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High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources.
However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining
existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting
minimally characterized genes involved in meiotic DNA processing. Based on our selection procedure, 81 deletion
mutants were constructed and tested for phenotypic abnormalities. Eleven (13.6%) genes were identified to have
novel roles in meiotic DNA processes including DNA replication, recombination, and chromosome segregation. In
particular, this analysis showed that Def1, a protein that facilitates ubiquitination of RNA polymerase Il as a response
to DNA damage, is required for efficient synapsis between homologues and normal levels of crossover recombination
during meiosis. These characteristics are shared by a group of proteins required for Zip1 loading (ZMM proteins).
Additionally, Soh1/Med31, a subunit of the RNA pol Il mediator complex, Bre5, a ubiquitin protease cofactor and an
uncharacterized protein, Rmr1/Ygl250w, are required for normal levels of gene conversion events during meiosis. We
show how existing datasets may be used to define gene sets enriched for specific roles and how these can be evaluated
by experimental analysis.
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Introduction

Meiotic DNA processing includes molecular functions such
as DNA replication, repair, recombination, chromosome
modification, and segregation. The fidelity of DNA processing
events during meiosis is critically important as errors can give
rise to mutations, genome rearrangements, and aneuploidies
that are associated with genetic disorders.

A large number of high-throughput analyses have been
performed to characterize the 6,200 genes of S. cerevisiae.
These have included genomic screens for protein—-protein [1-
3] and protein complex interactions [4-7], high-throughput
genetic interaction analyses [8-13], genome-wide measure-
ments of gene expression under various environmental
conditions [14-19], comprehensive measurements of subcel-
lular localization of proteins [20,21], and assessments of
deletion phenotypes of single genes [22-24]. Although these
high-throughput datasets have proved to be useful, at the
time of this work more than one third of the S. cerevisiae genes
did not have a biological process and/or molecular function
assigned on the Saccharomyces Genome Database (SGD) [25].
One major drawback of high-throughput studies is the
difficulty in assessing the large amount of data that are
produced, and to compound the problem further, spurious
data are common [26,27]. However, it has been shown that
problems with false information within datasets can be
circumvented by combining data from different high-
throughput experiments, as the data can either support or
contradict one another [28,29].

In this report, a strategy of combining high-throughput
data available for protein and genetic interactions, protein
subcellular localization, and mRNA expression patterns,
together with data from phenotype experiments, was used
to identify minimally characterized genes potentially impli-
cated in DNA processing. Homozygous deletion mutants were
made for 81 genes selected with the data integration strategy
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and were assessed to detect roles in meiotic DNA processing.
As a result, eleven (13.6%) genes were found to have novel
roles in meiotic DNA processing.

Results

Integration of Datasets to Select Genes with Roles in DNA
Processing

An in-silico selection strategy (Figure 1) was designed to
combine high-throughput datasets, to identify mutants
conferring DNA processing phenotypes. 81 genes (3.4% of
the minimally characterized genes in the genome) were
selected for further analysis. During primary selection, genes
not annotated for a biological process and/lor molecular
function (minimally characterized genes) were selected if
either a genetic or physical interaction partner involved in
DNA processing could be identified. A gene was defined to be
involved in DNA processing if its annotation was related to
one or more of the following functions: DNA replication,
repair, recombination, and related checkpoints, as well as
chromosome segregation and chromatin structure/modifica-
tion by the Comprehensive Yeast Genome Database (CYGD)
or the Saccharomyces Genome Database (SGD). In this way a
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Author Summary

Since the genome of S. cerevisiae was sequenced in 1996, a major
objective has been to characterize its 6,200 genes. Important
contributions to this have been made using high-throughput
screens. These have provided a vast quantity of information, but
many genes remain minimally characterized, and the high-through-
put data are necessarily superficial and not always reliable. We
aimed to bridge the gap between the high-throughput data and
detailed experimental analysis. Specifically, we have developed a
strategy of combining different sources of high-throughput data to
predict minimally characterized genes that might be implicated in
DNA processing. From this we have gone on to test the involvement
of these genes in meiosis using detailed experimental analysis. In a
sense, we have turned high-throughput analysis on its head and
used it to return to low-throughput experimental analysis. Using this
strategy we have obtained evidence that 16 out of 81 genes
selected (20%) are indeed involved in DNA processing and 13 of
these genes (16%) are involved in meiotic DNA processing. Our
selection strategy demonstrates that different sources of high-
throughput data can successfully be combined to predict gene
function. Thus, we have used detailed experimental analysis to
validate the predictions of high-throughput analysis.

list of 752 DNA processing genes was created (Table S1). To
increase stringency we required a minimum of two DNA
processing interaction partners, which reduced the number
of candidates from 718 to 316 genes. The interaction data
were taken from the Yeast General Repository for Interaction
Datasets (GRID) [30] and Database of Interacting Proteins
(DIP) [31].

The secondary selection aimed to select against genes that
had unfavourable characteristics. Of the initially chosen
genes, 72 had well documented roles in DNA processing
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and were therefore removed (e.g., MADI, well characterized
for its role in the spindle checkpoint [32] and ZIP2, which has
been shown to be an intrinsic component of the synaptone-
mal complex [33]). Of the genes essential for vegetative
growth, 52 were not assessed. A further 61 genes were
removed because of protein localization inconsistent with
roles in DNA processing (e.g., mitochondria, endoplasmic
reticulum, cell wall, bud neck, endosome, Golgi apparatus,
vacuole, or lipid).

Also excluded were 37 genes annotated for roles in cell wall
organization and biogenesis, bud site selection, vacuole
transport, and nutrient metabolism. We excluded 13 genes
because the fraction of their interaction partners involved in
DNA processing was less than 1/5. The secondary selection
resulted in the identification of 81 genes that were all
subsequently analyzed experimentally (see Table S2 for the
list of genes removed during the secondary selection).

It has been reported that genetic interaction data have a
much higher confidence than physical interaction data [34],
and it has been observed that mRNA expression patterns
often correlate for proteins that interact physically [35-38].
To assess the 81 candidates further, the gene expression
correlations of all physical interaction pairs were compiled.
The method of assessing mRNA correlation used here has
been described and assessed previously [29]. This method
calculates a cosine correlation distance for a pair of proteins
that is between zero for complete correlation, and two for
anti-correlation. A correlation distance of below 0.9 was
deemed sufficient expression correlation to support the
interaction. This cut-off was decided for two reasons; firstly,
yeast two-hybrid data generally have a weak relationship with
gene expression correlation [38] and therefore a cut-off value
too stringent would miss true interactions. Secondly, in
general a correlation distance over 0.9 did not successfully
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Figure 1. Integration of Datasets to Select Genes with Roles in DNA Processing
See text and Figure S1 and Tables S1, S2, and S3 for details of the selection strategy.

doi:10.1371/journal.pgen.0030222.g001
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Table 1. Summary of the Deletion Mutants for 16 of 81 Selected Genes That Had an Altered DNA Processing Phenotype

Gene Selection HU MMS X-Ray Sporulation Low or No Spore Meiotic Gene Meiotic

Deleted Category Sensitive® Sensitive® Sensitive® Efficiency (%) Meiotic Viability (%) Conversion Lys™ Chromosome
Nuclear Frequency (10~%) Missegregation
Divisions Ade™ Frequency

(10°?)

