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ABSTRACT Many biological machines function in discrete steps, and detection of such steps can provide insight into the
machines’ dynamics. It is therefore crucial to develop an automated method to detect steps, and determine how its success is
impaired by the significant noise usually present. A number of step detection methods have been used in previous studies, but
their robustness and relative success rate have not been evaluated. Here, we compare the performance of four step detection
methods on artificial benchmark data (simulating different data acquisition and stepping rates, as well as varying amounts of
Gaussian noise). For each of the methods we investigate how to optimize performance both via parameter selection and via
prefiltering of the data. While our analysis reveals that many of the tested methods have similar performance when optimized,
we find that the method based on a chi-squared optimization procedure is simplest to optimize, and has excellent temporal
resolution. Finally, we apply these step detection methods to the question of observed step sizes for cargoes moved by multiple
kinesin motors in vitro. We conclude there is strong evidence for sub-8-nm steps of the cargo’s center of mass in our multiple
motor records.

INTRODUCTION

Biological machines frequently move in a stepwise fashion

along a substrate. Such machines include the microtubule-

based motors kinesin and dynein, the actin-based myosin

motors, proteins involved in DNA replication and RNA

transcription (which proceed in a stepwise fashion along a

DNA strand), and ribosomal transcription of RNA into

protein.

Since the determination of step size of the kinesin protein

under in vitro conditions (1), similar methods have been used

to examine the step size of other motor proteins including

Myosin-V and RNA Polymerase (2). More recently, exper-

iments have begun to look at new situations where the step-

size of cargoes may not be constant. This includes single

motors such as cytoplasmic dynein (3) and also multiple

motors moving a single cargo. In multiple motor experi-

ments, there exists a possibility of the motors moving at

different times, resulting in the center of mass of the cargo

moving with observed step sizes smaller than the usual 8-nm

for kinesin. Alternatively, the motors may move in lock-step.

Thus, details of the stepping behavior of the center of mass of

the cargo can provide insight into the way the motors work

together.

Detection of steps can also serve to provide kinematic and

thermodynamic information about the individual motor.

Information on the distribution of step sizes and step times

can be used to differentiate between different theoretical

models of how motors work. For instance, by detecting the

distribution of step sizes, we can test the hypothesis that

dynein works the same in vivo (4) as it does in vitro (3,5).

Similar studies can compare kinesin or myosin function in

vivo (4,6) to that established in vitro. Finally, as we start to

investigate in vitro how motor function is altered/regulated

by additional factors (e.g., the addition of other motors, the

effect of load, the effect of MAPS bound to microtubules

on motor function, or proteins that directly regulate motor

function), such measurements can help understand how the

combined system is functioning.

Given the utility of such step detection, what are the

challenges? As the standard deviation of the noise increases

to match the step size observed, detection of steps becomes

progressively more difficult. While averaging can theoreti-

cally help, there are limits to how much it improves such

studies. One popular method (7) has been picking out steps

by eye. The human eye is quite good at pattern recognition

(including step detection), but there are two issues which

make it troublesome for step detection. First, this approach is

subject to user bias. Second, high speed camera or quadrant

photodiode detectors observing physiological speeds of

motion can easily produce data sets containing potentially

hundreds of steps, leading to extremely prohibitive times for

manual analysis. Finally, it is important to either keep or

ignore entire records rather than cherry-picking portions.

Picking only the steps that are clearest for deeper analysis

can skew the observed distribution of sizes in either direction

depending on the observer: larger, because the clearest steps

will often be the largest (as they rise the highest above the

background noise) or smaller, because large steps are often

assumed to be multiples and are therefore ignored.

Thus, we are interested in methods that can analyze long

records of processive stepwise motion, detect stepping

events, and determine their magnitude. As such, this article

is not concerned with various methods which are intended to

deal mostly with changes between two states. A survey of

some of these methods may be found in Knight et al. (8). The

pairwise distribution function (9) has been much used in this

field (1,4,10–12), but is not suitable for applications where a
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variable step size is expected, particularly when we seek to

know the distribution of step sizes found. Pairwise distances

will always include a large number of double step (and

higher) magnitude events, meaning that the strength of a

particular peak is not proportional to the number of steps that

have that size. For this reason, we excluded the pairwise dis-

tribution function from our analysis. We have also excluded

methods that make assumptions about the underlying process

(e.g., Markovian). See Milescu et al. (13,14) for information

on a Markovian-based method of step detection.

The methods we considered here are:

Velocity calculation and thresholding (specifically as

described in (15)).

Two sample student’s t-test (similar to that described in

(16)).

Wavelet transform multiscale products (as described in

(17,18)).

A x2-reduction method (described in (19)).

This analysis would be incomplete without consideration of

various filtering techniques which has been applied to step

detection in the past. We thus examine the effect of mean

filtering and median filtering as well as the nonlinear filter

described by Chung and Kennedy (20) and used by Nan et al.

(4).

Much of this analysis was motivated by the study of trans-

port along filaments with known repeat size. Since motors

move along these filaments, repeatedly binding at identical

sites along the filament, we expect step sizes of single motors

to be integral multiples of the typical repeat length. For the

case of microtubules, the tubulin dimer size is 8 nm. Thus,

much of our analysis was not focused on differentiating

between steps that are very closely separated, but rather on

differentiating between steps that are different multiples of

the expected lattice spacing. The simulated data used here to

test the methods focused predominantly on determining the

ability of the different methods to detect the relative fre-

quency of the expected 8-, 16-, and 24-nm steps of dynein.

We also considered the case of two motors functioning

together, when the center of mass of a cargo could move in

smaller steps. For instance, if two kinesin motors are moving

a cargo, and do not move in lock-step, one might expect the

cargo’s center of mass to move 4 nm, half of the step-size of

the individual motors 8-nm steps. We discuss the challenges

to 4-nm step detection stemming from the high stepping rate

and the high noise in the real system. We show that even in

the presence of significant noise, we can infer the presence

of such steps by examining the shape and peak location of

the histogram of step sizes.

While we focused specifically on relative performance of

the step-detection algorithms against a staircase type func-

tion (processive motors), these results may hold for the

situation of transitions between two states, and so may be

applicable to two-state (on/off) results as observed in single-

channel and some myosin experiments.

By comparing several methods, we hope to establish a

base for making informed decisions when considering the

issue of step detection, particularly in those situations where

steps are not expected to be of uniform size. In our com-

parison, we seek the answers to these questions:

How do the methods respond to variations in key

parameters: levels of noise, velocities, and step mag-

nitudes?

