-
tions and fit the branch lengths of the phylogenetic tree from the
alignments of silent positions using maximum likelihood. Our
background models thus explicitly incorporate the overall
nucleotide and codon biases of different classes of sites.

For each of the 12 background evolution models we have a
corresponding foreground model. The only difference between
the foreground and background model is that, whereas the back-
ground model assumes that all positions undergo substitutions
from base � to base � at the same rate r�� � w�, in the foreground
model we assume that, at a given position i, the substitution rates
ri

�� � w�
i are altered due to specific selection preferences for cer-

tain bases at this position, which are parametrized by the “target”
nucleotide frequencies w�

i . Since the w�
i at each position are un-

known we treat them as nuisance parameters that are integrated
out of the likelihood. Such evolutionary models have been used
by several groups to model the evolution of positions in regula-
tory sites (Sinha et al. 2003, 2004; Moses et al. 2004; Siddharthan
et al. 2005). The reason we use the simpler F81 substitution rate
model rather than the related, but more general, Halpern-Bruno
model (Halpern and Bruno 1998) is that the necessary integrals
over the unknown position-dependent frequencies w�

i can only
be performed for the F81 model.

For each alignment column of the reference species, both in
genes and in intergenic regions, we calculate the ratio R of like-
lihoods of foreground and background evolutionary models.
This statistic quantifies the evidence that the alignment column
evolves under a different set of substitution rates than the back-
ground model. In addition, we estimate the effective substitution
rate reduction Q relative to the substitution rate of the back-
ground model at each alignment column (see Supplemental Ma-
terial). In practice we find that columns of high R (clear deviation
from the background model) correspond to columns of high Q
(low substitution rate). We thus interpret R and Q as quantifying
the amount of purifying selection at each alignment column
relative to the background model.

R values at different types of noncoding positions

To investigate the ability of our R statistic to detect positions in
TFBSs we focused on Escherichia coli for which a large collection
of experimentally determined TFBSs is available (Salgado et al.
2006). Figure 2 summarizes the distribution of R values at silent
sites, sites in NR regions, SR regions, DR regions, positions in

known TFBSs, and sites at coding regions. Silent positions in E.
coli have an average R close to 1, which suggests that most silent
positions evolve according to their background model (see
Supplemental Material). Sites downstream from genes (in NR re-
gions) also typically have small R values. On the contrary, sites
upstream of genes (SR and DR regions) show significantly higher
R values. The 25 percentile occurs at similarly low values of R for
silent, NR, SR, and DR positions, indicating that there is a sig-
nificant fraction of positions in upstream regions that are not
under purifying selection. In contrast, the 75 and 95 percentiles
are shifted significantly upward for SR and DR regions, indicating
that a substantial number of positions in SR and DR regions are
under purifying selection. This is also evident from the fact that
the average for SR and DR is above the 75 percentile. Known
TFBSs show even larger average R values than upstream positions
in general, and both the 25 and 75 percentiles are shifted upward
with respect to SR and DR regions. Nonetheless, not all positions
in known sites show large R values, which is to be expected, since
many TFBSs have internal spacers that are presumably not under
purifying selection. Finally, positions in coding regions show the
largest R values with ∼75% of all positions having an R < 1. In
summary, the results in Figure 2 show that the R statistic clearly
detects purifying selection at coding positions, that upstream re-
gions show increased purifying selection compared to down-
stream and silent positions, and that known binding sites are
characterized by elevated R values whose average nears the aver-
age R at coding positions.

We next turned to comparing R values between silent posi-
tions, intergenic positions, and coding positions across all 22
clades. For each clade we averaged the R values of sites at silent
positions, at positions in NR regions, in SR regions, in DR regions,
and at coding positions (Fig. 3). We see that, in all clades, silent
positions appear to evolve according to the background model,
i.e., R is close to 1. Note that the fact that R = 1 at silent positions
does not necessarily mean that there is no purifying selection at
third positions, but it does imply that the selection which may
exist at silent positions is accurately captured by the overall
codon bias which is incorporated into the background model. In
contrast, all intergenic regions show evidence for purifying se-
lection deviating from the background model (which incorpo-
rates the overall nucleotide bias in intergenic regions). Even for
NR regions downstream from genes there is some evidence for
purifying selection deviating from the background model, i.e.,
most dots in the top-left panel occur to the right of R = 1. The
same panel also shows that SR regions always show more evi-
dence of purifying selection than NR regions, i.e., all red dots are
above the diagonal. The top-right panel shows that DR regions
generally exhibit more evidence of purifying selection than SR

Figure 2. Distributions of R values in different classes of positions in E.
coli. For each category of positions the black line denotes the average R
value, the red bar the 25–75 percentile, and the gray bar the 5–95 per-
centile.
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regions, i.e., most green dots are above the diagonal. The bottom-
left panel demonstrates that, for all clades, the purifying selec-
tion at coding positions is still significantly larger than that in DR
regions, i.e., all blue dots are above the diagonal. In summary,
these three panels show that our observations from E. coli gen-
eralize to all clades. This universal order in average R values (larg-
est in DR, followed by SR, then NR, and R = 1 at silent positions)
strongly suggests that conserved regulatory elements occur in the
upstream regions of all clades and are responsible for the ob-
served increase in average R.

Our model makes various simplifying assumptions that
might affect our results, e.g., it ignores transition-transversion
bias. To check the robustness of our results we performed an
analogous analysis using a completely different method. For each
region type (NR, SR, DR, coding, silent) we extracted all align-
ment columns. Each set of alignment columns was then concat-
enated into a pseudoalignment of all positions in regions of that
type. These pseudo-alignments were then given as input to the
PAML program (Yang 1997), which performed a maximum like-
lihood inference of the branch lengths of the phylogenetic tree of
each pseudoalignment using a HKY85 evolutionary model (Ha-
segawa et al. 1985). We then compared the branch lengths of the
phylogenetic trees that PAML inferred for each region type. The
bottom-right panel shows the total branch length of the tree
inferred by PAML from the pseudoalignments of positions in NR
(red), SR (green), and DR (blue) regions, as a function of the total
branch length of the tree inferred from the silent positions, to-
gether with the diagonal y = x. The more purifying selection acts
to conserve positions in regions of a given type, the shorter the

inferred branch lengths will be. The
PAML results agree with the results in
the three other panels of Figure 3: In es-
sentially all clades the inferred distance
in all types of intergenic regions is lower
than that in silent positions, i.e., there is
evidence of purifying selection acting in
all three types of intergenic regions.
Also, SR and DR regions have always
more evidence of purifying selection
than NR regions. In contrast to the re-
sults we obtained with our R statistic, the
PAML results do not show a consistent
ordering of the inferred branch lengths
for the DR and SR regions.