Wild type - - - - 50.7 No 94.59 3.868 1.64

BRE1 A + - - <1 Yes NA NA NA

RAD61 A - - AF < 3 47 No 75 3.02 1.95

vID21 A ++ + 4+ + 4+ <1 Yes NA NA NA

SGF73 A < = = 1.6 Yes NA NA NA

SOH1 A + + - - 226 No 60 0.015 6.08

PMR1 (HURT) A ++ + - - 10.3 Yes 1.25 NA NA

YGL250W A - - - 335 No 85 0.663 3.06

RTT101 A + +++ - 37.9 No 825 2.75 3.89

DEF1 A ++ + + + + + + + <1 Yes NA NA NA

MMS22 A + + + ok 4k - +++ 133 No 61.25 3.19 13.6

BRE5 A + - - 27.6 No 82.5 0.013 3.03

YPLO17C A - = = 17.2 No 65 333 50.3°

LGE1 A + - - <1 Yes NA NA NA

swcs A + - - 334 No 91.25 3.17 26

RMD11 B + - - 34 Yes 90 NA NA

PSY3 D - +++ - 36.2 No 85 3.55 1.44

The 16 mutants that had at least one altered DNA processing phenotype. See Table S3 for a summary of the results acquired for deletion mutants of all 81 genes. Numbers in bold signify
the mutants that show phenotypes that are greatly different from the wild type for the particular assays referred to in the text.

For HU or MMS sensitivity tests, overnight cultures were diluted by a factor of 10 from 10~" to 10~ and spot-plated onto YPD plates containing 100 mM HU and 0.03% MMS. For X-ray
sensitivity, the same dilutions were plated onto a YPD plate that was then exposed to 120 kVp for 40 min.

"The meiotic chromosome missegregation phenotype was confirmed by assessing the mutant in a SK1 background. The SK1 strain has a URA3 locus, 35 kb away from the centromere of
Chromosome V that has tandem arrays of the Tet operator that bind a Tet repressor-GFP fusion protein. This permits detection of Chromosome V segregation into the four meiotic

products by fluorescence microscopy.

+, moderate hypersensitivity; ++ high hypersensitivity; +++ very high hypersensitivity; - , no hypersensitivity.

doi:10.1371/journal.pgen.0030222.t001

predict interactions [29]. Using this information, the 81
selected genes were subdivided into five categories (Figures 1
and S1; Table S3 for all data and examples of this selection
step). Category A consisted of 20 genes that possessed two or
more genetic interactions with DNA processing genes. The 13
genes of Category B had a single genetic interaction and at
least one physical interaction that showed correlated ex-
pression. The four genes of Category C had a single genetic
interaction and at least one physical interaction without
correlated expression. Category D consisted of 24 genes that
had two or more physical interactions with correlated
expression, and the remaining 20 genes of Category E had
at least two physical interactions that do not have correlated
expression.

Overview of the Screen

Deletion mutants for the 81 genes arising from our
secondary selection were created in MAT-a and MAT-alpha
W303 backgrounds. The experimental screen included testing
for sensitivity to hydroxyurea (HU), methyl methanesulpho-
nate (MMS), and X rays during vegetative growth, as well as
assessing sporulation efficiency, meiotic nuclear division,
spore viability, and levels of meiotic chromosome missegre-
gation and gene conversion (Figure S3 and Table 1).

Twelve deletion mutants were shown to have increased
sensitivity to HU, four of which were also sensitive to MMS,
and three to X rays (Table 1). Additionally, two mutants,
rad614 and psy34, not sensitive to HU, were sensitive to X rays
and MMS, respectively (Table 1). Results presented here are
consistent with at least one previous genome-wide screen
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[39-43], with the exception of three mutants that show mild
sensitivity to HU, sgf734, swe54, and rmdl14. These pheno-
types were shown to be the same in both MAT-a and MAT-
alpha haploid strains.

Meiotic missegregation of Chromosome 1 was quantified by
selecting spores which carry both ADEI and adel:ADE2 alleles
indicating the presence of a second chromosomal copy (see
Materials and Methods). Three mutants displayed increased
levels of meiotic Chromosome 1 missegregation: sohlA (5-
fold), mms224 (10-fold), and yplO17¢A (35-fold) (Table 1).
Meiotic gene conversion was measured by restoration of a
functional LYS2 gene from lys2-5'ndel” and lys2-3'ndel”
heteroalleles (Figure 2A). Spot tests and random spore
analysis revealed a reduced level of gene conversion
compared to the wild type (Figure 2B, Table 1) for ygi250wA
(6-fold), sohlA (>250-fold), and bre54 (>250-fold). Further
analysis of these mutants is discussed below. Six mutants
(brelA, vid21 4, sgf734, ymd11A, defl A, and Igel A) were found to
have very low or no nuclear divisions in meiosis (Table 1).
Further analyses of these genes’ roles in DNA processing are
discussed below.

In summary, 11/81 (13.6%) of the selected genes were
shown to have roles in meiotic DNA processing (Table 1). By
far the highest proportion of meiotic DNA processing
phenotypes 10/20 (50%) was found among mutants for genes
with two or more genetic interactions (Category A). Only 1/13
(8%) from Category B, and none from Category C, D, or E
conferred a meiotic DNA processing phenotype for any
applied test.
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Assessment of ygl250wA, soh1A and bre5A during meiosis
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Figure 2. Assessment of YGL250W, SOH1, and BRE5

(A) Schematic representation of Chromosome Il from the diploid W303 background which consists of two LYS2 heteroalleles (lys2-5'ndel” and lys2-
3'ndel”). These were used to measure meiotic gene conversion (see Materials and Methods).

(B) Spot test of wild type, ygl250wA4, soh14, and bre54 on haploid selection plates and haploid selection plates without lysine to measure meiotic gene
conversion. The reduction in meiotic gene conversion of ygl250wA, soh14, and bre54 was further assessed by random spore analysis (Table 1).