What are the limitations of current methods?

Is any one method significantly better?

Do different approaches excel at different aspects of the

problem?

MATERIALS AND METHODS

Taxol-stabilized microtubules were prepared as previously described (3).

Kinesin assay was prepared as previously described (21). Data was acquired

as described in Vershinin et al. (21) with custom software and procedures as

described in main text.

Filters

Windowed mean filter (mean filter)

The window consists of the current point of interest and r (rank) points

before and r points after the current point. The value at the current point is

replaced with the mean value of the points in the current window.

Windowed median filter (median filter)

The window consists of the current point of interest and r (rank) points

before and r points after the current point. The value at the current point is

replaced with the median value of the points in the current window.

Chung and Kennedy nonlinear filter (CK filter)

The method (20) has three parameters, K, M, and p. We attempted to

optimize these settings for our datasets. Overall, best performance was

achieved with K¼ 5, M¼ 5, p¼ 3. These optimized settings and the settings

used by Nan et al. (4) (K ¼ 5, M ¼ 10, p ¼ 10) as well as values in between

were tested. Our values were found to perform best on our benchmark

datasets, and appear throughout this article.

Step detection methods

Two sample students’ t-test

As described by Carter and Cross (16). For each data point, N points before

and after the point are compared by the two sample Student’s t-test,

t ¼ �x1 � �x2ffiffiffiffiffiffiffiffiffiffiffiffiffi
s

2
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2
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where N is the number of points in each sample, s1, s2 are sample variances,

and x1 and x2 are the sample means. Unlike Carter and Cross, we calculate

the probability of observing a particular t-value for a given degree of free-

dom (P(t,df), calculated using the built-in LabVIEW function) with the degrees

of freedom determined by

df ¼ ðs2

1 1 s
2

2Þ=N

ðs4

1 1 s4

2Þ=ðNðN � 1ÞÞ
:

Four Step Detection Methods Compared 307

Biophysical Journal 94(1) 306–319



Steps are found as downward peaks (forward step) or upward peaks

(backward step) in the P(t) record. Periods between steps are scored as pauses

and the difference between the means of successive pauses are recorded as

the step size. We compare this approach with the Carter-Cross approach in the

Supplementary Material (Supplementary Fig. 1). To summarize, we found

the two implementations of the t-test method had similar performance,

provided filters were used with the Carter-Cross t-test method.

Velocity threshold (VT)

A number of velocity thresholding methods have been described; we use a

method described in Hua et al. (15). In the original description, a median

filter is used before any other calculations. In our implementation, we have

considered a wider range of prefiltering approaches (see above). The first

derivative by quadratic convolute (the velocity) is found by first using a

Savitzky-Golay filter of order 2 to fit the data and then dividing by the time

between frames. The specific implementation of the Savitzky-Golay filter

used here is a LabVIEW (National Instruments, Austin, TX) implementation

of the one found in Teukolsky et al. (23). The number of points used by the

Savitzky-Golay filter we refer to as the window size and is equal to 2N11

where N is the number of points used to either side of our central point of

interest. Beginnings and endings of steps are identified by the crossing of a

velocity threshold. Periods between steps are identified as pauses, and the

difference between mean positions during the pauses give the step sizes.

Chi-squared minimization method (x2 method)

This method created by Kerssemakers et al. (19) is based on a x2

minimization. To summarize, the method identifies the most prominent step

in the record and partitions the data at the identified location. The algorithm

proceeds iteratively until the specified number of steps is identified. The

authors of the method also introduced a parameter S which is the ratio of the

x2 of a counter fit (where all the steps are selected to occur in the plateaus of

the best fit) to the x2 of the best fit. In effect, S is a measure of quality of step

identification. Low values of S occur either when the fit is not close enough

or when the algorithm fits the data too closely (mistaking noise for steps). A

peak in S parameter occurs when the number of steps identified is close to the

number of steps occurring in the data. Details on its implementation may be

found in Appendix 3 of Kerssemakers et al. (19). Here we use their MatLab

(The MathWorks, Natick, MA) implementation.

Derivative of Gaussian wavelet (dG wavelet)

Discrete wavelet transform is calculated using the derivative of Gaussian

wavelet. The method used is the MZ-DWT as implemented by Sadler et al.

(17,18).

Generation of benchmark data

The testing methodology used in this article is to use artificial data sets which

closely mirror typical experimentally obtained records. The advantage of

such an artificial benchmark is that we know all underlying parameters

(temporal position and size of steps) and therefore can quantitatively

compare this a priori knowledge with the output of step detection algorithms

(a posteriori results).

The simplest behavior of kinesin, observed under condition of low ATP,

is that there is a single rate-determining step leading to simple Poisson

stepping behavior (10). Under conditions where ATP is not limiting the

stepping rate, the motion of kinesin has two rate-determining steps. In

principle, the more rate-limiting steps there are, the more ‘‘regular’’ the

stepping, so that there is a decreased likelihood of two steps occurring within

a very short time. In practice, the effect turns out to be small; noise and other

factors such a frame rate and averaging have a much larger effect. A brief

investigation of the difference in performance for simulated data with one

and two rate-limiting steps is provided in the Supplementary Material (Table

S1 and Fig. S2). As expected, the performance does improve slightly when

there are two rate-determining steps, since this reduces the incidence of very

short times between steps. We therefore believe that the single rate-

determining step represents worst-case method performance.

In general, we must account for the fact that for low data acquisition rates,

multiple steps may occur in a single low-speed data sample. Therefore we

first constructed a high-speed data stream for a simple Poisson stepper.

Times between steps are randomly chosen from under a decaying ex-

ponential distribution (the decay constant of this distribution is equal to the

mean velocity divided by the step size). The times between steps are rounded

to 0.1 ms and then used to construct a 10,000 frame per second (FPS)

position versus time record. To better emulate real stepping, our steps occur

over an extended period of 0.2 ms. We chose this amount of time because it

is on the order of the time reported for steps to occur in vitro (16). The

resulting high speed position versus time record is then split into segments

based on the desired frame rate. The positions within each segment are then

averaged simulating the action of a camera (for instance, averaging 100-

frame-long segments would produce 100 FPS final data stream). Finally,

Gaussian white noise (25) with a selectable standard deviation was added to

create noisy records, which were then analyzed with the different step

detection algorithms. To indicate the amount of noise added, we refer to the

size in nanometers of the standard deviation, i.e., SD5 (or SD 5 nm) means

we have Gaussian noise with a standard deviation of 5 nm.

