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Abstract

BACKGROUND: Cancer anemia causes fatigue and

correlates with poor treatment outcome. Erythropoie-

tin has been introduced in an attempt to correct these

defects. However, five recent clinical trials reported a

negative impact of erythropoietin on survival and/or

tumor control, indicating that experimental evaluation of

a possible direct effect of erythropoietin on cancer cells

is required. Cancer recurrence is thought to rely on the

proliferation of cancer initiating cells (CICs). In breast

cancer, CICs can be identified by phenotypic markers

and their fate is controlled by the Notch pathway.

METHODS: In this study, we investigated the effect of

erythropoietin on CICs in breast cancer cell lines. Levels

of erythropoietin receptor (EpoR), CD24, CD44, Jagged-1

expression, and activation of Notch-1 were assessed by

flow cytometry. Self-renewing capacity of CICs was in-

vestigated in sphere formation assays. RESULTS: EpoR

expression was found on the surface of CICs. Recombi-

nant human Epo (rhEpo) increased the numbers of CICs

and self-renewing capacity in a Notch-dependent fash-

ion by induction of Jagged-1. Inhibitors of the Notch

pathway and PI3-kinase blocked both effects. CONCLU-

SIONS: Erythropoietin functionally affects CICs directly.

Our observation may explain the negative impact of

recombinant Epo on local control and survival of cancer

patients with EpoR-positive tumors.
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Introduction

Cancer-related and chemotherapy-induced anemia nega-

tively impacts the quality of life of many cancer patients and

is accompanied by a poor prognosis [1–5]. Therefore, ane-

mia is frequently corrected by blood transfusions or appli-

cation of erythropoiesis-stimulating agents (ESAs) [7].

However, three randomized clinical studies reported a neg-

ative impact of ESAs on overall survival and local tumor

control in breast [8], head and neck [9], and non–small cell

lung cancer patients [10]. More recently, two large clinical

trials (DAHANCA 10 and Anemia of Cancer, study by

Amgen) were stopped after interim analyses showed in-

creased death rates in patients treated with ESAs. Whereas

some of the patients treated with ESAs experienced thrombo-

embolic events that could be easily related to changes in blood

rheology, a negative impact of ESAs on local tumor control

most likely resulted from more complex interactions.

We have recently demonstrated that overexpression of the

erythropoietin receptor (EpoR) increased the clonogenicity of

cancer cells [11] and that local control and overall survival in

patients receiving recombinant human erythropoietin (rhEpo)

were only negatively affected if the cancers stained positive

using an anti–EpoR antibody [12]. A better understanding of

the mechanisms underlying these rhEpo-related effects may

allow rational selection of patients for treatment and uncover

novel targets to improve cancer treatment outcome.

One view of cancer is that it arises from and is maintained by

a small number of cancer stem cells (CSCs), which have the

ability to self-renew whereas their progenies do not [13]. CSCs

can now be identified prospectively in brain tumors [14], breast

cancer [15], prostate cancer [16], cancer of the head and neck

[6], pancreatic cancer [17], and melanoma [18]. The hypothesis

is that CSCs are responsible for the regrowth and metastatic

spread of a tumor and the efficacy of any given treatment

depends on the killing of this population of cells [13]. In breast

cancer, a CD44+/CD24�/low cell population can be isolated from

patient tumor samples or established cell lines that are highly

enriched for the putative breast cancer stem cell population

exhibiting a 3-log increased tumorigenicity [15].

Furthermore, Dontu et al. [19] demonstrated that mammary

development relies on the developmental Notch signaling

pathway that regulates the fate of mammary stem cells. On

binding of Notch ligands, the Notch receptors undergo intra-

membranous cleavage by the g-secretase protease complex.
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This releases the intracellular domain of the receptor

(Notch–ICD) for translocation into the nucleus, where it

switches the function of CBF-1 from a transcriptional repres-

sor into an activator. Function of g-secretase can be blocked

by specific inhibitors, which are already in clinical trials for

patients suffering from Alzheimer’s disease [20].