R profiles relative to gene starts
and ends

To gain further insight in the selection
patterns across bacteria we calculated
the average value of R as a function of
the relative position of the alignment col-
umn with respect to the start and stop
codons of genes. The left panel of Figure
4 shows this position-dependent selec-
tion profile averaged over all 22 clades.

Strikingly, the main characteristics
of this profile are shared across all 22
clades (see Supplemental Material): As in
Figure 3, the highest R values are ob-
served for those positions that most of-
ten affect the amino acid sequence, i.e.,

in order: second (blue), first (red), and third (green) codon posi-
tions. Interestingly, whereas there is a clear drop in R at first and
second positions near the starts and ends of the genes, at the
third positions there is an increase in R near the starts of genes.
Intergenic regions show clear evidence of purifying selection
(R > 1) with R significantly higher upstream of genes than down-
stream, though selection is lower than at coding positions. Con-
sistent with a pattern in which regulatory elements are most
common near the starts of genes we find that R values are highest
near the translation start and fall off progressively further up-
stream. In contrast to the coding positions and intergenic re-
gions, the bulk of the silent positions seems to evolve according
to the background model, i.e., R = 1.

The R value profiles in addition show a number of universal
features that, as we will now argue, relate to efficiency and regu-
lation of translation initiation. First, we find a sharp peak in R
just upstream of translation start which is accompanied by a
sharp peak in the frequency of guanines (middle panel of Fig. 4).
Closer inspection shows that this peak corresponds to highly
conserved Shine-Dalgarno sequences (Shine and Dalgarno 1974)
to which the ribosome binds. As shown in the Supplemental
Material, although varying significantly in strength between
clades, this Shine-Dalgarno peak is found in essentially all clades.
In addition, 20 of the 22 clades show a sharp peak in G nucleo-
tide frequency at this position matching the known Shine-
Dalgarno consensus. Interestingly, this peak in G nucleotides is
absent in the two clades of Cyanobacteria, where, instead, a peak
in C nucleotides is observed. The R statistic thus detects univer-
sally occurring purifying selection at ribosome binding sites.

Figure 3. Comparison of average R values in different regions for 22 clades of bacteria. The red dots
in the top-left panel show the average R in SR regions (vertical axis) against the average R in NR regions
(horizontal axis). The green dots in the top-right panel show the average R in DR regions (vertical)
against the average R in SR regions (horizontal). The blue dots in the bottom-left panel show the
average R in coding positions (vertical) against the average R in DR regions (horizontal). The black dots
in all panels show the average R in silent positions (vertical). The line y = x is also shown in all panels.
The bottom-right panel shows, for each clade, the total branch lengths in the phylogenetic trees as
inferred by PAML on alignment columns from NR (red), SR (green), and DR (blue) regions, as a
function of the total branch length in the phylogenetic tree inferred from the silent positions (hori-
zontal). Dots corresponding to the same clade are connected by vertical lines.
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In addition, in essentially all bacterial clades (see Supple-
mental Material), R rises sharply at silent positions immediately
downstream from the ATG, and this heightened selection is ac-
companied by an increase in the frequency of adenines, which
extends into the upstream region. This rise in R is not caused by
an increase of codon bias at gene starts, nor is it caused by mis-
annotation of start codons (Supplemental Material). In fact, an
increase in adenine frequency around the start codon, accompa-
nied by elevated conservation at silent positions immediately
downstream, has been observed previously, i.e., Eyre-Walker and
Bulmer (1993) observed this pattern in E. coli and suggested that
it is the result of selection for the avoidance of RNA secondary
structure in this area of the mRNA, which in turn is the result of
selection for translation initiation efficiency. In Bacillus subtilis
the same pattern was observed, accompanied by reduced second-
ary structure in this area (Rocha et al. 1999). Moreover, experi-
mental studies showed that increasing the frequency of A nucleo-
tides immediately following translation start increases translation
efficiency (Sato et al. 2001; Stenstrom et al. 2001; Voges et al. 2004).

Avoidance of RNA secondary structure around start codons

To provide further evidence that both the increased selection
immediately downstream from the start codon as well the in-
creased frequency of adenines are the result of selection for
avoiding RNA secondary structure at the start of the open reading
frame, we extracted for each gene the RNA sequence from 60 bp
upstream (which is the typical length of 5� UTRs in E. coli, see
Supplemental Material) to 90 bp downstream and used the Vi-
enna RNA package (Hofacker et al. 1994) to determine the prob-
ability, for each nucleotide, to be paired with another nucleotide
in the RNA secondary structure. By averaging over all genes in
the genome we then obtained an average “openness” profile
around the translation starts of genes for each clade (Supplemen-
tal Material). The red curve in the right panel of Figure 4 shows
a z-statistic profile for the average openness at a given position
compared to the average openness in the flanking regions
(�50,�31) and (+31,80), averaged over all clades. There is a clear
preference for the region immediately upstream of and down-
stream from translation start to be more free of secondary struc-
ture than regions further away. Again this pattern is observed in
all clades (Supplemental Material). Second, for each clade we de-
termined the position-dependent nucleotide frequencies in the
regions (–60,+90) around translation starts. We then created syn-
thetic sequences that have the exact same position-dependent

base composition as the true sequences in that clade, and folded
them. The blue curve in the right panel of Figure 4 shows the
z-statistic of the openness of the true sequences compared to
these synthetic sequences. Again we see a clearly positive z-
statistic in the region immediately around translation start. In
summary, the right panel of Figure 4 shows that the base com-
position around translation start significantly reduces the
amount of secondary structure in this area (red curve) and that,
beyond this, correlations between bases at different positions fur-
ther reduce the amount of secondary structure compared to se-
quences with the same base composition (blue curve).