Determining performance with different amounts of noise

To gauge which methods in general perform best, we used several 30 FPS

datasets with 200 8-nm steps and a mean velocity of 10 nm/s. Gaussian noise

was varied between SD1 and SD5. We estimate the minimum noise

observed in our single and multiple kinesin experiments to be ;SD3 nm.

Under conditions of low load, noise may be on the order of SD7 to SD8, with

noise being reduced as the distance from the center of the trap increases.

Note that we have used SD1 to SD5 levels of noise in step detection tests

precisely to span the range between idealized low noise limit and realistic

high noise data.

Determining performance with variable frames per step

To explore how frame rate and velocity affect step detection we generated

datasets with 200 8-nm steps at variable mean velocity (between 10 nm/s and

600 nm/s) and fixed frame rate (1000 FPS). We also tested step detection for

fixed velocity (50 nm/s) but variable frame rate (30–1000 FPS). Both

datasets had a noise of SD3 added. If the velocity is raised at a fixed frame

rate then fewer samples occur between steps. Lowering the frame rate at

fixed velocity also results in fewer samples between steps. These parameters

have similar effects, and it proves most sensible, therefore, to think about the

mean number of samples (frames) between steps when examining the

performance of step detection methods.

Determining performance for variable step size

For variable step size testing, some slight modifications were made to our

general procedure. The size of each step was chosen randomly. The

probability of a given step size being chosen is set in advance. For instance,

to produce a record with roughly equal numbers of 8-nm and 16-nm steps we

fix the chance of occurrence of each step size at 50%.

As mentioned above, the decay constant of the exponential distribution

from which we choose times between steps is the ratio of mean velocity and

the mean step size. Here, we use the effective mean step size, so that each

step magnitude is weighed by the relative likelihood of its occurrence. In the

example above (50% 8-nm, 50% 16-nm steps), the effective mean step size

used for calculating velocity was 12 nm. All our mixed step datasets were

200 steps with a mean velocity of 10 nm/s and 30 FPS and a noise of SD5.
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Metric

To compare the results for the different methods, we need a common set of

criteria with which to judge them. Ideally, we are searching for a method that

finds the maximum number of a priori steps with the minimum number of

false positives. It is also important to minimize blurring nearby steps

together particularly for extracting rate information from the stepping record.

For our simulated records, we know exactly when each step occurred, and its

size, and can therefore score a posteriori steps for accuracy in size as well as

examining how often nearby steps are located together rather than singly.

When we look for steps, there are three concerns (illustrated in Supple-

mentary Fig. 3): First, if a step occurred in the data record, did we in fact

detect it (either as a standalone step or blurred together with other nearby

steps)? The parameter that measures this is henceforth called ‘‘percent

found.’’ Second, from our program, we are going to receive an output of

putative steps. How many of those a posteriori steps are correct, that is,

reflect a priori steps? The parameter that measures this is henceforth called

‘‘percent correct.’’ Third, our methods typically look for a step in a given

temporal window, but in some cases multiple steps in the actual data occur in

that window. For instance, consider a case where there were two a priori

steps in the window. If the program reveals a single a posteriori step whose

magnitude is the sum of those two individual a priori steps, it will be doing

as well as can be expected, and these steps will be identified as correct as far

as the ‘‘percent found’’ and ‘‘percent correct’’ measures. However, we

would also like a measure of how many of the steps detected correspond to

such ‘‘fused’’ steps. For our benchmark datasets that have only 8-nm steps,

we can measure the fraction of correct a posteriori steps whose size is found

to be 8 nm (63 nm). This is reported as the third parameter, ‘‘percent 8’s.’’

This parameter is thus a measure of a method’s ability to individually resolve

nearby steps.

The analysis of the x2 method is slightly more complicated as it is not

intrinsically a windowed method, and its output format differs from the other

three methods. Specifically, the x2 method does not report a time window for

when a step occurred, but rather the exact time when the step happened.

Directly comparing its reported step time and step size proves problematic as

the step time may be off by a few frames from the correct time. Since the

other methods are allowed to have the step time wrong by the size of their

window, we decided to allow the x2 method a similar leeway. We construct

windows around each a posteriori step, allowing two points to either side.

Any windows which overlap are then combined. This results in a five-point

window centered on each a posteriori step.

Stepping in vitro

The in vitro kinesin assay was prepared as described in Vershinin et al. (21)

with an ATP concentration of 1 mM. Under these conditions ATP is not

limiting the stepping rate. A custom LabVIEW program was used to bring a

bead into contact with a microtubule and subsequently follow the beads

motion by moving the piezoelectric stage to keep the bead within 150 nm of

the trap center to allow detection of the bead’s position using the quadrant

photodiode. The linkage compliance for single and multiple motors were

found separately as in Svoboda et al. (1). ATP-driven motion was captured

at 20,000 samples per second, then decimated into 10 samples segments

that were averaged to produce a final 2000 sample/s record.

RESULTS

Setting of user-chosen method parameters

Each of the methods examined has one or more parameters

which must be set by the user. The x2 method has one

parameter, the number of steps to be reported, and a built in

graph (S versus number of steps) which provides guidance in

setting the parameter (sample in Fig. 1 a). The wavelet method

has two user-settable parameters—the number of dyadic

scales to be examined and a threshold value. Similarly, the VT

and t-test method have two parameters—window size and a

threshold value. For wavelet, VT, and t-test, the parameters

influence each other, so the threshold value is affected by

window size (or dyadic scale size in the case of wavelet).

There is an inherent tradeoff between noise resistance (re-

sulting from a greater number of points within the window)

and decreasing ability to separately identify closely spaced

steps. Ideally, we wanted to compare the best performance

that each method had to offer so we used our a priori

knowledge of step positions and sizes to optimize the win-

dow size parameter for each method. It also proved possible,

for most methods under most conditions, to reproduce the

ideal window sizes we determined with a priori knowledge

by examination of the number of steps found versus thresh-

old value. See below and Supplementary Fig. 4 for a descrip-

tion of the procedure we used.

The best window size was determined for VT, dG wavelet,

and t-test by finding the window size that gave the highest

mean of % found, % correct, and % 8’s. Fig. 2 b, Supple-

mentary Fig. 5 b, and Supplementary Fig. 6 b illustrate the

results (mean and SD of results for measurements against

three sets of 200 steps).