The stem cell in breast cancer that is capable of repop-

ulating a tumor from a single cell has not yet been firmly

characterized. Therefore, we will join others in calling the

population of CD44+/CD24�/low putative stem cells, breast

cancer– initiating cells (BCICs). Adopting a technique for the

propagation of normal mammary stem cells [21], Ponti et al.

[22] recently demonstrated that BCICs can be propagated as

mammospheres in vitro. BCICs derived from MCF-7 breast

cancer cells mimicked the phenotype and tumorigenicity of

BCICs derived from primary estrogen receptor–positive

breast cancers. This offers an invaluable tool to study the

treatment responses of BCICs directly and to compare them

to vast literature gained using breast cancer cell lines in the

past. Using the same techniques as Ponti et al., we were able

to enrich mammospheres to contain up to 40% of CD44+/

CD24�/low cells and demonstrate that BCICs are a radio-

resistant subpopulation of cancer cells. Remarkably, the

number of BCICs increased after sublethal fractionated ir-

radiation in vitro. Radiation activated the developmental

Notch signaling pathway and inhibition of this pathway pre-

vented the radiation-induced increase in the number of

BCICs [23]. The relevance of this cell population was under-

lined by two other studies demonstrating that BCICs have

enhanced invasive properties [24] and that the most early

disseminated cells in the bone marrow of breast cancer

patients exhibit the CD44+/CD24�/low phenotype [25]. Such

cells are also resistant to conventional cancer treatment

[23,26,27].

We hypothesized that rhEpo might act on BCICs to

increase the size of the BCICs’ population and compromise

tumor control in breast cancer patients receiving rhEpo

treatment. We addressed our hypothesis using our estab-

lished in vitro BCIC system with MCF-7, T47D, and MDA-

MB-231 breast cancer cell lines, which account for two thirds

of all experimental literature on breast cancer [28].

We found that pharmacological concentrations of rhEpo

increased the number of putative BCICs in established

breast cancer cell lines. The increase was mediated by the

activation of the Notch signaling pathway, could be blocked

by inhibiting this pathway, and mimicked by overexpression

of a constitutively active Notch-1 receptor. Notch activation

occurred through the induction of the Notch receptor ligand

Jagged-1 in a phosphoinositide-3 kinase (PI3K)-dependent

fashion and could be blocked by a PI3K inhibitor.

Methods

Cell Culture

MCF-7, T47D, and MDA-MB-231 breast cancer cells

were purchased from the American Type Culture Corpora-

tion (Manassas, VA) and cultured in log-growth phase in min-

imum essential medium (MCF-7 and T47D) (Cellgro, Kansas

City, MO) (supplemented with 0.1 mM nonessential amino

acids and 1 mM sodium pyruvate) and Dulbecco’s modified

Eagle’s medium (DMEM) (MDA-MB-231) (Cellgro), respec-

tively, after supplementing with 10% heat-inactivated fetal

calf serum and 0.01 mg/ml bovine insulin (Sigma, St. Louis,

MO) at 37jC in a humidified atmosphere (5%CO2). Mammo-

sphere cultures were established as described by Ponti

et al. [22] under serum-free conditions in phenol red–free

DMEM/F12, supplemented with 0.4% bovine serum albumin,

20 ng/ml basic fibroblast growth factor (Sigma), and 10 ng/ml

epidermal growth factor (Sigma). Cultures were fed with

fresh growth factors every 3 days.