Two further tests indicate that the avoidance of RNA sec-
ondary structure around translation start is associated with selec-
tion for translation initiation efficiency. If the avoidance of sec-
ondary structure around gene starts were related to transcription
rather than translation initiation, we would expect to observe
this pattern only in genes that are the first in their operon. How-
ever, we observe elevated R values immediately downstream from
ATGs of both genes with large and genes with small intergenic
regions (Supplemental Material). Second, there is an approximate
linear correlation between R at the Shine-Dalgarno peak and the
average R in the first 20 amino acids downstream from ATG
(Supplemental Material), suggesting a link between these two
signals. Interestingly, the five firmicutes clades deviate from this
pattern: They have very strong Shine-Dalgarno sequences but
only moderately increased R immediately downstream from ATG
(Supplemental Material). This suggests that in firmicutes transla-
tion initiation is dependent mainly on the ribosome binding site.
In summary, a pattern of increased conservation and increased
frequency of A nucleotides was observed in E. coli (Eyre-Walker
and Bulmer 1993) and B. subtilis (Rocha et al. 1999) and was
hypothesized to be the result of selection for translation initia-
tion efficiency which leads to avoidance of RNA secondary struc-
ture around translation start. Here we provided additional evi-
dence which supports that selection for translation initiation ef-
ficiency is indeed the cause of this pattern, and showed that this
pattern extends to all bacteria.

Density of regulatory sites as a function of genome size

Having shown that our R statistic accurately describes sites under
purifying selection including known regulatory elements such as
the TFBSs in E. coli and the Shine-Dalgarno sequences, we now
return to the main motivation of our study: investigating how
the density of regulatory sites in intergenic regions varies with

Figure 4. Universal position-dependent profiles in selection, base frequencies, and secondary structure as a function of position relative to translation
start (position 0) and, in the left panel, stop (position 900). Statistics are averaged over all 22 clades in each panel. Left panel: R value profile averaged
over all clades for first (red), second (blue), and third (green) positions in codons as well as intergenic/silent positions (black). Middle panel: Relative base
frequencies, i.e., A (red), C (green), G (blue), and T (yellow) around translation start, averaged over all clades. Right panel: z-statistics for the probability
of a given position to be unpaired relative to the average over the regions (�50,�31) and (31,80) (red) and relative to synthetic sequences with the
same base composition (blue).

Molina and van Nimwegen

152 Genome Research
www.genome.org



genome size. Since, as mentioned in the introduction, organisms
with large genomes appear to have complex life styles that re-
quire much greater regulatory complexity, and the number of TFs
per gene is much larger in larger genomes, we a priori expected
that either R itself or a suitably normalized version would corre-
late with genome size. However, no such correlation exists. As
shown in the Supplemental Material, we analyzed the absolute
values of R, as well as different combinations of relative differ-
ences or ratios of R values in different regions, but none showed
any correlation with genome size.

To verify the robustness of this result we performed an
analogous analysis using two different methods. First, we used
the Q statistic which measures the substitution rate reduction at
each alignment column relative to the background model. As
detailed in the Supplemental Material, the Q statistic recovers all
the results we found using the R statistic, e.g., substitution rates
are lower upstream of than downstream from genes, the silent
positions evolve according to the background model, substitu-
tion rates are lowest upstream of ATG and increase with distance
from ATG, and the pattern of lower substitution rates at the
Shine-Dalgarno sequence and immediately downstream from
ATG. However, as with the R statistic, we found that neither the
substitution rates themselves, nor differences of substitution
rates between different regions show any correlation with ge-
nome size. Second, no combination of differences or ratios of the
branch lengths inferred by PAML (bottom-right panel of Fig. 3)
shows correlation with genome size. In summary, all three meth-
ods find clear evidence of regulatory sites under purifying selec-
tion upstream of genes, but in spite of considering a large num-
ber of statistics, none of them finds any evidence that the density
of regulatory sites in upstream regions increases with genome
size. Our results thus strongly suggest that the density of regula-
tory sites in upstream regions is in fact the same for small and
large genomes (and, because intergenic region length does not
correlate with genome size, so is the total number of regulatory
sites per upstream region).

To verify this further we investigated if there are clear dif-
ferences in the shape of the R statistic profile upstream of and
downstream from genes for genomes of different size. Figure 5
shows the shapes of the R profiles upstream of and downstream
from genes, i.e., as in the left panel of Figure 4, but now sepa-

rately for the small, medium-sized, and large genomes. The
shapes of the profiles are very similar for the three classes of
genome sizes. In medium-sized genomes the Shine-Dalgarno
peak is most pronounced and least pronounced in large ge-
nomes. Similarly, the R profile appears to drop fastest with dis-
tance from ATG for medium-sized genomes and slowest for large
genomes. The shape of the small genome profile falls somewhere
in between the shapes of the profiles for large and medium-sized
genomes. Thus, although there are some small differences in the
shapes of the profiles, these differences do not show a consistent
trend with genome size. In the Supplemental Material we show
that we find essentially the same result with the substitution rate
statistic Q. Overall, the similarity of the profile shapes for small,
medium, and large genomes supports that there is a common
architecture of regulatory sites which is independent of genome
size. Note that, as mentioned in the discussion of Figure 1, this
result is also supported by the absence of a correlation between
intergenic region size and genome size.

The combination of results just presented provides compel-
ling evidence that the average number of regulatory sites per
upstream region is independent of genome size. This implies
that, whereas the number of TFs increases quadratically with ge-
nome size, the total number of regulatory sites increases only
linearly with genome size. There are now two possibilities. The
first possibility is that in small genomes there are significantly
more TFBSs per TF than in large genomes, i.e., regulon size de-
creases with genome size. The second possibility is that TFs in
large genomes more often “share” TFBSs, i.e., that each TFBS is
bound by multiple TFs. In eukaryotes one often finds families of
TFs with highly similar DNA binding domains that have essen-
tially identical sequence specificities, such that a given binding
site can be bound by all members of the family (Sandelin and
Wasserman 2004). In prokaryotes, however, such potential shar-
ing of binding sites by families of related TFs has so far not been
investigated in detail.

Clustering of TFs with similar DNA binding domains

If sharing of TFBSs by multiple TFs is more common in large
genomes, we would expect more clusters of TFs with highly simi-
lar DNA binding domains in large genomes than in small ge-

Figure 5. Relative average R values upstream of and downstream from genes as in the left panel of Figure 4 but now averaged separately over genomes
with <2000 genes (green), genomes with between 2000 and 4500 genes (red), and genomes with >4500 genes (blue). In order to compare the shapes
of the R value profiles the values on the vertical axis are scaled to have a mean of 1 when averaged over the 150 bp upstream and when averaged over
the 150 bp downstream.
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nomes. In particular, we would expect that, whereas the total
number of TFs grows approximately quadratically with genome
size, the number of distinct families of TFs would grow more
slowly with genome size. Figure 6 shows that this is not the case.
We collected the DNA binding domains of all TFs in each ge-
nome using Pfam (Bateman et al. 2004). For different similarity
cutoffs p we then used single-linkage clustering to cluster all do-
mains with at least p percent identity. We find that, at various
cutoffs p, the number of clusters grows roughly as a power-law of
the total number of genes (Supplemental Material). Fitting the
exponents of the power-laws that are obtained for different cut-
offs p (Fig. 6), we found essentially the same exponent when we
clustered DNA binding domains, as when we fitted the power-
law of the total number of TFs as a function of the total number
of genes (1.85). That is, even if we cluster all TFs whose DNA
binding domains are 50% identical (at the amino acid level) we
still find that the number of clusters grows with almost the same
exponent as when each TF is counted independently. For com-
parison, we compared the DNA binding domains of all E. coli TFs
for which the binding specificity is known (Salgado et al. 2006)
and found 10 pairs of TFs with at least 50% similarity in their
DNA binding domains. Of these 10 pairs only four show similar-
ity in their binding specificity (data not shown). In summary,
there is little evidence for families of TFs with high similarity in
their DNA binding domains, and no evidence that such families
are more common in large than in small genomes.