The Kerssemakers article (19) contains suggestions on

using the graph of S versus number of steps (Fig. 1 a) to set

the expected number of steps, recommending the value just

beyond where the peak in S occurs. In our tests, little change

in algorithm performance is observed for a fairly large range

of expected number of steps near the peak S value (Fig. 1 b).

FIGURE 1 Example of performance of the x2 method.

(a) The curve of the S parameter versus number of steps at

noise SD 3 provides guidance for the optimal pick for the

number of steps in a record being analyzed. (b) Three

performance characteristics are shown for various choices

of the number of steps (SD 3 noise), combining steps as

described in text. Note that the performance in panel b is

fairly stable over a large region near the peak value of the

S parameter found in panel a.
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We attempted to find a repeatable ‘‘best’’ way of setting

the threshold for t-test, VT, and wavelet methods, to be used

when a priori information was lacking. If steps are typically

distinct from noise fluctuations, then we expect that the

number of a posteriori steps detected will vary only slightly

near the ‘‘optimal’’ threshold value. We therefore swept the

threshold value and determined the total number of a pos-

teriori steps and looked for a plateau in the observed relation.

One complication of this optimization procedure is that the

best threshold value turns out to depend on window size.

Examples of this threshold sweep procedure at various

noise levels are shown for the VT method in Fig. 2 a. For the

VT method, the best threshold values are indeed found in the

region where the total steps versus threshold flattens out.

Best results are usually obtained closer to the minima of this

flattened region. Note that this flat region is almost non-

existent for SD5 noise, making selection of a threshold value

very difficult.

Similarly, for the wavelet algorithm whose total step ver-

sus threshold graph looks similar to the VT graph (Supple-

mentary Fig. 5 a), the best threshold values are found where

the plateau occurs in the graph of total steps versus threshold.

The flat region erodes more quickly with noise for the wave-

let method than it does for the VT method, making setting of

the threshold level even more difficult.

Curiously, for t-test, the optimal threshold setting is slightly

less restrictive than the value inferred from where the plateau

occurs. The graph for t-test appears in the Supplementary

Material (Supplementary Fig. 6 a, plotted so less restrictive

thresholds appear on the left).

Comparison of methods with variable noise

Each method was optimized as described above and tested

against three separate datasets with increasing amounts of

Gaussian white noise added. The mean and standard devia-

tion of the % found, % correct, and % 8’s were calculated

and are plotted in Fig. 3.

First, let us investigate algorithm performance ignoring

the temporal resolution (% found and % correct measures

shown in Fig. 3, a and b, respectively). All methods show

excellent performance at low noise levels. However, at the

highest level of noise tested, t-test had the best overall re-

sponse followed closely by x2 (VT and dG wavelet methods

being the worst). Once we factor-in a measure of temporal

resolution (% 8’s shown in Fig. 3 c), the overall picture

changes. Here, the methods break broadly into two cate-

gories: wavelet and x2, which do a better job discriminating

nearby steps, and VT and t-test, which do distinctly worse.

A more detailed look at the distribution of step sizes found

appears in Supplementary Table 2. In general, it bears out

what Fig. 3 c implies: dG wavelet and x2 methods are more

efficient at discriminating nearby steps. It also shows with

greater detail that larger window sizes/dyadic scales cause

decreased ability to discriminate nearby steps.

Results for test datasets with filters applied

As a next step, we examined if any additional factors could

be used to improve method performance. Filtering is a

traditional method of improving response in noisy condi-

tions, and the VT method was originally described (15) with

a median filter used before the derivative. We tested each of

the four methods (using the best window size determined

above, and with the threshold determined as described) with

one of three filters in place (mean, median, and the Chung-

Kennedy (CK) nonlinear filter) and the results, organized by

step detection method, appear in Fig. 4.

Most methods perform better with a mean filter applied.

For t-test, filtering provides mixed results—percent correct

rises, but the percent found drops. In the end, we decided to

use no filter with t-test as any improvement is not statistically

significant. It is interesting that the sophisticated CK non-

linear filter does not perform any better than the simple mean

filter in our tests. It does not erode edges as much as a mean

or median filter; however, it has a tendency to reinforce sudden

large jumps resulting from noise, even as it eliminates the small

jumps due to noise, making noise appear more steplike.

For methods positively affected by mean filtering (dG wave-

let, x2, VT), the filter decreases the frequency with which

noise is identified as steps. The VT method has the largest im-

provement (see Supplementary Fig. 7). The decrease in the

number of false positives is immediately clear (Supplementary

FIGURE 2 Example of performance of the VT method.

(a) The total steps found in the record being analyzed

varies significantly as the threshold is increased. The

graphs for VT method (window of 13) for SD1, 3, and 5

noise are shown. The plateau in the graphs is generally

close to the optimal choice for the threshold. Note,

however, that the plateau loses its definition at higher

noise, making setting of the threshold difficult. (b) Three

performance characteristics are shown for various choices

of window size at SD3 noise for the VT method. For

each window size, the threshold was found following

rules described in the text for each of three runs and

the mean and SD are plotted here. Percent Found and

Correct remain stable across a wide variation in rank/window size. The Percent 8’s decreases with increasing window size. As a result, mean perfor-

mance (mean of all three parameters) also drops with increasing window size.
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Fig. 7 a). There are no obvious changes to the histogram of

steps identified as correct (Supplementary Fig. 7 b).

With the best performing filter in place we find that the x2

method has the best overall performance. We again compare

the % Found, % Correct, and % 8’s (Fig. 5). VT, t-test, and

the x2 method have very similar % Found and % Correct

values. The x2 method and dG wavelet do a better job find-

ing individual 8-nm steps than t-test and VT. The x2 method

performs the best for this reason—it has similar performance

to the VT and t-test methods for % found and % correct, but

its temporal resolution is better and it exceeds their per-

formance on % 8’s. Even with filters applied, dG wavelet is a

poor performer, although its performance has improved

considerably from the no filter case.

For a more detailed examination of temporal resolution of

various methods with filters in place, see Supplementary

Table 3. Comparing Supplementary Table 3 to Supplementary

Table 2 shows that filtering disturbs the step size distribution,

moving it further from the ideal (as expected, larger filtering

windows generally result in more blurring together of nearby

steps). Here, the x2 and dG wavelet methods have better

performance than the t-test and VT methods.

Best performers

Based on the above results, the x2 method (with data pre-

processed by a mean filter) seems to be the best overall

performer. Moving forward from here, we will focus on

the performance of the x21 mean method. Results for the VT

method appear in the Supplementary Material for comparison.