(C) Southern blot of DNA isolated from wild type, soh14, and ygl250wA SK1 strains containing the ectopic URA3-ARG4 interval on Chromosome lll. The
DNA from the indicated times after initiation of sporulation were digested with Xhol then probed to detect COs and DSBs; mw1 represents the A-Hindlll
molecular weight marker (Fermentas) and mw2 represents the 1-kb molecular weight marker (Fermentas). The full-sized Southern blots are presented in
Figure S1.

For graphs (D-G), wild type, ygl250wA4, and soh14 are represented by black diamonds, black circles, and white squares, respectively. The corresponding
Xhol-digested Southern blots are presented in Figure 3C.

(D) Pre-meiotic DNA replication was assessed for synchronized meiotic cultures by fluorescence-activated cell sorting (FACS) and the change from 2c to
4c DNA content was plotted over time.

(E) Nuclear divisions (Ml and MIl) of the synchronized meiotic cultures in (E) were assessed with fluorescence microscopy using 4’,6-diamidino-2-
phenylindole (DAPI) staining to visualize nuclear division.

(F) Molecular analysis for DSB (DSB1) signal/total lane signal from Southern blots of DNA extracted from synchronized meiotic cultures.

(G) Molecular analysis for CO (CO2) signal/total lane signal from Southern blots of DNA extracted from synchronized meiotic cultures.
doi:10.1371/journal.pgen.0030222.g002

Soh1, a Component of the Mediator Complex, Bre5, a characterize these mutants and ensure efficient and synchro-
Ubiquitin Protease Co-Factor, and an Uncharacterized nous initiation of meiosis, deletions were made in a
Protein Yg|250w Are Required for Normal Levels of Gene sporulation-proficient S. cerevisiae strain, SKI1. In this back-
Conversion during Meiosis ground, bre54 had a sporulation efficiency of 80% after 24 h

A reduced level of gene conversion was observed for  (unpublished data); however, in pre-sporulation conditions

ygl250wA, sohlA, and bre54 (Figure 2B, Table 1). To further growth of bre54 was greatly inhibited and meiosis could not
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be synchronized. Therefore further analysis of bre54 was not
performed. For wild type, ygl250wA and sohlA pre-meiotic
DNA replication, meiotic nuclear divisions, as well as
molecular analyses of meiotic double-strand breaks (DSBs)
and crossovers (COs), was examined. The SKI1 background
used carries a 3.5-kb URA3-ARG4 fragment containing a
recombination hotspot inserted at his4 on one copy of
Chromosome III and at leu2 on the homologue [44]. DNA
extracted from time courses of wild type, ygl250wA, and sohlA
was digested with the Xhol restriction enzyme and used to
assess both DSB and CO formation (Figures 2C-2E and S2).

For ygl250wA, pre-meiotic DNA replication initiates nor-
mally and progresses with similar kinetics to that of the wild
type (Figure 2F), and although 15% fewer cells appear to have
completed pre-meiotic DNA replication by 8 h, the level of
meiotic nuclear divisions after 10 and 12 h is equivalent to
the wild type (Figure 2G). DSB formation and repair during
meiosis for ygl250wA also appears similar to wild type (Figure
2D), but strikingly, formation of COs was reduced by 4.5-fold
(Figure 2E). For sohlA, initiation of pre-meiotic DNA
replication appears to be delayed by 2 h and then proceeds
with kinetics slightly below the wild type (Figure 2F). Meiotic
nuclear divisions and formation of DSBs and COs are also
delayed (Figure 2D, 2E, and 2G). Finally CO levels and meiotic
nuclear divisions are mildly reduced compared to wild type
(Figure 2E and 2G). In summary, for ygi250wA physical and
genetic analysis suggests a parallel decrease in both gene
conversion and CO formation, while the strong genetically
determined decrease for meiotic gene conversion in soklA
was not matched by a similar lack of physical CO products in
SK1.

Def1 Is Required for Efficient Synapsis between
Homologues and Normal Levels of CO Recombination
during Meiosis

Six mutants in the W303 background (brel A, vid214, sgf734,
rmdl14, deflA, and Igel A) were found to have very low or no
nuclear divisions in meiosis (Table 1). These mutants were
tested to determine whether IMEI, the master regulator of
entry into meiosis [45], was properly expressed (Figure 3A).
They were also tested for changes in pre-meiotic DNA
replication (Figures 3B and S3), meiotic DSB formation and
repair at the THR4 hotspot (Figures 3C and S4) [46], and
meiotic nuclear divisions (Figure 3D). Additionally, these six
mutants showed differing levels of HU hypersensitivity
(Figure S5A and Table 1); we therefore synchronized MAT-a
cells by a-factor and monitored the progression of mitotic
DNA replication by FACS (Figures 3E and S5B).

To ensure efficient and synchronous initiation of meiosis,
deletions were made in the sporulation-proficient S. cerevisiae
strain SK1. A synchronous culture of wild-type SK1 induces
IME] expression and pre-meiotic DNA replication almost
immediately after transfer to complete starvation conditions,
and 90% of the population completes DNA replication
between 5-6 h (Figures 3B and S3). Meiotic DSB formation in
the wild type peaks at 4 h, and all DSBs are repaired after 7 h
(Figures 3C and S4). >90% of wild-type cells have completed
the first meiotic division by between 9-10 h (Figure 3D). All
six mutants showed differing degrees of aberrant progression
of pre-meiotic DNA replication (see below and Figure 3A-
3D). For wild-type MAT-a cells, >90% completed DNA
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replication 30 min after release from o-factor, while all six
mutants were slower (see below and Figure 3E and 3F).

In the SK1 background, vid214 grew very slowly under pre-
meiotic growth conditions and hardly showed any induction
of IMEI expression (Figure 3A). Furthermore, pre-meiotic
DNA replication and meiotic nuclear divisions were not
detected (unpublished data).

In the rmdllA strain, the induction of IMEI was normal
(Figure 3A); however DNA replication started with a delay of
approximately 3 h, but proceeded with normal speed there-
after. Meiotic DSB formation and nuclear divisions occurred
with a similar delay and also proceeded with fairly normal
speed, but disappearance of DSBs was greatly delayed (Figure
3C and 3D), suggesting problems in DSB repair. Notably, in
contrast to the SK1 background, a strong reduction in
nuclear divisions had been observed for rmdliA in the
W303 background (Figure 3D and Table 1). From a-factor
synchronization a delay in G1 to S-phase transition was also
observed for rmdl14 (Figure 3E). Interestingly, according to
the budding index, rmdlI14 does not affect the rate of bud
formation (Figure 3F).