Sequence diversity of DNA 7-mers under most and least
purifying selection

As the “sharing” of TFBSs does not seem to increase with genome
size, and the number of regulatory sites per intergenic region
appears constant, the necessary consequence is that the number
of TFBSs “per TF” must decrease with genome size. That is, our
results suggest that small genomes have a small number of large
regulons, while large genomes have a large number of small regu-
lons. To test this directly, we compared the sequence diversity of
the most conserved sequence segments with the diversity of the
least conserved sequence segments in the intergenic regions of

each genome. For each clade, we enumerated all 47 7-mers,
counted their number of occurrences in intergenic regions, and
ranked them by the amount of evidence they show of being
under purifying selection (see Methods). Then, starting from the
most significantly selected 7-mer, we counted how many distinct
7-mers are necessary to account for 5% of all intergenic sequence
segments of length 7. We denote this number by nt. Similarly,
starting from the bottom of the list, we counted how many dis-
tinct “unselected” 7-mers nb are necessary to account for 5% of all
intergenic sequence segments. Figure 7 shows the ratio nt/nb for
each genome as a function of the number of TFs in the genome.
We find that in small genomes one needs only a small number of
highly selected 7-mers to account for 5% of all intergenic se-
quence segments, whereas in large genomes a large number of
highly selected 7-mers is needed to account for 5% of all se-
quence segments (this also holds when taking 10% or 20% in-
stead of 5%, see Supplemental Material). To put it differently, in
small genomes the most selected 7-mers are much more frequent
than poorly selected 7-mers whereas in large genomes the most
selected segments are much less frequent than poorly selected
segments. This observation provides a strong piece of indepen-
dent evidence that, indeed, the regulon sizes of small genomes
are significantly bigger than regulon sizes in large genomes. Note
that the changes in the ratio nt/nb are substantial: The ratio nt/nb

increases over almost two orders of magnitude, i.e., roughly by
the same factor as the number of TFs (straight line fit in Fig. 7).

Discussion

The intriguing observation that the number of TFs increases al-
most quadratically with the total number of genes in bacteria
implies that there must be important structural differences be-
tween the transcription regulatory networks in small and large
bacterial genomes. As the number of TFs per gene increases lin-
early with genome size, either large genomes have on average
more regulatory inputs per gene, i.e., more regulatory sites per
upstream region, or TFs in large genomes have on average less
regulatory outputs per TF, i.e., smaller regulons (or a combina-

Figure 7. Sequence diversity of the most and least conserved 7-mers as
a function of the number of TFs in the genome. For each genome we
ordered all 7-mers by their evidence for being under purifying selection
and collected the most and least conserved unique 7-mers such that each
7-mer of both sets accounts for 5% of all sequence segments in the
genome. The vertical axis shows the ratio between the number of most
conserved and least conserved 7-mers in the corresponding set as a func-
tion of the total number of TFs in the genome (horizontal axis). Both axes
are shown on logarithmic scale. The black line shows a linear fit.

Figure 6. Fitted exponent (vertical axis) for the number of DNA bind-
ing domain clusters as a function of genome size for different similarity
cutoffs (horizontal axis). For a given similarity p we clustered all TFs in
each genome whose DNA binding domains had a similarity of at least p
percent. We then fitted the number of clusters as a function of the total
number of genes in the genome to a power-law. The fitted exponent is
shown as the red line, with the green lines indicating the 95% posterior
probability interval.
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tion of the two). In order to investigate these possibilities we set
to estimate the density of conserved sites in intergenic regions of
22 “clades,” comprising a total of 105 bacterial species.

We produced multiple alignments of orthologous genes and
intergenic regions, and estimated the phylogenetic tree of each
clade from third positions in fourfold degenerate codons using a
“background” evolution model that takes codon bias into ac-
count. We defined an R statistic that measures, at each alignment
column, the likelihood that the position evolves under substitu-
tion rates significantly different from the substitution rates of the
background model. We showed that our statistic accurately cap-
tures known selection pressures and reveals known regulatory
elements. For instance, in all clades we find a sharp peak in R at
Shine-Dalgarno sequences a few bases upstream of the start
codon. In addition, using the annotation of known regulatory
sites in E. coli, we showed that the average R values are almost as
high at these known regulatory sites as at coding positions, and
significantly higher than the overall average R in upstream re-
gions.

We comprehensively quantified the evidence for purifying
selection acting at noncoding positions genome-wide for all 22
clades and found a number of remarkably universal features.
First, we found that the bulk of the silent positions within genes
evolve according to the estimated background model, whereas
essentially all intergenic regions show evidence of purifying se-
lection. Experimental studies suggest (Beletskii and Bhagwat
1996) that transcription itself can increase mutation rates (al-
though comparative genomic studies suggest precisely the oppo-
site; see, e.g., Ochman 2003) and one may wonder if the apparent
increase in purifying selection can be explained by a lower mu-
tation rate in intergenic regions. Several of our observations
strongly argue against this possibility. An overall lower rate of
mutation in intergenic regions would affect all intergenic regions
equally, whereas we clearly find most evidence of purifying se-
lection in DR regions, followed by SR regions, and much lower
evidence of purifying selection in NR regions. Furthermore, the
universal pattern of high R immediately upstream of starts and
low R immediately downstream, the universal Shine-Dalgarno
peak, and the elevated R at known E. coli regulatory sites all
demonstrate that R is capturing conserved regulatory elements
and not a decrease in mutation rate.