Velocity/frame rate effects

What happens to detection of steps as the velocity rises at a

fixed frame rate? Conversely, what happens as the frame rate

is increased for the same velocity? Are the changes in number

of steps detected, linear? The first two questions are inter-

related, and increasing the frame rate at a constant velocity is

the same as lowering the velocity at a constant frame rate. By

using a common measure, frames per step (which is the result

of multiplying the frame rate by effective step size and

dividing by the velocity), we get the results plotted in Fig. 6

(VT in Supplementary Fig. 8).

Fig. 6 shows the relative performance of the x2 method,

with and without the mean filter, as the number of frames per

step increases. We observe a rapid increase in detection of

8-nm steps with increasing frames per step followed by a

plateau where the optimal result is approached. At 16.3 frames

per step, the x2 method is able to identify nearly half of all

steps as singles. Different filter strengths work best at dif-

ferent frames per step (see comparison in Table 1). Strangely,

performance falls off at high (near 782 and above) frames/

step. Close examination revealed that the x2 method was still

detecting the steps, but was placing them more frames away

from the correct position than our window would accept as

correct. The exact cause is unclear, but seems to be related to

FIGURE 3 Comparison of step de-

tection performance. Three perfor-

mance characteristics, Percent Found,

Percent Correct, and Percent 8’s are

shown in a–c, respectively. Note that

the dG wavelet method rapidly loses

performance as noise level increases.

The percent found and percent correct

are similar for the other three methods

(excluding VT at SD5). The t-test

method, unlike the other methods, im-

mediately finds a fair number of false

steps as soon as noise appears in the

signal.
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the length of the record, as splitting of the 782 frame/step

record into two parts improved method performance. In-

terestingly, this performance falloff was not observed for a

long record with evenly spaced steps. We would therefore

recommend keeping records under ;100,000 frames in

length, as this improved performance in the cases we have

tested.

Performance when the sample contains a mix of
step sizes

We created several records with mixes of 8- and 16-nm steps

with SD5 noise (100% 8’s, ;80% 8’s, ;60% 8’s, ;40%

8’s, ;20% 8’s, and 0% 8’s) and examined the resulting

distribution of correct a posteriori steps (Fig. 7, VT in

Supplementary Fig. 9). For each case, we found expected

performance (assuming four frames of separation between

steps for clear detection). The change in step distribution is

clearly observable. These changes do not result in a simple

proportional change to the step distribution (that is, 40% 8’s

vs. 60% 8’s does not result in a 20% drop in detected 8’s and

a 20% increase in detected 16’s) due primarily to two factors:

1), the combination of nearby steps resulting from window-

ing; and 2), missed steps due to noise. A mix of 33% each of

8’s, 16’s, and 24’s is also clearly distinguishable from mixes

of 8’s and 16’s. For all of these data sets, velocity was

10-nm/s and frame rate was 30 FPS. This velocity to frame

rate ratio was sufficient for good detection of single steps.

Note that (per Fig. 6) this is equivalent to 300 FPS for a cargo

moving at 100 nm/s; for a cargo moving 1000 nm/s we

would need 3000 FPS.

Up to this point, we have determined the step distribution

using our a priori knowledge of where steps occurred. In a real

situation, the distribution of step sizes would need to be

determined by some other method, such as fitting of the peaks

in the histogram of detected steps with multiple Gaussians.

Fig. 7 e shows that this is feasible for an approximately even

mix of 8-, 16-, and 24-nm steps (72 steps, 65 steps, and 63 steps,

respectively). By estimating counts under each Gaussian, we

find ;53 8’s, 54 16’s, and 57 24’s. Some of the missing steps

may be found as higher order combinations.

A real-life example: steps observed for beads
moved by multiple kinesin motors

Recently, our lab has been investigating how multiple motors

work together (21,26). We have found that for low numbers

of motors, stalling forces are approximately additive, and

that the mean travel of a cargo moved by multiple motors is

much larger than for a cargo moved by a single motor. As we

try to understand the ensemble function of the multiple

motors, one question is how they work together—do they

step in unison, or independently? One way to approach this

question is to look at displacements of the center of mass of a

bead moved by two motors. If the motors step in unison, the

center of mass should move 8 nm at each step, whereas if the

FIGURE 4 Comparison of step de-

tection performance after data filtering.

Three performance characteristics are

shown for (a) dG wavelet method, (b)

t-test method, (c) VT method, and (d)

x2 method. The filters used are indi-

cated in each panel along with their

settings (e.g., rank for mean and median

filters). For the wavelet method, the best

performance is found with the mean

filter. The t-test is better off with no

filter applied. The VT method benefits

from filtering, with the best perfor-

mance coming from mean filtering.

Finally, the x2 method benefits mod-

estly from filtering with the greatest

improvement seen from mean filtering

with nonlinear taking a close second.

Noise level was SD5.
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motors step independently, we might expect the center of

mass to move 4 nm (when one motor steps 8 nm, and the

second does not). In particular, we want to know how the

motors step under approximately physiological conditions—

that is, at ;1 mM ATP, and not heavily loaded down, so that

the cargo’s mean travel speed is .100 nm/s. To achieve this,

we cannot use strong opposing load to slow down the motors

or to damp their thermal noise. Because of this, we are faced

with the technically challenging question of investigating

4 nm vs. 8 nm steps at high stepping rate, in the presence of

high thermal noise.

To gather experimental data, we performed experiments

on beads moved along a microtubule by either a single

kinesin (as determined by having a binding fraction of ,0.4)

or by multiple kinesins (all beads can bind to microtubules

and move multiple microns). For the particular kinesin con-

centration used, our past studies (21) indicate that moving

cargos are most often moved by two motors, so we believe

that a significant fraction of the stepping events we observe

correspond to the movement of a cargo driven by two

motors. We do expect that the cargos will occasionally be

moved by either one or three motors and the resulting dis-

placements are present in our datasets. Because of the high

rate of stepping, we needed to use the quadrant photodiode to

detect the bead’s position (with a 2 kHz temporal resolution)

instead of using video microscopy. To do this, we imple-

mented a crude repositioning system, moving the piezo-

controlled stage to follow a moving bead, and keep it in the

trap. The bead was kept between ;30 and ;130 nm from the

center of the trap; this resulted in the load experienced by the

beads varying from ;1 pN to a single kinesin stall force of

5 pN.