The remaining four mutants all were impaired for normal
progression of pre-meiotic DNA replication. The brel4 and
lgel 4 mutants showed normal induction of IMEI (Figure 3A).
However, brel4 and Igel 4 started with a delay in pre-meiotic
DNA replication, and 90% of the population completed DNA
replication between 22-24 h (Figure 3B). Interestingly, the
levels of DSBs formed in the sporulating brelA and IgelA
populations were reduced and the majority of them appeared
to be repaired after 11-12 h (Figure 3C). Additionally, meiotic
nuclear divisions were strongly reduced for brelA and IgelA
reaching only 57% and 52% after 48 h, respectively (Figure
3D). The sgf734 and defl A strains did not show a clear delay in
entry into pre-meiotic DNA replication; however, they did
show a lengthened time to complete pre-meiotic DNA
replication (Figure 3B). Additionally, less than 80% of the
population for both strains completed pre-meiotic DNA
replication. The meiotic nuclear divisions for sgf734 and
deflA were also strongly reduced reaching 27.5% and 35%
after 48 h, respectively. The level of IMEI induction observed
for sgf734 was reduced to 40% of wild-type levels (Figure 3A).
The low level of IMEI induction could explain why sgf734
showed slow progression of pre-meiotic DNA replication and
inefficient meiotic nuclear divisions. Additionally, defI4
showed a mild reduction to roughly 70% of wild-type levels
of IMEI induction (Figure 3A). However, this reduction does
not explain the strength of the observed phenotypes in def1 4.
All four mutants also show a clear delay in initiation and
progression of mitotic DNA replication (Figure 3E). In
addition, FACS profiles show that 35% of deflA cells failed
to enter G1 during a-factor synchronization (Figure 3E) and
11% of this population contained >2c (copies of the genome)
DNA content. This may be partly due to defective cytokinesis
after nuclear division, as 20% of defl1A cells develop multiple
large buds that sometimes contain more than a single
nucleus.

The six mutations were also assessed in a spollA, spol3A
background to determine whether their sporulation pheno-
types could be bypassed in the absence of meiotic recombi-
nation. Only defl4 showed improvement of sporulation
efficiency; however, spore viability was not improved in the
absence of meiotic recombination (unpublished data).
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Figure 3. Further Characterization of VID21, BRE1, LGE1, RMD11, SGF73, and DEF1

Mutants for these genes were made in an SK1 background. The plots on each graph represent wild type (black diamonds), rmd114 (white diamonds),
bre1A (black triangles), Ige14 (white triangles), sgf734 (black circles), def14 (white circles), and vid214 (black squares). Where error bars are not shown,
the time courses are of individual experiments. A total of three experiments were carried out in each case and the data shown are consistent with those
obtained in the other experiments.

(A) The expression of IME1, a primary transcription factor required for entry into the meiotic cell cycle was assessed. SK1 strains carrying a plasmid that
expresses the lacZ reporter gene under the control of the IMET promoter were grown for synchronous meioses and assessed for lacZ expression via f3-
galactosidase activity [92]. W303 MAT-a mutant strains for the above genes were assessed for G1 to S phase transition in mitosis after release from o-
factor arrest [87].

(B) Pre-meiotic DNA replication was assessed for synchronized meiotic cultures by FACS and the change from 2c to 4c DNA content was plotted over
time. See Figure S2 for the raw data of the FACS analysis for meiotic DNA replication.

(C) DNA extractions from sporulation time courses were digested with Bglll and meiotic DSB formation (DSBIIl and IV) at the THR4 hotspot was assessed
using Southern blotting and probing techniques [46]. See Figure S3 for the THR4 Southern blots.

(D) Nuclear divisions (Ml and MIl) of the synchronized meiotic cultures in (A) were assessed with fluorescence microscopy using DAPI staining to
visualize nuclear division.

(E) DNA replication following release from o-factor arrest was assessed via FACS and the change from 1c to 2c DNA content was plotted against time.
See Figure S4 for the raw data of the FACS analysis for mitotic DNA replication.

(F) The budding index of cells released from a-factor synchrony was assessed by phase contrast microscopy.

doi:10.1371/journal.pgen.0030222.g003

To analyze sister chromatid cohesion and homologue the synaptonemal complex. As expected from the pre-meiotic
synapsis in these mutants, meiotic nuclear spreads of each DNA replication data, all strains showed a delay in the
strain were immunostained for Rec8, the meiosis-specific formation of Rec8 axes and were late in chromosome
cohesin subunit, and Zipl, a synapsis-specific component of synapsis, with the exception of vid214, which did not show
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Figure 4. Assessment of deflA in Meiosis and Mitosis

(A) Immunocytology of nuclear spreads of SK1 wild-type and def14 strains after 8 h of sporulation. The meiosis-specific subunit of cohesin, Rec8, was
tagged with multiple Haemagglutinin (HA) epitopes. Using antibodies for HA and Zip1 allowed analysis of sister chormatid cohesion and synaptonemal
complex formation, respectively. It can be seen in the wild-type example that all 16 chromosomes have long cohesin axes and close to full chromosome
synapsis except for the rDNA region on Chromosome XIl. Whereas from the first panel for def14 it can be seen that axes are aligned but synapsis is
minimal. The second and third panels for def14 again show aligned axes, but homologues are only partially synapsed. However, as shown in the final
panel, synapsis was observed in some meiotic nuclei of the def14 strain. Polycomplexes (PCs) of Zip1 were observed in 20% of the nuclei counted for
def1A at this time point whereas less than 1% PCs were observed for the wild type.

(B) Time course of the meiotic nuclei counted using immunocytology for both wild type and defl4 during meiosis. The deflA mutant synapsis
phenotype represented in (A) was counted as “aligned” axes in the Rec8 analysis graph. At least 200 nuclei were counted per time point.

(C) Ectopic URA3-ARG4 interval on Chromosome Il described in Figure 3. Xhol and EcoRlI restriction sites are indicated by “X” and “E,” respectively. To
detect NCOs, COs, and DSBs, DNA is digested with Xhol and EcoRI then probed with HIS4 sequences (hisU; [44]).

For graphs (D-F), wild-type and def14 are represented by blue squares and pink diamonds, respectively. The corresponding Xhol and EcoRI double
digest Southern blots, the Xhol single digest Southern blots, together with the molecular analyses, are presented in Figure S5.

(D) Molecular analysis for DSB (DSB2) signal/total lane signal from Southern blots of DNA extracted from synchronized meiotic cultures.

(E) Molecular analysis for NCO (NCO1) signal/total lane signal from Southern blots of DNA extracted from synchronized meiotic cultures.

(F) Molecular analysis for CO (CO1’) signal/total lane signal from Southern blots of DNA extracted from synchronized meiotic cultures.