Another universal pattern that we uncovered is a sharp in-
crease of R values at silent positions immediately downstream
from translation start, which is accompanied by a peak in the
frequency of adenines around translation start. Previously this
pattern has been observed in E. coli (Eyre-Walker and Bulmer
1993; Sato et al. 2001) and B. subtilis (Rocha et al. 1999), and was
suggested to result from selection for avoiding secondary struc-
ture in the region around translation start. In addition, several
experimental studies (Stenstrom et al. 2001; Voges et al. 2004)
have shown that increase of adenines immediately downstream
from the start codon leads to high translation efficiency. Here we
showed that this pattern characterizes all bacterial clades, and we
provide evidence that, indeed, the RNA secondary structure
around the start codon is one of the main determinants of trans-
lation initiation efficiency. We believe that it should be possible
to use the biased base composition around gene starts, and the
even stronger bias for avoiding RNA secondary structure, to sig-
nificantly improve ab initio gene finding and gene start annota-
tion in bacterial genomes, especially since the pattern seems to
apply universally.

The universal patterns in purifying selection that we observe

are confirmed by two independent measures: the Q statistic,
which estimates the effective substitution rate at each position
relative to the background model, and the branch lengths in-
ferred by PAML from alignments of positions from different re-
gions. We next applied these three measures to evaluate the cor-
relation between genome size and the amount of purifying se-
lection in intergenic regions.

Previous work has shown that operon sizes decrease only
slightly with genome size (Cherry 2003; van Nimwegen 2004)
and that the sizes of intergenic regions are independent of ge-
nome size (Rogozin et al. 2002; van Nimwegen 2004). This im-
plies that, every time the size of a bacterial genome doubles, the
total amount of intergenic DNA upstream of operons roughly
doubles as well. Yet the number of TFs roughly quadruples, im-
plying that large genomes have a larger number of TFs per gene.
One may therefore expect that large genomes have a larger num-
ber of regulatory sites per upstream region, especially considering
that bacteria with large genomes are generally thought to exhibit
much more complex transcription regulation than small para-
sitic bacteria. In spite of attempts to identify such a correlation
using three different methods for measuring purifying selection,
and using a large number of different statistics, we found no
correlation whatsoever between genome size and the amount of
purifying selection in intergenic regions, suggesting that large
and small genomes have on average the same density of regula-
tory sites per gene.

Given that our conservation statistics can only measure the
density of “conserved” regulatory sites, an alternative possibility
is that large genomes have a higher density of regulatory sites but
that these sites tend to be less conserved. Although in principle
possible, this scenario would require a general correlation be-
tween genome size and the rate of regulatory site turnover and,
moreover, it would require that, as the density of sites increases,
the turnover rate increase so as to precisely counterbalance the
increased site density, leaving no correlation between the num-
ber of “conserved” binding sites and genome size. Assuming that
site densities simply do not correlate with genome size seems to
us a much more parsimonious assumption. In addition, the pro-
files of R and Q upstream of gene starts have similar shapes for
small, medium-sized, and large genomes, which further supports
that promoter architectures and regulatory site distributions are
similar for large and small genomes. Finally, it is thought that
bacteria are generally under selection to minimize the size of
their genomes and peudogenes are typically removed from the
genomes relatively quickly. It has therefore been argued (Rogozin
et al. 2002) that the “sizes” of intergenic regions reflect the
amount of regulatory sites within them. Consistent with this
hypothesis, we find that DR regions are longer than SR regions
and that NR regions are by far the shortest. Yet the sizes of dif-
ferent types of intergenic regions also do not show any correla-
tion with genome size.

All these observations are consistent with the simple con-
jecture that the number of regulatory sites per intergenic region
is constant for small and large genomes, leading us to hypoth-
esize that the basic molecular mechanisms of transcription regu-
lation in bacteria strongly constrain the number of different TFs
that can coregulate a given bacterial gene. That is, we hypoth-
esize that bacteria do not have the molecular mechanisms that
allow them to place a gene under the control of many different
regulatory elements. As a consequence, bacterial genes have on
average the same (small) number of regulatory elements per
gene, independent of the genome size and the total number of
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TFs in the genome. This is in stark contrast to what is observed in
eukaryotes. Especially in higher eukaryotes genes can receive
regulatory inputs from many different regulatory modules that
can be located many tens of kilobases from the transcription start
site and it is generally assumed that the number of inputs per
gene increases with the complexity of the organism. Correspond-
ingly, the sizes of intergenic regions increase dramatically as one
moves from simple to more complex eukaryotes. We thus pro-
pose that a key difference between the transcription regulatory
networks of prokaryotes and eukaryotes is that prokaryotes are
constrained to only a small number of regulatory inputs per
gene.

The quadratic growth of TFs with genome size together with
an on average constant number of regulatory sites per gene now
imply that the number of unique regulatory sites per TF decreases
significantly with genome size, i.e., by a factor of 20 between the
smallest and largest genomes. Given that we find that clusters of
TFs with highly similar DNA binding domains are typically small
and the size of these clusters does not grow with genome size, we
conclude that there is little evidence of “site sharing” in bacteria,
which in turn implies that TFs have on average much fewer TFBSs
per TF in large compared to small genomes. This conclusion is
further supported by our observation that there is a highly sig-
nificant correlation between genome size and the sequence di-
versity of the most conserved sequence segments: Whereas in
small genomes the most conserved 7-mers tend to also be the
most common 7-mers in intergenic regions, in large genomes the
most conserved 7-mers are the least common 7-mers. This pro-
vides a strong independent piece of evidence that regulon sizes
are large in small genomes and small in large genomes.

The main global statistic of genome organization that we
have left largely unexplored is the role of base composition and
codon bias. There are a number of intriguing observations that
suggest that there may be intimate connections between ge-
nomic GC content, codon bias, genome size and regulatory
complexity, and selection acting at intergenic and silent posi-
tions. First, highly expressed genes tend to show more codon bias
(Sharp and Li 1987) and, as tRNA abundances generally correlate
with codon bias, this is interpreted as a result of selection at
silent positions to ensure translation efficiency of highly ex-
pressed genes. Second, more recently evidence has been pre-
sented that codon bias is largely driven by an underlying bias in
GC content of the genome (Knight et al. 2001; Chen et al. 2004).
Traditionally it has been assumed that GC contents of genomes
simply reflect the underlying mutational biases, and Ochman
(2003) and Chen et al. (2004) provide some evidence in support
of this hypothesis. If this is indeed the case, then compositional
bias, codon bias, the relative abundances of different tRNAs, and
the selection at silent sites in highly expressed genes would all
derive from an underlying mutational bias. Moreover, our back-
ground models would accurately reflect mutational biases, so
that the deviations from these background models measure se-
lection directly. There are several observations, however, that
suggest that reality may be more complicated. First, experimental
studies of mutational biases as well as comparative studies on
pseudogenes all suggest a general bias of GC to AT mutations
(Ochman 2003). Second, from a metabolic perspective AT
nucleotides are energetically less costly than GC nucleotides, and
it has been suggested (Rocha and Danchin 2002) that this leads
to selection for AT over GC nucleotides in situations where en-
ergy resources are limiting. Both of these observations beg the
question as to why there are genomes with very high GC content

