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Abstract
Aim—The Aim of this study was to measure circulating levels of glucagon-like peptide-1 (GLP-1),
glucose-dependent insulinotropic peptide (GIP), and glucagon in patients who had undergone
adjustable gastric banding (BND) or Roux-en-Y gastric bypass (RYGB) in order to understand
differences in glucose and insulin regulation after these procedures.

Methods—This was a cross-sectional study of three groups of women matched for age and body
mass index: 1) overweight controls (OW, n = 13); 2) BND (n = 10); and 3) RYGB (n = 13). Venous
blood was drawn in the fasted state and throughout a 3-h period after a liquid meal.

Results—Fasting glucose was similar between surgery groups, however, fasting insulin
concentrations were greater in BND (10.0 μU/ml) compared with RYGB (6.2 μU/ml; P<0.05).
Glucose at 60 minutes was significantly lower in RYGB (70 mg/dl; range 38–82) compared with
BND (83 mg/dl; range 63–98). GLP-1 levels at 30 minutes were over three-fold higher in RYGB
(96 pmol/l) compared with BND and OW (28 pmol/l) controls. GLP-1 and insulin concentrations
correlated at 30 minutes only in RYGB (r=0.66; P=0.013). GIP levels at 30 minutes were lower in
RYGB (20 pmol/l) compared with BND (31 pmol/l) and OW (33 pmol/l) controls. Peak glucagon
levels were similar between groups.

Conclusions/interpretation—Exaggerated postprandial GLP-1 and blunted GIP secretion after
RYGB may contribute to greater weight loss and improved glucose homeostasis in comparison to
BND.
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Introduction
The most common surgical weight loss procedures performed in the United States are Roux-
en-Y gastric bypass (RYGB) and adjustable gastric banding (BND). In general, RYGB
produces a greater reduction in body weight compared with BND. A meta-analysis of bariatric
surgery outcomes reveals that diabetes is resolved in 84% of patients after RYGB and 48%
after BND1. These different outcomes, and the observation that insulin therapy may often be
discontinued shortly after surgery, prior to significant weight loss, beg the question whether
improved insulin sensitivity may be a function of the type of bariatric procedure in addition to
the degree of weight loss2.

We have previously reported that while fasting insulin concentrations were significantly lower
in subjects who had undergone RYGB compared with BMI-matched subjects after BND, there
was an exaggerated meal-stimulated insulin response in the former group3. In addition, fasting
insulin concentrations and HOMA-IR levels were nearly identical between RYGB subjects
and lean controls, yet insulin levels at 30 minutes post-meal were approximately 5.5 fold greater
in the RYGB group3, 4. These results have prompted an examination of possible causes of
enhanced insulin release after RYGB. Gastrointestinal peptides such as glucagon-like
peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) act as incretins that
stimulate insulin release in response to orally administered nutrients5, 6. The aim of the study
was to examine the effects of BND and RYGB on fasting and postprandial levels of GLP-1,
GIP and glucagon.

Subjects and methods
Study Subjects

Three groups of adult women were studied: Group One – overweight controls (OW) who were
BMI and age-matched to subjects in Groups Two and Three (n = 13); Group Two -individuals
post-BND (n = 10); and Group Three - individuals post-RYGB (n = 13). BND and RYGB
groups were also matched for duration of the post-operative period. Surgical procedures for
BND and RYGB have been previously described 3. Subjects were weight stable and were
excluded if they had diabetes or used weight loss products within the prior 6 months. After an
overnight fast subjects consumed a liquid test meal (Optifast, Novartis, Minneapolis, MN; 474
ml, 320 kcal, 50% carbohydrate, 35% protein, 15% fat). Venous blood was drawn pre-meal
and 30, 60, 90, 120 and 180 minutes after meal consumption. All subjects signed an approved
informed consent form.

Hormone Measurements
Blood was collected in EDTA tubes, centrifuged at 4° C and stored at −80° C until assayed.
GIP, GLP-1 and glucagon concentrations were measured after extraction of plasma with 70%
ethanol. For the GIP radioimmunoassay we used the C-terminally directed antiserum R 65,
which cross-reacts fully with human GIP but not with the so-called GIP 8000, whose chemical
nature and relationship to GIP secretion is uncertain7. The antiserum reacts equally with intact
GIP and GIP 3–42, the primary metabolite. Human GIP was used for standards and tracer.
GLP-1 concentrations were measured against standards of synthetic GLP-1(7–36 amide) using
antiserum code no. 89390, which is specific for the amidated C-terminus of GLP-1 and
therefore mainly reacts with GLP-1 of intestinal origin8. The assay reacts equally with intact
GLP-1 and GLP-1(9–36 amide), the primary metabolite. Because of the rapid and intravascular
conversion of both GIP and GLP-1 to their primary metabolites, it is essential to determine
both the intact hormone and the metabolite for estimation of the rate of secretion of these
hormones. Glucagon concentrations were measured using antiserum code no. 4305 directed
against the C-terminus of the glucagon molecule and therefore mainly measures glucagon of
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pancreatic origin9. Sensitivity for the three assays was below 1 pmol/l, intra-assay coefficient
of variation below 6% at 20–30 pmol/l, and recovery of standard, added to plasma before
extraction, about 100% when corrected for losses inherent in the plasma extraction procedure.
Plasma insulin was measured with the Immulite Analyzer with the lower limit of detection of
2 μU/ml. Serum glucose was measured by the hexokinase method.