(G) Southern blot of DNA isolated from wild-type and deflA SK1 strains containing the ectopic URA3-ARG4 interval on Chromosome Ill. DNA was
digested with Xhol and EcoRI then probed to detect NCOs, COs, and DSBs; mw represents the 1-kb molecular weight marker (Fermentas).
doi:10.1371/journal.pgen.0030222.9g004

axis formation or chromosome synapsis. The other five
strains frequently contained Zipl polycomplexes, an indica-
tion of a delay of synapsis relative to Zipl expression
(unpublished data). With the exception of the Zipl poly-
complexes, the majority of nuclei observed for the rmdIi4,
sgf744, breld, and lgelA at later time points displayed
normally synapsed chromosomes. However, nuclei containing
long Rec8 axes and full synapsis were greatly reduced in
sgf744, breld, and lIgelA mutants (unpublished data). The
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deflA strain showed interesting defects in chromosome
morphology indicating uncoupling of axis formation from
synapsis (Figure 4A and 4B). These events occur in parallel in
wild type and also in most mutants with delayed synapsis. The
defl1A strain was strongly delayed for the formation of Rec8
axes showing lack of condensation, probably owing to the
slow replication despite relatively normal Rec8 expression.
Synapsis was strongly reduced and hardly detectable before 8
h in sporulation media. Even if long condensed Rec8 axes
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were formed and pairwise-aligned by one or more axial
association sites, synapsis frequently did not commence, a
situation not occurring in wild type (Figure 4A). Similar
observations have been made for mutants of the ZMM class of
meiotic genes (ZIPI, ZIP2, ZIP3, ZIP4/SPO22, MSH4, MSH>5,
and MER3) that are directly involved in initiation and
progression of synapis [33,47-50]. A hallmark of these ZMM
mutants is the specific reduction in CO, without affecting
noncrossover (NCO) recombination during meiosis. There-
fore, molecular analysis of the level of CO and NCO
recombination in defl4 was assessed. For this, a mutation of
DEF1 was created in a SK1 strain that carries a 3.5-kb URA3-
ARGH4 recombination interval inserted at his4 on one copy of
Chromosome III and at leu2 on the homologue (Figure 4C)
[44]. DNA extracted from synchronized sporulation time
courses of wild type and def14 was digested with the Xhol and
EcoRI restriction enzymes and used to assess DSB, NCO, and
CO formation (Figures 4C-4G, S6A, and S6B). As observed for
the THR4 hotspot (Figure 3C), DSB repair in defI 4 appears to
take longer than in the wild type (Figure 4D and 4G). As a
result, the appearance of CO and NCO recombination
products are also delayed (Figure 4E-4G). Strikingly, the
formation of COs is reduced in defI4 to 35% of wild-type
levels (Figure 4F), whereas NCO levels are largely unaffected
(Figure 4E). Furthermore, as described in Figure 3C, DNA
from the wild-type and deflIA sporulation time courses were
also digested with Xhol to assess meiotic DSBs and COs.
Again DSB repair was delayed, and CO formation was
reduced in deflA (Figure S6C-S6H). Thus, as predicted by
the cytological phenotype, deflA is specifically defective in
Zip1l assembly and CO control, identifying DEFI as a ZMM
gene.

Deletion of PMR1 Causes HU Sensitivity and Formation of
Multads in Meiosis

Mutation of HURI has been reported to cause increased
sensitivity to HU [51]. However, HURI partially overlaps with
PMRI, a gene that encodes an ATPase required for Ca®" and
Mn®" import into the Golgi apparatus (Mandal, et al. 2003).
Therefore mutations that interrupt sections of the open
reading frames of HURI and PMRI separately were created
(Figure S7A). This analysis revealed that deletion of PMRI but
not HURI affected resistance to HU (Figure S7B). FACS
analysis showed that PMR] is required for normal timing of
initiation and progression of DNA replication during mitosis
(Figure S7C). Additionally pmri4 cells formed some abnormal
“multad” asci containing more than four inviable spores
(Figure S7D). The sporulation efficiency of pmrliAd was 55%,
and up to 52% of the asci contained >4 spores. Analysis of
meiotic DNA replication in the pmrl4 strain revealed that
after 12 h, 30% of the cells had a DNA content greater than
four copies of the genome suggesting rereplication or lack of
cytokinesis prior to meiosis as the basis for multad formation
(Figure S7E).

Discussion

Systematic Integration of High-Throughput Data
Although high-throughput experiments have provided
insight into gene function, it has also become apparent that
single datasets have limitations. False positive data are
common. For yeast two-hybrid data it has been estimated
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that only 50% of the reported interactions are of biological
relevance [27]. It is known that gene epitope tagging can
result in incorrect protein localization data [20,21]. Addi-
tionally, 6.5% of the yeast genome deletion library is
problematic with respect to background mutations [26].
Procedures used for high-throughput experiments can also
give rise to limitations. For example, protein localization
analyses have been performed in vegetative cells under
normal growth conditions, whereas a number of proteins
may only localize when exposed to a certain environmental
condition. For yeast two-hybrid interaction experiments, the
“bait” and “prey” proteins interact inside the nucleus, which
in many cases is not their native cellular compartment.
Protein complex purification experiments are biased towards
proteins that are of high abundance [34].

Due to these limitations, a number of methods have been
developed to combine datasets to determine whether the data
support each other. Methods have been used to combine
mRNA expression with protein interaction data [29,36,38]
and from these studies it was found that proteins that interact
often have a correlation in mRNA expression pattern. More
recently, work combining mRNA expression, genetic inter-
actions, and database annotations was used to validate
protein interaction data [52].

Recently researchers have begun to develop a number of
in-silico methods to predict gene function by integrating a
number of high-throughput datasets [52-56]. However, to our
knowledge only three integration methods include the high-
throughput genetic interaction datasets for S. cerevisiae
[62,565,57]. These studies either provide very little or no
experimental analysis of their predictions [52,55,57]. Our
data mining was based on the knowledge acquired from
previous data integration techniques to set the selection
criteria (Figure 1), and we have set out to test the predictions
in experimental detail.

Our selection strategy identified 81 genes of which 16
(20%) caused at least one irregular DNA processing pheno-
type when mutated. Interestingly, all but one of these selected
genes had at least one genetic interaction with a DNA
processing gene. In an aim to avoid false candidates we saw fit
to exclude 13 genes because the fraction of their interaction
partners involved in DNA processing was less than 1/5.
However, four of these genes have now been shown to have a
role in DNA processing. Therefore this selection step was not
beneficial.

Genes Required for Normal Levels of Meiotic Gene
Conversion and CO Formation during Meiosis

Three genes were found to be required for normal levels of
gene conversion during meiosis, SOHI, BRE5, and YGL250W.