We then examined the position record produced by the

beam position detector for steps in each case (Fig. 8). Since

FIGURE 5 Fig. 3 reprised with best

filter in place. Here again, Percent

Found, Percent Correct, and Percent

8’s are shown in a–c, respectively. With

best filter in place VT, t-test, and the x2

methods all have very similar percent

found and correct. Wavelet is still a

poor performer when noise gets large,

although its performance has improved

considerably.

FIGURE 6 Step detection performance changes as a function of frames

per step. The x2 method was used to detect steps in three sample data sets

with 200 total 8-nm steps each and SD3 noise. Step detection results with

and without mean filter applied are shown. All data points represent the

mean and SD of the results for the three data sets. Mean filter rank was

chosen using a priori knowledge.
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we were trying to distinguish between close step sizes, ac-

curacy in step location was critical. This requirement favors

x2 and dG wavelet methods (Fig. 5 c). We also estimate that

the noise in our data was at least SD3 (see below). In this

case, the x2 method is preferable to the wavelet method since

it is less sensitive to noise (Fig. 5 b). Moreover, in this case

no a priori knowledge was available so that setting thresh-

olds for the wavelet, VT, and t-test methods was far more

difficult, time consuming, and ultimately ambiguous than

setting the number of steps in each record based on the S
parameter guidance (Table 2).

The average step sizes obtained via the x2 step detection

method were statistically distinct: 7.6 6 3.3 nm for multi-

motor and 9.0 6 3.6 nm for single motor (mean 6 SD; either

the two-sample t-test or skewness insensitive two-sample

rank-sum test give p , 0.0005). We calculated the skewness

of the single and multiple motor distributions to be �0.02

and 0.12, respectively (Bowley skewness (27), zero for nor-

mal distribution). These findings lead us to conclude that

beads moved by single and multiple kinesin motors move in

different ways. For the multiple-motor driven beads, the

steps were smaller than the expected 8 nm, but there was

no clear peak of 4 nm steps. Sample tracks with x2 fits appear

in Supplementary Fig. 10 (adjusting position for linkage

compliance).

To interpret this difference, we looked at a variety of simu-

lated data under different assumptions, to determine which

classes of models could give rise to what we observed. To

effectively compare experiments and theory, we needed to

evaluate the amount of noise present. The effective noise was

not constant. The noise is difficult to exactly measure for

moving beads close to the center of the trap, but we estimate

it to be ;SD7 for single motor case and ;SD5 for multiple

motor case. At high load (examining portions of the record

where the bead was apparently stationary), we measure the

noise to be ;SD 4.4 nm for a single motor beads, and ;SD

3.6 nm for the multiple motor beads. The average noise is

therefore above SD3, and below SD7.

We generated simulated data consisting of all 8-nm steps,

various combinations of 4- and 8-nm steps, and all 4-nm

steps, added different amounts of noise (noise levels from

SD4 to SD6), and then analyzed the resulting data sets

exactly as we had analyzed the real experimental data. As

expected, regardless of the noise used (up to SD6), the

simulated 8-nm only histogram matched the experimental

single-motor bead data quite well (compare Fig. 8, a–c).

However, almost all combinations of 4- and 8-nm, regardless

of the added noise, did not match the multiple-motor

experimental histogram—in each case, either the distribution

peaked at 8-nm, was double peaked at ;4- and 8-nm, or was

flat from 4- to-8 nm, instead of showing a sharp rise at ;3.5-nm,

peaking at 6.5-nm, and then a gradual decline (some examples

in Supplementary Fig. 11).

The only simulated scenario we tried that generated a

histogram similar to the experimentally measured one was to

assume all 4-nm steps, in the presence of ;SD6 noise

(compare Fig. 8, panel b to panel d ). Both histograms are

skewed, have the same sharp rise starting at ;3.5-nm, peak

at about the same location (;6.5-nm), and then gradually

decline. The key observation then is that the experimentally

observed histogram is not consistent with the all 8-nm steps

hypothesis but can arise if the cargo center of mass moves in

4-nm steps. We note that the magnitude of noise used above

(SD6) is higher than typically observed in multiple motor

assays, suggesting that our experimental data may reflect a

more complex scenario. For instance, the center of mass of

the bead may be moving with variable sub-8-nm steps

centered on 4 nm, with occasional 8-nm steps. Crucially,

these more complex assumptions are generally consistent

with the hypothesis that the activity of individual motors is

uncorrelated. We can thus safely conclude that when kinesin

motors move at saturating ATP under low to moderate load,

they do not move in lock-step.

DISCUSSION

On selecting parameters for best performance

Proper setting of the parameters is a difficult problem. For

the VT and dG wavelet methods we have three parameters

(two for t-test, since filtering does not improve performance)

to determine window size, threshold, and filter rank. All of

these parameters are linked; raising filter rank can lower the

window size needed for best performance, which may cause

the best threshold level to change. Given a selection of filter

rank and window size, it may be possible to select the best

threshold using a graph of total steps detected versus thresh-

old (see Fig. 2 and Supplementary Figs. 5 and 6), although

this becomes impossible at higher noise levels.

We have developed a ‘‘sweep’’ method that makes it pos-

sible to select a best window size, using either plots of number

of steps versus threshold for multiple windows (selecting the

one where the plateau is most clear, see Supplementary Fig. 4)

TABLE 1 Low filter ranks are optimal for the v2 method

Frames/step x2 unfiltered rank x2 mean filter rank

800 NA 2

160 NA 1

80 NA 1

40 NA 1

26.7 NA 1

22.9 NA 1

20 NA 1

17.8 NA 1

16 NA 1

14.5 NA 1

13.3 NA 1

9.6 NA 1

4.8 NA 1

Mean filter rank was optimized using a priori knowledge for sample data

sets (also used in Fig. 6), which had 200 total steps and SD3 noise.
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or the use of a simulated dataset with similar properties to the

dataset to be analyzed as options for setting these parameters.

Generalizing our choices made here using simulated data,

larger windows work better for datasets with lower mean

velocity and filtering allows the use of smaller step-location

windows than would be optimal with no filter.