Statistical Analysis
Significant differences between groups were determined by one-way ANOVA followed by
Fisher’s Protected Least Difference Test. A P-value of <0.05 was considered statistically
significant. Insulin resistance was calculated using the homeostasis model assessment
(HOMA-IR; fasting insulin (μU/ml) × fasting glucose (mmol/l)/22.5)10. Mean values ± SEM
are reported.

Results
Clinical characteristics of each study group are presented in Table 1. There were no significant
differences in age, body weight or BMI between groups. The mean post-operative period was
23 ± 2 months (range, 15–36) for the BND, and 24.6 ± 2 months (range, 16–34) for the RYGB
group. The RYGB group lost a significantly greater percentage of total body weight than the
BND group.

OW controls had the highest levels of fasting glucose (Table 1). Postprandial glucose
excursions differed between groups, such that at 60, 90 and 120 minutes, levels were
significantly lower in RYGB compared with both the OW and BND groups (Fig. 1A). Fasting
insulin concentrations and HOMA-IR were lowest in the RYGB group (Table 1). Peak insulin
concentrations were greatest in RYGB (99 ± 20 μU/ml) but not statistically different from BND
group (69 ± 12 μU/ml, P=0.17) and levels decreased rapidly and remained significantly lower
at 90 – 180 minutes compared with both the OW and BND groups (Fig. 1B).

Fasting levels of GLP-1 were similar between groups, but peak levels were three-fold higher
in the RYGB compared with OW and BND groups at 30 minutes post-meal (Fig. 1C). AUC
for the 180-minute period was significantly greater in RYGB compared with both other groups
(Fig. 1D). GLP-1 concentrations at 30 minutes correlated significantly with insulin
concentrations at 30 minutes only in the RYGB group (r=0.663; P=0.013). Fasting levels of
GIP tended to be lowest in BND (4.1 ± 1.1) and RYGB (4.4 ± 0.9) compared with OW controls
(7.0 ± 2.2 pmol/l), but these differences did not reach statistical significance. All subjects
exhibited a postprandial rise in GIP levels, however, peak levels at 30 minutes were blunted
by over 35% in RYGB compared with OW and BND groups (Fig. 1E); AUC was also
significantly lower in the RYGB group (Fig. 1F). There was no significant correlation between
peak GIP and peak insulin levels in any group. Fasting glucagon concentrations were similar
between groups as was AUC over the 180 minute period, however, at 180 minutes glucagon
was significantly lower (P<0.05) in RYGB (7.9 ± 1.0) compared with OW (13.1 ± 2.1) and
BND (13.0 ± 1.8 pmol/l) groups (Fig. 2).

Discussion
We have shown that RYGB is associated with unique changes in postprandial plasma
concentrations of incretin hormones in comparison with BND subjects and overweight controls
matched for post-operative BMI. RYGB subjects exhibited an exaggerated GLP-1 response
and a suppression of GIP secretion after administration of a test meal. Our previous studies
showed significantly greater insulin levels 30 minutes after identical test meals in RYGB
compared with both BND and BMI-matched controls3,4. While peak insulin levels were also
greatest in RYGB in this study, the differences did not reach statistical significance. More
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detailed studies are necessary to better characterize glucose metabolism and insulin sensitivity
in these subjects, however, the lower HOMA-IR in RYGB subjects is suggestive of greater
insulin sensitivity compared with BND. If this is the case, one may have predicted less
postprandial insulin secretion in RYGB. In contrast, there was at least equal, if not greater,
postprandial insulin secretion in the RYGB group. Given that GLP-1 augments insulin
secretion it is possible that enhanced secretion of this incretin, rather than insulin resistance,
is the stimulus for much of the insulin response in RYGB subjects. In support of this notion is
the finding that in this group only, peak GLP-1 levels correlated with insulin concentrations.
The initial rise in glucose concentration in RYGB compared with BND may have also
contributed to increased insulin secretion.

It has been suggested that in the setting of improved insulin sensitivity post-RYGB,
enhancement of GLP-1 secretion may on rare occasions result in hyperinsulinemic
hypoglycemia11–14. None of our RYGB participants experienced clinical dumping syndrome,
but their glucose levels were significantly lower than both other groups at 60, 90 and 120
minutes, with the lowest values for two different subjects being 38 and 48 mg/dl. Although
GLP-1 may also inhibit glucagon secretion, we observed an early robust increase in glucagon
levels in the RYGB group, indicating that lower levels of glucose in the RYGB group were
not due to impaired glucagon secretion. At 180 minutes, however, lower glucagon levels in
the RYGB group (perhaps as a result of elevated GLP-1) may have contributed to lower glucose
levels. GIP is another gut hormone that stimulates glucose-dependent insulin secretion,
however, we show here that postprandial concentrations are significantly decreased in the
RYGB group. The blunted GIP response may help abet further decreases in glucose
concentrations. Other glucoregulatory factors, such as cortisol, growth hormone and autonomic
nervous system function were not examined in this study.