Transfection

All plasmid DNA were prepared using a commercial

DNA extraction and isolation kit (Midiprep; Quiagen, Valencia

CA). The Notch–ICD plasmid [29] was a gift from Dr. L. Miele

(Loyola University Medical Center). The pNICD plasmid was

constructed by cloning the intracellular domain of Notch-1

(5309–7655 bp) into the expression vector pcDNA3 (Invitro-

gen, Carlsbad, CA). The empty pcDNA3 vector was used as a

control. MCF-7 cells were transfected with the pNICD plasmid

or the pcDNA3 control vector using Lipofectamine2000 (In-

vitrogen) and OptiMEM (Invitrogen). After 24 hours, the cells

were replated and maintained under 1 mg/ml neomycin

(Sigma) selection. Individual clones were selected, grown in

the presence of 1 mg/ml neomycin, and tested for the expres-

sion of intracellular Notch-1 (Notch-1–ICD). Clones overex-

pressing intracellular Notch-1 were expanded under neomycin

selection to generate stable expression of MCF-7–pNICD

and MCF-7–pcDNA3 cell lines.

Drug Treatment

RhEpo (1 IU/ml) treatment of monolayer cultures of MCF-

7 cells was performed from day 2 to 4 after plating. Cells were

harvested on day 5 when flow cytometry was performed to

assess the cells’ phenotypes. The g-secretase inhibitor (GSI),

GSI XVII (InSolution; Calbiochem, San Diego, CA), was

Figure 1. MCF-7, T47D, and MDA-MB-231 monolayer cells were serum-

starved for 5 hours, trypsinized, and analyzed for EpoR-expression on the cell

surface by flow cytometry. EpoR was expressed on CD44+/CD24�/low cells,

the putative stem cell population (gray) as well as on unselected cells (black).
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added at a final concentration of 5 mM (0.1% final concentra-

tion of DMSO). LY294002 (Calbiochem) was dissolved in

DMSO and added at a final concentration of 10 mM. Control

cells received 0.1% DMSO only. Cells were serum-starved

for 5 hours before the start of the experiment to prevent

EpoR internalization through binding of fetal calf serum–

derived erythropoietin (Epo). Serum starvation in long-term

experiments in which cells were treated with rhEpo for 3

consecutive days was not tolerated by the cells and was

therefore omitted.

Flow Cytometry

For analysis of CD24 and CD44 expression, cells were

labeled using a mouse anti–human CD24–fluorescein iso-

thiocyanate (BD Pharmingen, San Jose, CA) and a mouse

anti–human CD44–phycoerythrin (PE) (BD Pharmingen). In

Figure 2. (A) FACS analysis detecting the size of the CD44+/CD24�/low cell population in monolayers and supernatant of MCF-7 cells. Treatment with rhEpo (3 �
1 IU/ml) increased the size of this population 4.8-fold from 2 ± 0.08% to 9.5 ± 1.8% (P < .01, Student’s t test). Data from four independent experiments are shown.

(B) Representative FACS analysis of MCF-7 monolayer cultures treated with rhEpo (3 � 1 IU/ml) for 3 consecutive days. About 0.9% of the cell in the adherent cell

population was CD44+/CD24�/low ( left panel). Treatment with rhEpo increased the frequency of CD44+/CD24�/low cells in the supernatant from 2% (middle panel)

to 14.9% (right panel). (C and D) Primary sphere formation assay of MCF-7 (C) or MDA-MB-231 (D) cells treated with rhEpo (3 � 1 IU/ml) for 3 consecutive days.

RhEpo increased the rate of primary spheres formation (MCF-7: 1 ± 0.4% for untreated cells, 2.9 ± 0.6% for Epo-treated cells; MDA-MB-231: 1.2 ± 0.6 for

untreated cells, 4.5 ± 1.1% for Epo-treated cells, P < .01, two-sided Student’s t test; means ± SEM). Preincubation (30 minutes) with GSI (5 �M) treatment

prevented the rhEpo-induced increase in primary sphere formation (MCF-7: GSI-treated cells, 1 ± 0.4%; Epo + GSI– treated cells, 1.5 ± 0.4%; MDA-MB-231: GSI-

treated cells, 1.5 ± 0.7%; Epo + GSI– treated cells, 1.1 ± 0.8%).
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experiments investigating EpoR expression, cells were serum-

starved for 5 hours. For detecting EpoR expression, cells

were labeled with a monoclonal fluorescein isothiocyanate–

conjugated mouse anti–human EpoR antibody (FAB307F;