(1) SOH1 was first discovered as a gene that suppressed the
hyper-recombination phenotype of Aprid [58]. Hprl is a
component of the THO/TREX complex which couples tran-
scription elongation with mitotic recombination [59]. Soh1l
was later shown to be a component of the Mediator complex
[60], which is required to stimulate gene transcription by
transmission of regulatory signals from transcription activa-
tors to RNA polymerase II during stress responses [61]. SOHI
has a number of genetic interactions with genes required for
DNA replication (e.g., RAD52, RAD50, RAD55, and RADG),
DNA repair (e.g., CDC45, MRCI1, and ORC2) and chromatid
cohesion (e.g., CTF4, CTFS, and CTF18), and the sohlA mutant
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was observed here to have sensitivity to HU in addition to
reduced gene conversion levels, whilst not greatly affecting
CO formation during meiosis. Our observations suggest that
the Mediator complex also has a role in regulation of DNA
replication and recombination.

(2) Breb is a conserved protein that has been shown to form
a complex with ubiquitin protease Ubp3 that is required for
the de-ubiquitination of subunits of coat protein complexes I
and II that are involved in transport between the endoplas-
mic reticulum and Golgi apparatus [62,63]. BRE5 has been
reported to have genetic interactions with genes involved in
cell wall organization and biogenesis [13]. However, here the
gene was selected for its genetic interactions with DNA
processing genes [8,13]; therefore, it is conceivable that BRES
functions in a number of cellular pathways, one of which is
DNA processing. In this study, BRE5 was shown to be
required for normal levels of sensitivity to HU and meiotic
gene conversion. Perhaps Breb is required for de-ubiquiti-
nation of proteins required for DNA replication/recombina-
tion. Due to the slow growth phenotype of bre54 in pre-
sporulation conditions, a meiotic-specific null allele would be
required to assess its role in meiotic DNA processing more
closely.

3) YGL250W/RMR1 (named here Reduced Meiotic Recom-
bination 1) was shown to be required for normal levels of
gene conversion and CO formation during meiosis. This gene
has been reported to have synthetic lethal interactions with
both CDC7 and MCDI/SCCI [13]. Interestingly, Cdc7-Dbf4 is
required for recombination, synaptonemal complex forma-
tion, and chromosome segregation during meiosis [64,65].
Additionally, Mcd1/Sccl is a subunit of the cohesin complex
which is required for sister chromatid cohesion in mitosis and
meiosis [66,67]. The meiotic DNA processing role of RMRI
remains to be determined. However Rmrl appears to be
sumoylated [68], which could be important for its function.

Genes Required for Normal Progression of Pre-meiotic
DNA Replication

Six mutants sensitive to HU during vegetative proliferation
also displayed reduced nuclear division in meiosis. These
mutants were found to impair mitotic and meiotic DNA
replication.

(1) The vid21A strain was found to be sensitive to X rays and
MMS and the gene was required for detectable expression of
IMEI and initiation of pre-meiotic DNA replication. Since
Imel is required for the initiation of meiotic events including
pre-meiotic DNA replication [69], lack of Imel induction is
sufficient to explain the phenotypes. Vid21 was recently
identified as a novel component of the histone acetyltrans-
ferase NuA4 and is required for bulk H4 histone acetylation
[70]. Other components of NuA4 are also required for
maintenance of DNA integrity [70]. A mutant for another
NuA4 subunit (Yng2) was found not to progress through
meiosis [71], however expression of Imel and pre-meiotic
DNA replication were not assessed. The chromatin remodel-
ling Swi/Snf complex is required for high level expression of
IMEI [72]. H4 histone acetylation is associated with tran-
scriptional induction, and it is conceivable that NuA4 directly
up-regulates IMEI and other early meiotic genes upon
sporulation. However, a meiotic phenotype for other
components of the histone acetyltransferase has not been
reported.
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(2) Recently, Sgf73 was found to be a component of two
histone acetyltransferases, namely SAGA and SLIK [73],
which are both required for gene expression. Here the
SGF73 mutant showed abnormal pre-meiotic DNA replica-
tion, and expression of IMEI was reduced. This reduced IME!
expression may account for the observed meiotic phenotypes.
In addition to our observation that sgf73A is hypersensitive to
HU, it has been shown that Sgf73 is required for the
recruitment of the SAGA factor to upstream activating
sequences that facilitates formation of the replication pre-
initiation complex [74], thus confirming a direct role in DNA
replication.

(3) Prior to this work, it was known that BREI and LGE] are
required for ubiquitination of histone H2B and K3 methyl-
ation of H4 during vegetative proliferation [75]. However,
their effects during meiosis had not been reported. Here we
show that lgel A and brel A strains are characterized by delayed
initiation of meiotic DNA replication and lengthened time
for completion. Recently, brelA was shown to affect pre-
meiotic DNA replication onset and progression, as well as
DSB formation. That work found that Brel is an E3 ubiquitin
ligase that exists as a complex with the E2 ubiquitin-
conjugating enzyme Rad6 [76]. The Brel-Rad6 complex was
shown to ubiquitinate lysine 123 of histone H2B, which is
required for normal levels and timing of DSB formation
during meiosis. Here delay of onset and slowed progression of
pre-meiotic DNA replication and reduced levels of meiotic
DSBs for brelA were also observed. Furthermore, the IgelA
strain was observed to have the similar pre-meiotic S-phase
pattern and reduction in meiotic DSB formation as the brel 4
strain. As Lgel co-purifies with Brel during vegetative
proliferation [6,75], we predict that Lgel may also function
with Brel during meiosis. However, it should be noted that
Lgel does have a mitotic function that is independent to Brel
and Rad6. In cells that have lost their mitochondrial genome,
Lgel is required for the induction of PDR3 and PDR5
expression which are both involved in multidrug resistance
[771.

(4) Defl forms a complex with Rad26 and recruits the E3
ubiquitin ligase Rspb to sites of DNA damage to ubiquitinate
stalled RNA polymerase II to mark it for degradation [78-80].
However, only a minor fraction of the protein associates with
Rad26 via immunoprecipitation [80], raising the possibility of
other cellular roles. In fact, independent of its role with
Rad26, Defl was found to be required for telomere
maintenance and shown to physically interact with Rrm3, a
helicase required for replication of DNA at the telomeres
[81]. Here we have shown that in addition to the sensitivity of
deflA to HU, MMS, and X rays, both vegetative and pre-
meiotic DNA replication are strongly affected. defl4 also
displays a prominent defect in the synapsis of homologous
chromosomes during meiosis. Paired, but only loosely
connected, chromosomes were observed, in which chromo-
some axes were fully formed, but synapsis had not
commenced. This phenotype was also observed in mutants
deficient for Zipl loading (ZMM group) [33,47-50], some of
which show similarity to components of the APC, a multi-
subunit ubiquitin ligase [21]. Interestingly, defIA shows the
specific reduction in COs, without affecting NCO recombi-
nation, which is another hallmark of ZMM mutants. From
chromatin immunoprecipitation data, Defl has been shown
to bind to both telomeric and non-telomeric DNA [81].
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Therefore it will be of interest to assess whether Defl also
binds to DNA during meiosis, and furthermore if its local-
ization is correlated to its apparent requirement for efficient
synapsis.