Relative to these other methods, the x2 method has a dis-

tinct advantage: it has only two parameters to set—the ex-

pected number of steps and filter rank—and there is a

straightforward way of deciding what value should be used

for the expected number of steps. Additionally, while the x2

method benefits from filtering, it appears (Fig. 6) that high

levels of filtering are generally undesirable, somewhat sim-

plifying decisions on what filter rank to use. For the x2

method we can show that with modest (SD3) noise, if one

selects more steps than are actually present but then com-

bines nearby steps, one gets good step detection results. This

indicates that the method has a tendency to split steps that are

actually there when ordered to find too many steps. So,

provided we expect most steps to be well separated, we can

combine close steps to get a better record. Therefore, our

process for adding a window (five frames for all but the

kinesin analysis, where we used 11 frames, based upon

testing with a stuck bead moved in 8-nm steps by a

piezoelectric stage) has a practical value beyond allowing us

to compare it with the other methods. With this low

‘‘window size’’ the x2 method was still as good at resisting

noise and finding steps as the VT and t-test methods using

larger window sizes. This smaller window size is partly

responsible for the x2 method’s superior performance in

finding single steps. We note that for extremely long records

(.100,000 frames), the x2 method has decreased perfor-

mance. Specifically, there appears to be increased ‘‘jitter’’ in

the temporal location of steps. This performance dropoff can

be compensated for by increasing the window size. How-

ever, it may be advisable to split the data sets into smaller

segments instead, since no analytical method has been found

to aid in setting window size.

FIGURE 7 The x2 method detection of 8-16 and

8-16-24 nm mixed step distributions. We have used

data sets with (a) 100% 8’s, (b) ;80% 8’s, (c)

;40% 8’s, and (d) approximately even mix of

8-, 16-, and 24-nm steps and SD5 noise to test x2

performance. Panels a–d show the mean and SD of

three datasets. (e) The results of the x2 method for a

data set containing 60 8-nm steps, 56 16-nm steps,

and 59 24-nm steps were binned to produce a

histogram shown (squares). A fit of the histogram

to a combination of three Gaussians is shown

(circles). The fit suggests that ;53 8-nm steps,

;54 16-nm steps, and ;57 24-nm steps were

found by x2 method.
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From our sample data we see a few trends. The VT and

t-test methods % found and % correct were fairly insensitive

to the window size, as measured by overall performance,

although larger windows will lead to loss of temporal

sensitivity (see Fig. 2 and Supplementary Fig. 6). For these

two methods there is a balance point where improvement to

% found and % correct due to larger window size is offset by

the decreased temporal sensitivity. For the dG wavelet

method (Supplementary Fig. 5), there was an optimal dyadic

scale—on either side of which performance slowly falls off

(particularly % correct and % 8’s, indicating a loss of

temporal sensitivity and a greater vulnerability to detecting

noise as steps). Finally, the x2 method performance is fairly

flat, given that nearby steps are combined as described above

and that the number of steps it is ordered to find is within

;10% over the peak value in the S versus number of steps

graph (see Fig. 1).

Choice of filter and positives and negatives
involved with their use

The performance of the examined methods is often improved

by applying some form of prefiltering (t-test method is the

notable exception). The mean filter was found to be most

beneficial with the CK nonlinear filter usually being a close

second. Filters do have one negative effect—they decrease

the ability of methods to separately identify closely spaced

steps (see Supplementary Tables 2 and 3). In general, when

there are, on average, more frames between steps, higher

filter rank is beneficial (e.g., for the VT method, mean filter

of rank 2 is best at low frames/step, but at 782 frames/step a

mean filter of rank 6 is more appropriate; data not shown).

The exception is the x2 method, for which it is generally best

to keep the filter power low, even at high numbers of frames

between steps.

Finding individual steps: what can realistically
be expected?

The simplest model of molecular motor function assumes

a single rate-limiting step, and thus motor stepping can be

described by a Poisson process,

Pðn; v; f ; s; tÞ ¼

v

sf
t

� �n

e�
v
sf

t

n!
;

FIGURE 8 Detection of steps in experimental

and simulated data. Experimentally measured

cargo motion in single motor and multi-motor

assays was analyzed using the x2 method and

histograms of detected steps are shown in panels a
and b, respectively. Note the skewed appearance of

the multimotor step histogram. Additionally, 18

simulated runs of 50 steps each with all 8-nm steps

and all 4-nm steps and SD6 level noise were also

analyzed with the x2 method. Two rate-limiting

steps were assumed when generating the stepping

datasets. Aggregate histograms of detected steps

for all 8-nm steps and all 4-nm are shown in panels

c and d, respectively. Methods: Taxol-stabilized

microtubules were prepared as previously de-

scribed (3). Kinesin assay was prepared as previ-

ously described (21). Data was acquired as

described in Vershinin et al. (21) with custom

software and procedures as described in main text.

TABLE 2 Comparison of parameters used needed for

different methods

Wavelet VT T-test x2

Prefilter rank Prefilter rank Prefilter rank

Dyadic scale range Window size Window size Step joining range

Threshold level Threshold level Threshold level Number of steps

For rough guidance, the ease with which a given parameter can be

optimally set is represented by shading (darker shading represents

parameters which are harder to set). The more sensitive the method to a

given parameter, the harder it is to set optimally. Note that the easiest

parameters to set are the number of steps for the x2 method (where robust

guidance for setting the parameter is available) and the dyadic scale range

for the wavelet method (since the method is not very sensitive to this

setting). On the other hand, optimally setting thresholds for the wavelet,

VT, and t-test methods is difficult, especially when little a priori knowledge

about the data is available.
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where P is the probability that n steps occur in t frames, v is

velocity, f is the number of frames per second, and s is the

step size (28). For a Poisson process, the distribution of wait

times will be a decaying exponential (28). This means that

the probability of very short times between steps can be

fairly high. For this reason, there is some real, finite

probability of finding more than one step in the time

necessary for step detection (several frames), or even a single

frame. This probability can be reduced to near zero for

slowly moving motors or for very high frame rates (frames

per step becomes large), which is hinted at in Fig. 6.

Below, and in the Supplementary Material, we develop a

theoretical description of what can be expected. The average

number of steps per frame is calculated by dividing the

velocity by the product of the step size and the frame rate.

Since we are not capable of detecting events that occur faster

than our sample time (time per frame), the equation above is

set up to measure time in number of frames. If we take t ¼
1 frame we can calculate the probability of 0, 1, or more steps

occurring in any single frame. If we had perfect step

detection (able to differentiate steps that occurred in adjacent

frames), this would give the approximate step size distribu-

tion observed.

In the Supplementary Material, this type of approach is

extended to more realistic cases where several frames with

no motion are necessary to allow differentiation of two steps.