R&D Systems, Minneapolis, MN), a PE/Cy5–conjugated

mouse anti–human CD44 antibody (BioLegend, San Diego,

CA), and a PE-conjugated mouse anti–CD24 antibody (Beck-

man Coulter, Fullerton, CA) using standard protocols. For

analysis of Jagged-1 expression and Notch activation, cells

were harvested, fixed in 4% paraformaldehyde for 10 minutes

at room temperature, permeabilized with 0.5% saponin, and

incubated with a rabbit anti–human Jagged-1 (Santa Cruz

Biotechnology, Santa Cruz, CA) or a rabbit anti–human

cleaved Notch-1 antibody (Cell Signaling Inc., Danvers, MA)

and fluorochrome-conjugated secondary antibodies using

standard protocols. Flow cytometry was performed on a

FACScalibur flow cytometer using the CellQuest software

package (BD Biosciences, San Jose, CA).

Primary Sphere Formation Assay

The frequency of cells in the nonadherent population of

monolayer cultures that were capable of initiating sphere

formation was assessed by harvesting, washing, and resus-

pending cells in phenol red–free DMEM/F12 medium (sup-

plemented with 0.4% bovine serum albumin, 20 ng/ml basic

fibroblast growth factor, and 10 ng/ml epidermal growth fac-

tor), and passing them through a 40-mm sieve. Cells were

then counted, diluted, and plated at clonal density into 96-

well plates. Mammospheres were counted on day 5.

Results

rhEpo Increases the Size of the Putative BCIC Population

The expression of EpoR on breast cancer cells has been

described by others [30], but not its expression on CD44+/

CD24�/low cells. MCF-7, T47D, and MDA-MB-231 CD44+/

CD24�/low cells were found to express levels of EpoR com-

parable to levels of EpoR on unselected cells (Figure 1).

To test if rhEpomodulates the size of the CD44+/CD24�/low

population,MCF-7monolayer cultureswere treatedwith 1 IU/ml

rhEpo for 3 consecutive days (days 2–4 of culture). About

24 hours later, monolayer cells and cells floating in the

supernatant were analyzed for CD24 and CD44 expression.

Cells were stained with antibodies against CD24 and CD44

and the size of the CD44+/CD24�/low population of cells was

analyzed by flow cytometry. Treatment with rhEpo did not

change the number of CD44+/CD24�/low in the adherent cell

population but increased the number of CD44+/CD24�/low

cells in the supernatant almost 5-fold from 2% (± 0.3%) to

9.5% (± 1.8%) (means ± SEM; P < .01, Student’s t test)

(Figure 2, A and B).

The effect of rhEpo was also demonstrated by its ability to

increase in primary sphere formation by cells taken from the

supernatant of MCF-7 or MDA-MB-231 monolayer cultures

and plated at clonal densities into 96-well plates. Cells de-

rived from cultures treated with 1 IU/ml rhEpo on 3 con-

secutive days (days 2–4 of culture) showed a significant

increase in primary sphere formation (MCF-7: 1 ± 0.4% for

untreated cells, 2.9 ± 0.6% for Epo-treated cells; MDA-MB-

231: 1.2 ± 0.6 for untreated cells, 4.5 ± 1.1% for Epo-treated

cells, P < .01, two-sided Student’s t test; means ± SEM)

(Figure 2, C and D).