at all. Third, there is a clear correlation between GC content and
genome size, with very small genomes being almost all AT rich
and large genomes being almost all GC rich (Bentley and Parkhill
2004). It is hard to imagine why genome size and mutational
biases would be directly correlated, suggesting again that GC
content may be the result of a more complex interplay of effects
including selection. Finally, GC content differs in a consistent
way between different intergenic regions (Mitchison 2005) and
genes, suggesting a link between GC content and the regulatory
organization of a genome. In essentially all species NR regions
have the lowest GC content, followed by SR regions, followed by
DR regions, and it was suggested in Mitchison (2005) that this is
a result of the preference of regulatory sites for AT-rich se-
quences. We, in addition, find that GC content is higher in genes
than in intergenic region in all clades. Together, all these obser-
vations form pieces of a puzzle that relates GC content, codon
bias, genome size, and selection in intergenic and silent posi-
tions. Working out how these pieces fit together is one of the
main issues regarding bacterial genome evolution that remain to
be solved.

Methods

Determination of the median intergenic region lengths
To determine the median intergenic region lengths in 416 cur-
rently fully sequenced bacterial genomes we used the predictions
of a recent Bayesian operon-prediction algorithm (Price et al.
2005), which we downloaded from http://www.microbesonline.
org/operons/. Once the operons are predicted, we calculate the
median length of NR regions, SR regions upstream of the
first gene in an operon, and DR regions, separately for each ge-
nome.

Ortholog mapping and determining phylogenetic topology
Our procedure for mapping orthologs modifies the standard
“best-reciprocal hit” procedure to be both conservative and take
advantage of the significant amount of gene-order conservation
between the closely related species. For each pair of organisms in
a clade we estimate the evolutionary distances between each pair
of genes using PAML (Yang 1997), i.e., as in Wall et al. (2003). An
initial set of “trusted pairs” is constructed by taking only those
best-reciprocal hits that align >50% of both proteins and for
which the evolutionary distance of the second best hit is at least
twice the evolutionary distance of the best hit. We then resolve
additional orthology relations by making use of gene-order in-
formation. We first construct diagonals of trusted pairs that are
consecutive in both genomes and search for additional ortholo-
gous pairs that lie within the gaps or at the edges of the diagonals
of already identified orthologs. Details of this and all other meth-
ods are given in the Supplemental Material.

Our inference of the phylogenetic tree, base composition,
and codon bias of each clade is based on cliques of orthologous
genes. A “clique of orthologs” is a set of genes, one from each
species in the clade, that all are mutually orthologous. We sort
cliques by the amount of conservation at silent positions and
remove the top and bottom 10% for our further inferences. This
is done to avoid that outliers, such as the ribosomal genes that
are significantly more conserved at silent positions than other
genes, or genes whose orthologs have been misidentified, would
skew the parameters of the background models. To determine the
topology of the phylogenetic tree of a clade we align all cliques of
orthologous proteins using T-Coffee (Notredame et al. 2000) and
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apply TREE-PUZZLE (Schmidt et al. 2002) to the concatenation of
protein alignments.

Evolutionary model
The molecular evolution of natural populations is an extraordi-
narily complex process, involving so many different confound-
ing influences (e.g., mutational biases, epistatic interactions, het-
erogeneous recombination rates, population mixing patterns,
temporal variations in population size, time-dependent selec-
tion, frequency-dependent selection, and so on), that essentially
all models of molecular evolution are not more than simple car-
toons that focus on a few processes which are judged to be the
most relevant. Consequently, there is a large variety of models
and approaches to detecting natural selection from sequence
data (for review, see Nielsen 2005). Detecting sequence substitu-
tions that are the result of adaptive evolution, i.e., that were
positively selected, is especially challenging and typically re-
quires the comparison of polymorphism data within one species
with substitution data between closely related species (for review,
see Eyre-Walker 2006).

Here we are concerned with using conservation statistics of
multiple alignments of orthologous DNA from related species to
infer sites that are under purifying selection. A simple and robust
approach to this problem is to compare conservation statistics of
“pairwise” alignments of presumed “neutral” segments with the
statistics of conservation in nearby segments that may contain
constrained sites. This approach has, for instance, been applied
to estimate the fraction of sites that are under purifying selection
in intergenic DNA of Drosophila (Halligan et al. 2004; Halligan
and Keightley 2006). In the context of bacterial genomes, a very
similar approach has been used to extract putative regulatory
sites in E. coli using pairwise alignments of orthologous inter-
genic regions from related species (Rajewsky et al. 2002). Such
approaches can be generalized to the analysis of alignments of
multiple species. Here the most commonly used approach is to
introduce an explicit model of the substitution rates along the
branches of the phylogenetic tree relating the species. Such mod-
els assign probabilities to multiple-alignment columns in terms
of the substitution rates and lengths of the branches (Felsenstein
1981). Hidden Markov models are then used to segment multiple
alignments into two (or a small number of) classes of sites (Yang
1995; Felsenstein and Churchill 1996), i.e., those that evolve at
slower overall rates and those that evolve at higher overall rates.
Maximum likelihood is used to estimate the substitution rates in
the different classes of sites. This approach has for example been
used to estimate the fraction of DNA that is evolving slowly,
presumably because of purifying selection, in the genomes of a
substantial number of eukaryotes (Siepel et al. 2005).

Here we are interested in estimating the density of con-
served transcription factor binding sites (TFBSs) from multiple
alignments of bacterial orthologous intergenic regions. To do
this we introduce two types of evolutionary models, a “back-
ground model”, which describes the overall evolution of a cat-
egory of sites (such as all sites in intergenic regions or all sites at
third positions of a particular fourfold degenerate codon), and a
“foreground” model, describing the evolution of positions in
regulatory sites or, more generally, positions that evolve under a
significantly different set of substitution rates. We then use the
likelihood-ratio of the “foreground” and “background” models
for each alignment column to quantify the evidence that the
position is part of a regulatory site.