What accounts for the differences in incretin secretion in our study groups? The most obvious
answer is the different paths of nutrient flow. After bypass, nutrients pass directly from the
gastric pouch to the distal small intestine. Thus, delivery of concentrated nutrients to L cells
in the distal small intestine where GLP-1 is primarily produced may enhance GLP-1 secretion,
as was described after jejunoileal bypass15 and total gastrectomy16. It has also been shown
that postprandial levels of peptide YY (PYY), which is also produced by L cells, are enhanced
after RYGB compared BND and lean subjects, and BMI-matched controls3, 17. Since GIP is
synthesized primarily in the proximal small intestine, diversion of nutrients from this segment
would be expected to reduce postprandial GIP levels as we have shown. It is unlikely that the
difference in weight loss contributed to the different patterns of incretin secretion given that
the degree of weight loss did not correlate with either GLP-1 or GIP secretion.

Other studies have also examined the effect of bariatric surgery on gastrointestinal peptide
hormones18 and have shown that GLP-1 secretion is enhanced after RYGB17, 19 although to
a much lesser degree (less than three-fold over baseline) than the nearly ten-fold increase we
observed. After biliopancreatic diversion, a malabsorptive bariatric procedure that bypasses
the foregut and part of the hindgut, fasting GLP-1 levels were shown to increase compared to
pre-surgical values, however, circulating levels after an OGTT were nearly flat-line20.
Postprandial GLP-1 and enteroglucagon levels also increase after jejunoileal bypass, whereas
results of this procedure on GIP concentrations are inconsistent18. We are not aware of other
studies that examine the effect of RYGB on GIP in non-diabetic subjects. Animal models such
as ileal transposition in rodents also show that expedited delivery of nutrients to a segment of
foregut increases levels of hormones synthesized in the hindgut, such as GLP-1,
enteroglucagon and PYY21, 22.

Bariatric surgery, particularly RYGB, confers long-term maintenance of a reduced body weight
and improvement in glucose homeostasis. GLP-1 analogues and methods to decrease the
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inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) are now in clinical use and are
being extensively studied for the treatment of type 2 diabetes23. Manipulation of incretin
hormone concentrations may also affect body weight. For example, the use in humans of the
GLP-1 receptor agonist, exenatide, is associated with weight loss23, and mice lacking the GIP
receptor are resistant to diet-induced obesity24. Our results suggest that enhancement of
postprandial GLP-1 concentrations after RYGB and suppression of GIP secretion may
contribute to increased weight loss and improved glucoregulation.
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BND  

adjustable gastric banding

GIP  
gastric inhibitory polypeptide

GLP  
glucagon-like peptide

OW  
overweight

RYGB  
Roux-en-Y gastric bypass
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Fig. 1.
Circulating concentrations of glucose (A), insulin (B), GLP-1 (C), and GIP (E) in response to
a test meal.φ,P<0.05 for OW vs RYGB; *,P<0.05 for BND vs RYGB. AUC from fasting to
180 minutes post-meal of GLP-1 (D) and GIP (F). +,P<0.05; ++,P<0.01; +++,P<0.001 vs.
bypass.
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Fig. 2.
Circulating concentrations of glucagon in response to a test meal.φ,P<0.05 for OW vs RYGB;
*P<0.05 for BND vs RYGB.
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Table 1
Clinical characteristics of subjects

OW Controls n=13 BAND n=10 BYPASS n=13

Age 41.0 ± 4.1 [20 – 60] 42.6 ± 4.6 [23 – 64] 49.5 ± 2.4 [30 – 58]
Wt (kg) 96.5 ± 5.9 [70 – 135] 99.2 ± 6.1 [79 – 147] 84.5 ± 4.3 [60 – 119]
BMI (kg/m2) 36.1 ± 2.2 [26 – 51] 36.1 ± 1.7 [28 – 43] 31.3 ± 1.3 [26 – 40]
Wt loss (% total wt) na 24.6 ± 2.3** [15 – 36] 35.6 ± 2.4 [23 – 51]
Fasting glucose (mg/dl) 97.0 ± 2.0* 91.9 ± 2.8 90.7 ± 2.0
Fasting insulin (μIU/ml) 13.8 ± 1.2***† 10.0 ± 1.0* 6.2 ± 0.7
HOMA-IR 3.3 ± 0.3***† 2.3 ± 0.3* 1.4 ± 0.2

Data are presented as mean ± SEM. Range is represented in brackets.

*
P<0.05;

**
P<0.01;

***
P<0.001 vs. bypass.

†
,P<0.05 vs. band.
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