rhEpo Increases the Number of BCICs in a

Notch-Dependent Fashion

We have previously shown that activation of the Notch

signaling pathway increases the number of BCICs [23]. To

investigate if blocking activation of the Notch-1 pathway would

prevent Epo-induced increases in the number of BCICs,

monolayer cultures were pretreated with GSI, 30 minutes

before each daily treatment with rhEpo. GSI treatment pre-

vented the rhEpo-induced increase in primary sphere forma-

tion (MCF-7: GSI-treated cells, 1 ± 0.4%; Epo + GSI–treated

Figure 2. (continued)
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Figure 3. (A) Treatment of MCF-7 monolayer culture with 1 IU/ml rhEpo for 2 hours caused a 1.4 ± 0.16– fold (mean ± SEM, P = .041, n = 3, two-sided paired

Student’s t test) induction of Jagged-1 expression. (B) Treatment of MCF-7 monolayer culture with 1 IU/ml rhEpo for 2 hours caused a 1.5 ± 0.19– fold (mean ±

SEM; P = .049, n = 3, two-sided paired Student’s t test) activation of Notch-1 after 2 hours. Treatment with the PI3K inhibitor LY294002 but not the JAK2 inhibitor

genistein prevented rhEpo-induced activation of Notch-1.

Figure 4. Representative FACS analysis of MCF-7 cells, stable transfected with an expression vector coding for constitutive active Notch, or an empty vector (n =

2). Expression of constitutive active Notch increased the population of BCICs.
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cells, 1.5 ± 0.4%; MDA-MB-231: GSI-treated cells, 1.5 ± 0.7%;

Epo + GSI–treated cells, 1.1 ± 0.8%) (Figure 2, C and D).

To confirm that rhEpo increased the number of BCICs in

a Notch-dependent fashion, we treated MCF-7 cells for 2 or

4 hours with 1 IU/ml rhEpo and stained cells with antibodies

against Notch–ICD, or Jagged-1, and analyzed expression

by flow cytometry. Treatment with rhEpo caused a 1.4 ±

0.16–fold (mean ± SEM, P = .041, n = 3, two-sided paired

Student’s t test) induction of Jagged-1 expression (Figure 3A)

and a 1.5 ± 0.19–fold (mean ± SEM, P = .049, n = 3, two-

sided paired Student’s t test) activation of Notch-1 after

2 hours (Figure 3B). To confirm that activated Notch signal-

ing truly increased the number of putative breast cancer stem

cells, we stably transfected MCF-7 cells with an expression

vector for a constitutively active Notch–ICD. When MCF-7–

pNICD cells were stained with antibodies against CD24 and

CD44, analyzed by flow cytometry, and compared to mock-

transfected cells, the number of CD44+/CD24�/low cells was

increased in MCF-7–pNICD cells, consistent with our other

data (Figure 4).

rhEpo Activates Notch Signaling through PI3K Pathways

Signaling in response to rhEpo through the Epo receptor

is rapid and involves at least three major pathways: Janus

kinase 2 (JAK2)–dependent activation of STAT5, activation

of the Ras/Raf pathway, and PI3K/Akt–dependent/JAK2-

independent activation of nuclear factor–kappa B (NF-nB)
[31]. We previously reported activation of NF-nB in cancer

cells after treatment with rhEpo that was dependent on EpoR

expression levels [11]. Because NF-nB is known to induce

Jagged-1 expression [32], we repeated our experiment using

the PI3K inhibitor LY294002 and the JAK2 inhibitor genistein.

As expected, treatment with LY294002 but not genistein pre-

vented rhEpo-induced activation of Notch-1 (Figure 3B). As

expected, pretreatment of the cells with the GSI inhibited

activation of Notch-1 (Figure 5).

Discussion

The use of ESAs to correct chemotherapy-induced anemia

or cancer anemia is currently under debate after five large

placebo-controlled clinical trials showed increased cancer-

related death rates for patients treated with ESAs [8,10,33]

(DAHANCA 10 and Anemia of Cancer, both unpublished).

These findings could not be explained by elevated hemoglo-

bin levels, suggesting a direct effect of ESAs on cancer cells.