Doing so allows us to make some quantitative predictions

about the step distribution we expect from step detection. For

instance, as measured directly from the dataset a record with

200 total steps made at 30 FPS, 10 nm/s with 8-nm steps has

a step distribution of 140 single, 25 double, two triple, and one

quadruple (when steps within four frames of another step are

merged). The predicted distribution for these conditions

would be 137.5 singles, 23.5 doubles, 4.0 triples, and 0.7

quadruple. Reporting only steps determined to be correct, the

x2 method at SD3 finds 130 singles, 20 doubles, and one triple

(at this noise level, the x2 method should find ;90% of steps).

This is the reason why ‘‘cherry picking’’ of data is

dangerous. If only especially clear steps are analyzed we

would expect enrichment in double steps, as they will be

more likely to rise above the noise. Even for relatively high

frame/step rates we may still observe 10% (;80 frames/step)

or more of all steps as multiples, possibly significantly more

if we have already biased our search by only looking at the

best. Even at that 10% rate, we may expect to see adjacent

doubles 1% of the time. Two possible approaches can be

taken to appropriately investigate the presence or absence of

steps with a magnitude different from 8 nm. First, we

perform step detection on as much of our dataset as possible,

with unanalyzed portions being rejected following simple

rules (e.g., remove regions where the detector is not well

calibrated and portions where the motor is stalled, etc.).

Second, we can predict based on mean velocity and record

duration how many 16-nm steps we would expect to observe

if the motor only takes 8-nm steps. Then, if the observations

lead to a count for 16-nm steps dramatically exceeding these

expectations (exact amount would depend on the number

expected since the process is stochastic), it may be valid to

say the motor is taking 16-nm steps.

Naturally, we can use this approach in reverse to plan

experiments, and also to help interpret observations. For

instance, if we believe we are dealing with a single motor

which acts as a simple Poisson stepper, then given the

maximum velocity typically reported for in vivo motors

(1000–1500 nm/s (29), 1500 nm/s used here), an assumed

step size (constant 8 nm used here) and presuming we want

at least 67% of all steps to be ideally detectable as singles, we

can predict we would need a frame rate of ;1500 FPS.

Similarly, to detect 80% singles requires ;2500 FPS. We

would need ;10,000 FPS before we would reasonably

expect to be able to detect 95% of all steps as singles. It is

therefore perfectly natural that in any realistic data set some

multiples of the motor step size will be observed. The

significance they have is entirely in the relative percentages.

Detecting variable step size

Generally, if the number of detected (a posteriori) 16-nm

steps changes between an experiment and a control by some

percentage, this does not imply an equal percentage change

in the number of a priori steps (misdetection due to noise and

blurring together of nearby steps is mostly to blame). Fig. 7

reveals, however, that it is indeed possible to detect the

presence of 16-nm steps in a background of 8’s, or even of

16-nm and 24-nm alongside 8-nm steps. While differences

between, e.g., ;40% and ;60% 16’s may be difficult to

quantify, the difference between 0% 16 and as little as 20%

16’s is very clear.

Detection of steps other than 8-nm multiples in
multi-kinesin data

The ability of all methods surveyed here to detect 8-nm steps

falls off dramatically as noise level rises close to SD 4 nm

(Figs. 3 and 5). Therefore, for good detection of a step, we

desire the standard deviation of the noise be half the step size

or less. This also extends to detection of different step

sizes—we would need the noise to be at most half the

difference in step sizes for robust detection. Experimentally,

under small to moderate load, our actual noise levels

observed are approximately SD 5-nm, which makes detec-

tion of 4 nm steps extremely challenging. We do, however,

expect the step size distribution to be disturbed if 4-nm steps

are present in sufficient numbers.

There was indeed a striking difference between single

kinesin and multiple-kinesin driven beads. In the former

case, clear 8 nm steps could be clearly and frequently

observed. In the latter case, we observed long stretches of

time when motion appeared smooth, presumably because the

stepwise motion of the bead’s center of mass was too fine to
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be distinguished from noise. Note that the asynchronous

stepping of two kinesins is expected to displace the bead’s

center of mass 4 nm at a time. This is close to the noise level

in our recordings, which makes clean detection of these and

smaller steps difficult. Nonetheless, a key difference between

the two cases is revealed by the histogram of detected step

sizes. Histograms for both cases show a single peak but the

shape of the peak is different and the peak for the multiple

motor case is shifted to lower average value. Therefore, one

clear conclusion from this study is that when the cargo is not

close to stall, the motors frequently do not step synchro-

nously. We created simulated data sets with 4-nm and 8-nm

steps and examined the histogram of steps identified (Fig. 8).

We see a significant similarity between the measured

multiple motor stepping size histogram and the histogram

of found steps for data simulated to have 4-nm steps and SD6

noise. Additionally, the measured single motor histogram

and the histogram of found steps for simulated data with

8-nm steps and SD6 noise appear similar. Thus, for all

possible noise levels in our experiments, the distribution of

steps found experimentally cannot be explained due to 8 nm

steps with high noise, but instead reflects the predominant

presence of sub-8 nm steps.

While further work will be required to determine the

details of how multiple motors function together, the small

step behavior of the bead’s center of mass observed in vitro

already has ramifications for in vivo studies of stepping

cargos—if the cargo is moved by multiple motors, the steps

observed in cargo motion records may be smaller than the

displacements of each individual motor. Therefore, without

knowing the number of motors moving a cargo, simply

observing a cargo moving in 8-nm steps (7,30,31) only

establishes that each underlying motor is taking at least 8-nm

steps. The steps of individual motors may well be larger than

8 nm.

CONCLUSION

Most step detection methods examined had similar perfor-

mance levels. The VT, t-test, and x2 methods had almost

identical % found and % correct. The x2 method was

superior for temporal resolution, however (greater % 8’s than

VT and t-test, similar to dG wavelet). The x2 method is

easier to set. It only had one parameter (two if a filter is used),

the other methods each have two parameters (three if a filter

is used). Filters help, but they also tend to add some degree

of blur between nearby steps, decreasing temporal resolu-

tion. A high FPS to velocity ratio (frames per step) is

important if one is trying to determine if 8- and 16-nm steps

are both present in a single record (provided certain

assumptions about the motor kinematics are met). Given

this is taken into account, it should be possible to identify

when a significant percentage of 16 nm steps are present. We

also find clear evidence that multiple kinesin motors driving

a single bead are not forced into lock step under the observed

range of forces (,5 pN), and future work will be required

to more fully investigate how multiple motors function

together.
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