(5) RMDI1 was selected in this study due to a reported
synthetic lethal interaction with cdc45-14 [13] and a protein
interaction with Dccl [2]. Prior to the completion of this
work, RMDI1 was also shown to have synthetic sick
interactions with POL32 and CSM3 [11]. Therefore, these
interactions associate Rmd11 with the biological process of
DNA replication. RMDI11 (Required for Meiotic Nuclear
Divisions) was reported to be essential for sporulation but not
to be required for IMEI induction [22]. Here we confirmed
these data for the W303 background, but showed that RMDI11
is not essential for meiosis in the efficiently sporulating SK1
strain background. In the SK1 background, pre-meiotic DNA
replication was delayed, but eventually spores formed and
were largely viable. Additionally, initiation of DNA replica-
tion during vegetative growth was delayed, suggesting that
RMDI1 is required for the efficient initiation of DNA
replication. Furthermore, rmdlIA was found to have an
increased sensitivity to HU, which slows or inhibits DNA
replication. Interestingly, Rmd1l1 is a member of an unchar-
acterized protein family that includes members in many
model organisms as well as Homo sapiens.

(6) In addition to HU hypersensitivity, pmrlA4 was found by
FACS analysis to affect pre-meiotic DNA replication and
result in the formation of asci with more than four inviable
spores. Pmrl is an ATPase required for Ca?" and Mn®"
transport into the Golgi [82]. However, PMRI has genetic
interactions with genes involved in DNA replication (e.g.,
POL32 and RRM3), DNA repair (e.g.,, MREI1, RAD55, RAD51,
RADI8, MMSI, and RTTI107), and chromatid cohesion (e.g.,
DCCI, CTF4, and CTFI8), and the mutant phenotypes
observed in this study suggest that PMRI also plays a role
in DNA processing.

Conclusions

A strategy of integrating high-throughput data can be
successfully used to imply a role in DNA processing for
minimally characterized genes. Genetic interaction data have
proved to be extremely valuable in the success of our
selection strategy. This feature encourages further genetic
interaction analyses to be performed not only in yeast, but in
all model organisms.

Among the 16 genes identified to be involved in DNA
processing, 11 had a role in meiotic DNA processing,
including DEFI, which was found to be required for efficient
chromosome synapsis and specific reduction in CO, without
affecting NCO recombination during meiosis. In addition,
three genes (SOHI, BRE5, and YGL250W/RMR1) were found
to be required for normal levels of meiotic gene conversion
and three genes (YPLO17C, SOHI, and MMS22) required for
accurate chromosome segregation during meiosis.

Materials and Methods

Parent and deletion strains. All strains used in this work are
presented in Table S4. Deletion strains were transformed with PCR-
generated disruption cassettes containing the KANMX4 marker gene
[83,84]. Gene deletions were confirmed by PCR for three clones of
each transformation.

Mitotic DNA processing screens. Spot plates were prepared on
YPD (control) YPD + 100 mM HU (Sigma), YPD + 0.03% MMS
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(Sigma), YPD exposed to 40 min of X ray 120 kVp (Torrex cabinet X-
ray system, Faxitron X-ray Corporation).

Molecular analyses. Meiotic DSBs and_recombination products
were detected by Southern blotting using 32p_ATP- (GE Healthcare)
labeled DNA probes. Signals were detected using the Storm
Phosphoimager (GE Healthcare) and blots were quantified using
Image] version 1.37 [85]. The methods used for the physical analysis
of DSBs at the THR4 hotspot have been previously described [46].
The methods used for the physical analysis of DSBs, COs, and NCOs
of the diploid strains that carry a 3.5-kb URA3-ARG4 recombination
interval inserted at his4 on one copy of Chromosome III and at leu2
on the homolog have been previously described [44].

Cytology. Yeast meiotic spreads were performed as described
[67,86]. Rec8-HA was detected using 16B12 (mouse anti-HA, 1:1,600)
and CY3-conjugated goat anti-mouse antibody (1:200, Dianova).
Rabbit anti-Zipl antibody was raised against a purified Zipl-GST
fusion protein and affinity purified against the same protein. The
purified Zipl antibody was used (1:50) and detected by fluorescein
isothiocyanate (FITC)-conjugated goat anti-rabbit serum (1:200,
Sigma).

Cell synchrony and analysis of DNA replication. Haploid MAT-a
cells were synchronized in G1 with a-factor using a method previously
described [87]. SK1 diploids were synchronized for meiosis using a
method previously described [88]. Cells were prepared for FACS
analysis using a method previously described [89] and observed using
a FACSCalibur (BD Biosciences) and CellQuant software, version 3.3
(BD Biosciences).

Random spore analysis for meiotic gene conversion and chromo-
some missegregation assays. Sporulation efficiency was determined
for W303 diploids and the equivalent of 5 X 10® tetrads were digested
with 100 pg/ml Zymolyase (Zymo Research). Single spores were
prepared as previously described [90] and were plated onto SC
without arginine but plus canavanine to select for haploid can® cells.
To test for gene conversion, lysine was omitted, and to assess
missegregation, adenine was omitted.

Supporting Information

Dataset S1. Gene Accession Numbers
Found at doi:10.1371/journal.pgen.0030222.sd001 (21 KB XLS).

Figure S1. Examples of Selected Genes with an Implied Role in DNA
Processing

Genes are represented as nodes and interactions are represented as
lines (edges) that connect the nodes with an arrow signifying the
direction from the query gene/protein to the interacting gene/protein
[91]. Gene function and interaction type is signified by the colour
scheme described in the figure key. The red numbers represent the
gene expression correlation distances calculated for all physical
interaction data [29].

(1-3) Category A: YPLO17C, PMRI (HURI), and YGL250W are
examples of genes having two or more genetic interactions reported
with DNA processing genes.

(4) Category B: RMDI1 is an example of a gene that has one genetic
interaction and one or more physical interaction(s) with gene
expression correlation distance below the cut-off value set (<0.9)
with DNA processing genes.

(5) Category C: YGLO71C is an example of a gene that has one genetic
interaction and one or more physical interactions(s) without gene
expression correlation distance above the cut-off value of 0.9.