However, experimental evidence for a direct effect of ESAs

on cancer cells in the literature is inconclusive. Results from

studies investigating direct effects of ESAs and cancers us-

ing a broad variety of in vitro models, in vivo models, and

ESAs doses range from chemo- and radiosensitizing effects

to chemo- and radioprotective effects, whereas others re-

ported no effect at all [34–42].

EpoR was detected on cells derived from all three breast

cancer cell lines confirming previous studies [30,43]. Here

we report for the first time that EpoR is expressed on the

surface of the BCIC population. It is important to note that the

specificity of anti–EpoR antibodies is currently under debate

[44] but it has been clearly demonstrated that the EpoR sig-

nals on rhEpo binding in non–erythroid cells, including cancer

cells [45].

Using a pharmacological concentration of rhEpo (1 IU/ml),

we found that the size of the CD44+/CD24�/low nonadherent

population of BCICs was increased after treatment with rhEpo.

Figure 5. Representative FACS analysis of Notch-1 activation in MCF-7

cells. Treatment with 1 IU/ml rhEpo for 2 or 4 hours (upper panel: gray line

and black line; filled histogram, control) caused activation of Notch-1. This

activation was inhibited by pretreatment with a GSI for 30 minutes at 2 and

4 hours (middle and lower panels: gray line, rhEpo; dashed line, rhEpo + GSI;

filled histogram, control).
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The increase in the number of BCICs observed after rhEpo

treatment was significant and the cells were not only viable

but, more importantly, exhibited an increased self-renewal ca-

pacity as demonstrated by primary in vitro sphere formation.

We have previously demonstrated that activation of the

Notch signaling pathway is part of the cellular stress re-

sponse to clinical doses of ionizing radiation [23]. Interest-

ingly, this effect was mediated by increased expression of

the Notch receptor ligand Jagged-1 in the non–BCIC popu-

lation that activated Notch signaling in BCICs. As for radia-

tion [23], we have shown in this study that rhEpo treatment

activated Notch signaling in BCICs. It further opens the pos-

sibility that EpoR expression may not be essential for BCICs

to respond to rhEpo directly, but indirectly as they are the

receiving part in the Notch signaling cascade, as long as the

surrounding cells in a tumor express the receptor and re-

spond to rhEpo with induction of Notch ligand expression.

The role of Notch signaling for the rhEpo-induced increase in

BCICs was further underlined by the observations that

expression of constitutive active Notch increased the number

of BCICs. As in our previous study [23], the number of BCICs

was increased in the population of cells floating on top of the

adherent cells. Comparable results were initially reported by

Ponti et al. [22] and this may reflect the fact that this popu-

lation usually contains not only dead cells but also cells under-

goingmitosis and therefore detach from the adherent population.

We have previously shown that treatment of EpoR-

expressing cancer cells activates the transcription factor

NF-nB [11]. This activation is independent of JAK2 [31], me-

diated through the PI3K pathway [46], and Jagged-1 is a

known downstream target gene of NF-nB [32]. Consistent

with these previous findings, inhibition of the PI3K but not

JAK2 prevented the increase in BCICs in response to rhEpo.

Remarkably, GSI alone did not affect the number of mammo-

spheres formed, which may indicate that GSIs are not toxic

for BCICs, rather they only interfere with the switch to sym-

metric cell division while sphere formation remains intact.

Conclusions

Taken together, our study demonstrates that rhEpo mediates

an increase in the number of BCICs in MCF-7 and MDA-MB-

231 cultures, which could be blocked by inhibition of Notch

signaling. With putative stem cells now identified in other

cancers [14,16–18], it will be interesting to investigate if ESAs

generally affect the growth of these cells also. Our study

provides a possible explanation for the unexpected negative

clinical effects of ESAs on local control and survival in cancer

patients. Clearly, using established cell lines, our study

has limitations and our observations need to be confirmed

in primary tumor cell lines derived from patient samples.
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