Binding sites for a given TF are generally represented
through position-specific weight matrices w where w�

i denotes
the fraction of regulatory sites (for the TF in question) having

nucleotide � at position i. Biophysical models of TFs binding to
their target sites show (Berg and von Hippel 1987; Bintu et al.
2005; Mustonen and Lässig 2005) that, to a good approximation,
the total binding free energy of a TF to a binding site is the sum
of independent binding energies from each nucleotide in the
site. In addition, the binding energy E�

i of nucleotide � at posi-
tion i is, to a reasonable approximation, proportional to the loga-
rithm log(w�

i ) of the frequency w�
i of � at position i. Because the

binding energies E�
i vary significantly, with both the identity of

the preferred nucleotides and the strength of the preference vary-
ing from position to position, one generally cannot assume uni-
form substitution rates across positions in TFBSs. Indeed, studies
of the evolution of known regulatory sites show that substitution
rates vary significantly from position to position and in corre-
spondence with the equilibrium frequencies w�

i (Brown and Cal-
lan 2004; Moses et al. 2004; Mustonen and Lässig 2005).

We thus felt it to be essential that our model for the evolu-
tion of TFBSs takes into account that both the preferred nucleo-
tides and the strength of the preference vary from position to
position. Our model assumes that different positions in regula-
tory sites evolve independently from each other. Since selection
most likely acts on the binding energy of the entire site to the TF,
this assumption is only an approximation, as stressed in Mus-
tonen and Lässig (2005). However, the fact that different posi-
tions in known TFBSs show only marginal correlation indicates
that this approximation is fairly accurate, and indeed this ap-
proximation is followed by virtually all currently used models of
regulatory site evolution. Second, for each position i in a regula-
tory site we assume there is a (generally unknown) set of four
selection coefficients for the possible nucleotides at this position,
which are constant through time and, in the limit of large time,
lead to the set of equilibrium frequencies w�

i . Following Golding
and Felsenstein (1990), Halpern and Bruno (1998) have shown
that, in the weak mutation limit of the standard Kimura-Ohta
theory, one can uniquely determine substitution rates in terms of
the mutation rates and the equilibrium frequencies w�

i . In par-
ticular, if r��

i is the rate of substitution from � to � at position i,
µ�� the rate of mutation from � to �, and w�

i the equilibrium
frequency of � at this position, we have (Halpern and Bruno
1998)

r��
i = ���

log����w�
i

���w�
i �

1 −
���w�

i

���w�
i

. (1)

Under the Halpern-Bruno (HB) model, the probability to
evolve from nucleotide � in the ancestor to nucleotide � in the
descendant over the course of a time t is then given by

PHB��|�, �, wi, t� = �erit ���, (2)

where µ denotes the matrix of mutation rates, wi denotes
the vector of equilibrium frequencies at position i, and ri the
matrix of substitution rates at this position. The matrix exponen-
tial erit is generally calculated by (numerically) diagonalizing the
matrix ri.

Given the transition probabilities (Eq. 2) and given a phy-
logenetic tree T, one can then calculate the likelihood
LHB(C|w, µ, T ) for an alignment column C. Formally the likeli-
hood is the product over transition probabilities PHB(�|�, µ, wi, t)
for each branch of the tree, summed over all possible nucleotides
for the internal nodes, and can be calculated efficiently using the
recursive algorithm introduced by Felsenstein (1981). This calcu-
lation requires, however, that we know the mutation matrix µ
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and the equilibrium frequencies w�
i . In some situations, these

quantities may indeed be known. For example, for a given TF one
can determine the equilibrium frequencies w�

i from collections of
known binding sites and one can then use the model with sub-
stitution rates (Eq. 1) to identify conserved binding sites for the
TF in multiple alignments of intergenic regions. This approach
has been implemented by the MONKEY algorithm (Moses et al.
2004). In our situation, however, the equilibrium frequencies w�

i

are intrinsically unknown. The rigorous Bayesian solution in this
situation is to treat the equilibrium frequencies as nuisance pa-
rameters that need to be integrated out of the likelihood. That is,
given a prior probability distribution P(w) over possible equilib-
rium frequencies, we would calculate

LHB�C|�, T � = �LHB �C|w, �, T �P�w� dw, (3)

where the integral is over all vectors w such that w� � 0 for all �,
and ∑�w� = 1. Unfortunately, because of the complicated de-
pendence of the rates r�� on the equilibrium frequencies w, these
integrals are generally intractable. If the likelihood were sharply
peaked as a function of w, we could approximate the integral by
the value at its peak and a correction factor such as the Bayesian
Information Criterion (Schwarz 1978). However, since in our
case the “data” consist of only a single-alignment column C with
nucleotides from typically a handful of species, the likelihood
function is typically not sharply peaked so that such approxima-
tions are not suitable.

We thus sought to approximate the Halpern-Bruno model
with a simpler model for which the integral (Eq. 3) can be per-
formed and that maintains the feature that selection coefficients
(and correspondingly the limit frequencies w�

i ) can vary from
position to position in regulatory sites. This can be achieved by
using the following substitution rate model introduced by Fel-
senstein (1981)

r��
i = �w�

i , (4)

also known as the F81 model. The F81 model makes the simpli-
fication that the substitution rate is dependent only on the iden-
tity of the target base. In addition, whereas the HB model explic-
itly separates the effects of mutation rate biases and selection on
the equilibrium frequencies, the F81 model parametrizes the
overall mutation rate by a single parameter µ and subsumes the
effect of mutational biases and position-dependent selection into
the position-dependent equilibrium frequencies w�

i . Alterna-
tively, one can think of the F81 model as assuming equal rates of
all mutations and assuming that, at position i, the probability of
a mutation to base � has a probability w�

i to be fixed in the
population. Under the F81 model the probability P(�|�, t, w) to
evolve from ancestral base � to offspring base � over a time t is

PF81��|�, q, w� = e−�t��� + �1 − e−�t�w�. (5)

In spite of the conceptual differences between the HB and
F81 models, in practice the transition probabilities of the HB and
F81 models are typically not very different numerically. The
model we use here has been successfully applied in a number of
algorithms (Sinha et al. 2003, 2004; Siddharthan et al. 2005) for
regulatory motif finding in alignments of orthologous intergenic
DNA.

To calculate the likelihood LF81(C|µ, T) of an alignment col-
umn C we now need to calculate the integral

LF81�C|�, T� = �LF81�C|w, �, T� P�w� dw. (6)

For the prior we use standard Dirichlet priors of the form

P�w���
�

�w���� − 1, (7)

with the �� being the so-called pseudocounts. Since the likeli-
hood LF81(C|w, µ, T) is simply a polynomial in the equilibrium
frequencies w�, we can perform the integral term by term using
the general identity

��
�

�w�� n� − 1 dw =
�

�

��n��

���
�

n�� . (8)

In summary, in order to incorporate the fact that in regula-
tory sites the selection coefficients vary significantly from posi-
tion to position, we used a simplified version of the general Hal-
pern-Bruno model, i.e., the F81 model, to calculate the likelihood
LF81(C|µ, T) of any alignment column C as a function of the
mutation rate µ and phylogenetic tree T.