(6) Category D: PSY3 is an example of a gene that has two or more
physical interactions that have gene expression correlation distances
with DNA processing genes below our cut-off value of 0.9.

(7) Category E: YMR233W is an example of a gene that has less than
two interactions that have gene expression correlation distances with
DNA processing genes below the cut-off value of 0.9.

See Table S3 for interaction data of all 81 genes selected.

Following the selection of these genes, additional interactions with
DNA processing genes have since been reported. Additional
interaction data for the 81 genes selected have been entered into
Table S3. Also see the Yeast General Repository for Interaction
Datasets (GRID) [30].

Found at doi:10.1371/journal.pgen.0030222.sg001 (54 KB PPT).

Figure S2. Southern Blot of DNA Isolated from (A) Wild Type, (B)
sohlA, and (C) ygl250wA SK1 Strains Containing the Ectopic URA3-
ARG4 Interval on Chromosome III (D)

The DNA from the indicated times after initiation of sporulation
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were digested with Xhol then probed to detect COs and DSBs; mw1
represents the A-HindIII molecular weight marker (Fermentas) and
mw?2 represents the 1-kb molecular weight marker (Fermentas).

Found at doi:10.1371/journal.pgen.0030222.sg002 (465 KB DOC).

Figure S3. FACS Analysis of Pre-Meiotic DNA Replication for VID21,
BREI, LGE1, RMD11, SGF73, and DEF1 Mutants

Raw output from FACS analysis of each SK1 strain synchronized for
entry into the meiotic cell cycle. Cells were counted at a rate between
250-280 cells per s. FACSCalibur apparatus and CellQuant Version
3.3 (BD Biosciences) were used for analysis.

Found at doi:10.1371/journal.pgen.0030222.5g003 (383 KB DOC).

Figure S4. Southern Blot Analysis of DSB Formation during Meiosis
for BRE1, LGE1, RMDI11, and DEFI Mutants

(A) Schematic representation of the natural THR4 meiotic DSB
hotspot on Chromosome IIIl. DNA from synchronized sporulation
time courses of each strain were cut with the BglII restriction enzyme,
and using a probe upstream to THR4, presence of DSBIII and DSBIV
(indicated by the arrows) together with the parental were assessed
[87]. Southern blots of wild type (B), rmd114 (C), deflA (D), brelA (E),
and IgelA4 (F). The DNA from the indicated times after initiation of
sporulation were digested with BglIl then probed to detect DSBIII
and DSBIV from the THR4 hotspot; mw represents the 1-kb
molecular weight marker (Fermentas).

Found at doi:10.1371/journal.pgen.0030222.5g004 (509 KB DOC).

Figure S5. Analysis of Mitotic DNA Replication for VID2I, BREI,
LGEI, RMDI11, SGF73, and DEFI Mutants

(A) Overnight cultures were diluted in series by a factor of 10 from 102
to 107 and plated on YPD and YPD + 100 mM HU. Mutants were
defined as having increased sensitivity or decreased viability to HU in
comparison to the wild type.

(B) FACS analysis of each MAT-a strain synchronized in G1 with a-
factor and then released into S phase. Cells were counted at a rate
between 250-280 cells per s. FACSCalibur apparatus and CellQuant
Version 3.3 (BD Biosciences) were used for analysis.

Found at doi:10.1371/journal.pgen.0030222.5g005 (664 KB DOC).

Figure S6. Assessment of defIA in Meiosis

Southern blot of DNA isolated from SK1 wild-type (A) and defIA (B)
strains containing the ectopic URA3-ARG#4 interval on Chromosome
III (Figure S2). The DNA from the indicated times after initiation of
sporulation were digested with Xhol and EcoRI then probed to detect
NCOs, COs, and DSBs; mwl represents the A-HindIII molecular
weight marker (Fermentas) and mw2 represents the 1-kb molecular
weight marker (Fermentas).

Southern blot of DNA isolated from SK1 wild-type (C) and defl14 (D)
strains containing the ectopic URA3-ARG# interval on Chromosome
III described in Figure 3. The DNA from the indicated times after
initiation of sporulation were digested with Xhol then probed to
detect COs and DSBs; mw1 represents the A-HindIII molecular weight
marker (Fermentas) and mw2 represents the 1-kb molecular weight
marker (Fermentas).

(E) Molecular analysis for DSB (DSB1 + DSB2) signal/total lane signal
from Southern blots of DNA extracted from synchronized meiotic
cultures.

(F) Molecular analysis for CO1 signal/total lane signal from Southern
blots of DNA extracted from synchronized meiotic cultures.

(G) Molecular analysis for CO2 signal/total lane signal from Southern
blots of DNA extracted from synchronized meiotic cultures.

(H) Molecular analysis for CO (CO1 + CO2) signal/total lane signal
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Figure S7. Assessment of pmrlA (and hurlA) in Mitosis and Meiosis

(A) Diagram showing the 181-bp overlap between the open reading
frames for HUR1 and PMR1 on Chromosome VII; two KANMX4 gene
deletion mutants were constructed using cassettes that only interfere
with either HURI (1-81 bp of HURI ORF, hurlA1-81, represented by
black region) or PMRI (1-2,233 bp of PMRI1 ORF, pmriA1-2,233,
represented by grey region). The arrows on each strand represent
direction of transcription.

(B) HU sensitivity assay using the hurlAI-81 and pmrlAl-2,233
strains shows that PMRI and not HURI is required for resistance to
HU.

(C) FACS analysis of cells released from a-factor synchrony shows that
the progression of mitotic DNA replication is slowed in pmridl-
2,233

(D) Microscopy of sporulation sample of SK1 wild type and pmriAl-
2,233 using differential interference contrast (DIC) and fluorescence
microscopy to view segregation of Chromosome V (tagged with green
fluorescent protein). The SK1 pmrlA1-2,233 mutant not only gives
rise to tetrads, but also “multads” that contain greater than four
spores.

(E) DNA replication during meiosis was assessed via FACS. 35% of the
population of the pmriA1-2,233 cells have a DNA content that is
greater than a single round of diploid DNA replication (>4c)
observed in the wild type. The pmriA1-2,233 strain does not grow
well during pre-meiotic conditions; therefore the FACS analysis
experiment was not optimal.

Found at doi:10.1371/journal.pgen.0030222.sg007 (428 KB DOC).

Table S1. List of DNA Processing Genes Used for Selection
Found at doi:10.1371/journal.pgen.0030222.5t001 (124 KB XLS).

Table S2. List of Genes Removed during the Secondary Selection
Found at doi:10.1371/journal.pgen.0030222.5st002 (474 KB XLS).
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for Analysis
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