Background evolution models
Our evolutionary model for regulatory sites thus assumes an F81
substitution rate model with independent equilibrium frequen-
cies w� at each position, which are treated as unknown nuisance
parameters that are integrated out of the likelihood. We contrast
this “foreground” model with a “background” model, which is
exactly the same, except that the equilibrium frequencies w� are
not assumed unknown and varying from position to position,
but rather they are assumed the same at each position and are
estimated from the overall nucleotide frequencies. It is clear,
however, that using a single background model for all noncoding
positions is not appropriate. One generally finds significantly
higher AT content in intergenic regions than in genes and, more-
over, different fourfold degenerate codons show significantly dif-
ferent frequencies of the nucleotide in their third position. We
thus introduce separate background models for intergenic posi-
tions and for each of the eight fourfold degenerate codons. To
compare the likelihood-ratios between foreground and back-
ground models at noncoding positions with those at coding po-
sitions we also introduce background models for first, second,
and third positions in codons in general. For each of these 12
background models we estimate the equilibrium frequencies w�

by simply determining the base frequencies at all positions in
each of the 12 classes genome-wide.

Finally, for each of the 12 classes of sites we set the pseudo-
counts in the prior (Eq. 7) equal to the estimated nucleotide
frequencies in the corresponding class, i.e., �� = w�. As shown in
the Supplemental Material, this guarantees that, in the limit of
very short branch length t → 0, the foreground and background
models will obtain the same likelihood.

Phylogenetic tree estimation
The likelihoods of foreground and background models still de-
pend on the product µt of overall mutation rate µ and branch
length t, i.e., Equation 5, for each branch of the tree. Note that,
since the likelihood depends only on the product µt, we can set
µ = 1 without loss of generality. To estimate the branch lengths t
for each branch of the tree we use third positions in fourfold
degenerate codons to estimate distances between every pair of
species in the clade. For a pair of species, we collect from all
aligned clique genes the third positions in fourfold degenerate
codons with conserved amino acids and count the number of
times n��

c that base � occurs in the first species and base � in the
other, in codons of type c. We then fit the distance t between the
pair of species by maximizing the likelihood of the observed
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counts n��
c under the background evolutionary model using, for

each fourfold degenerate codon c, the estimated nucleotide fre-
quencies w�

c at third positions of this codon genome-wide
(Supplemental Material). After having determined the distances
between all pairs of species in the clade we fit branch lengths tb
for each branch b of the tree using the standard least-squares
phylogenetic distance estimation for a fixed tree (Cavalli-Sforza
and Edwards 1967; Supplemental Material).

Likelihood ratios R at each alignment column
Using the estimated tree and the nucleotide frequencies in each
of the 12 categories of positions we calculate the likelihoods of
foreground and background models at each multiple-alignment
column. The multiple alignments of positions in genes were ob-
tained as described above. To obtain the multiple alignments of
intergenic regions we collect, for each intergenic region, the or-
thologous regions from the other species in the clade; a region is
orthologous if both flanking genes are orthologous and the genes
are in the same relative orientation. To avoid boundary effects of
the alignment algorithm we align all orthologous intergenic re-
gions plus their flanking genes using T-Coffee (Notredame et al.
2000).

For each alignment column C in the genome of the refer-
ence species we determine the class c of the position and deter-
mine the likelihoods Lfg(C|c) and Lbg(C|c) of the foreground and
background models for a site in this class.

The likelihood ratio

R�C|c� =
Lfg�C|c�

Lbg�C|c�
(9)

quantifies the amount of evidence that column C is evolving
with substitution rates different from the background model. As
the Supplemental Material shows, R = 1 on average for positions
evolving according to the background model. In practice large
values of R occur for columns that are significantly more con-
served then expected or, more generally, where the variation of
bases is less than expected according to the background model.

We analyze the evidence of purifying selection in different
groups of positions by calculating the average value of R(C|c) for
different groups of positions. In particular, we determine the av-
erage value of R in different types of intergenic regions, the av-
erage value of R within different classes of positions within genes,
and the average value of R at given locations relative to the start
codons and stop codons of genes.

To verify the robustness of our results we also analyze con-
servation statistics using two separate methods. First, as detailed
in the Supplemental Material, we can use the same foreground
and background models to estimate the average substitution rate
at each position and we quantify the amount of purifying selec-
tion by the relative reduction Q of the estimated substitution rate
relative to the expected substitution rate under the background
model. Second, we also estimate the amount of purifying selec-
tion in intergenic regions of different types using PAML with the
HKY85 substitution rate model. This gives a completely indepen-
dent assessment using an evolutionary model that takes into ac-
count that transition and transversion mutations occur at differ-
ent rates. We find that our results are highly robust: All of the
main results are confirmed using Q statistics and also by the
branch lengths inferred using PAML.

Sequence diversity of most and least conserved 7-mers
The probability that a sequence segment evolves under the fore-
ground rather than the background model is quantified by the
sum of the log(R) values of the alignment column in the seg-

ments. Moving with a sliding window of length 7 over all inter-
genic region alignments we assigned a score X, equal to the sum
over log(R) values, to each window. For each of the 47 possible
7-mers s we collected all n(s) occurrences of the 7-mer in inter-
genic regions and calculated the average score 〈X(s)〉 and its vari-
ance var(X(s)). We also calculated the overall average 〈X〉 over all
n windows of length 7 and the overall variance var(X). Assuming
that the scores of the n(s) windows with 7-mer s were drawn from
a Gaussian distribution with unknown mean and variance, the
probability that the mean differs from the overall mean〈X〉 is
quantified by the z-statistic

z�s� = ��X�s�� − �X��� n�s�

var�X�s�� + var�X��n�s�
. (10)

For each clade we calculate the z-statistics z(s) for each 7-mer
s and produced an ordered list of 7-mers, with the most con-
served at the top and least conserved at the bottom. We then
collected the top nt 7-mers such that the sum of the n(s) equals
0.05n, i.e., 5% of all windows. Similarly we collected the bottom
nb 7-mers such that the sum of their occurrences n(s) equals
0.05n. Finally, we calculated the ratio nt/nb for each clade.
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