

NIH Public Access

Author Manuscript

Tetrahedron Lett. Author manuscript; available in PMC 2008 December 10.

Published in final edited form as: *Tetrahedron Lett.* 2007 December 10; 48(50): 8811–8814.

Microwave-assisted Suzuki-Miyaura couplings on α-

iodoenaminones

Xin Wang, Brandon J. Turunen, Matthew W. Leighty, and Gunda I. Georg*

Department of Medicinal Chemistry and Center for Methodology and Library Development, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA

Abstract

A systematic study of α -iodination and subsequent Suzuki-Miyaura couplings between nonattenuated enaminones and a wide range of aromatic boronic acids is reported. The microwaveassisted variant of this transformation furnished the α -arylenaminones in significantly shorter reaction times and slightly improved yields as compared to conventional heating.

Recently we reported a new method for the preparation of mono and bicyclic enaminones.¹ This procedure allows direct access to a variety of substituted, six membered vinylogous amides. Although compounds such as these have been studied, it is our view that they remain underutilized in natural product and chemical library synthesis.^{2,3} To increase their synthetic value we became interested in employing them as coupling partners in the Suzuki-Miyaura reaction (Figure 1).^{4,5}

Our strategy relied upon the unique ambident nature of the enaminone to first function as a nucleophile (α -iodination) and then as an electrophile (oxidative insertion). While the α -iodination of unprotected *E*-enaminones is well known,⁶ the same transformation with unprotected *Z*-enaminones has only been recently reported.^{4,7} Conditions for the α -iodination of enones first developed by Johnson,⁸ as well as modifications thereof,^{6a,b} were investigated on a series of vinylogous amides, which were prepared according to our previously reported procedure (Table 1).¹ Gratifyingly, installation of iodine was achieved in near quantitative yield under the standard Johnson conditions (Table 1, conditions A).⁹ Furthermore, the modified Johnson conditions reported by Kim *et al.* (Method B) proceeded smoothly on both bicyclic (1–3) and monocyclic (4–6) systems.¹⁰ It is notable that tertiary *Z*-enaminones (1–4 and 6) posed no problems despite a report that this reaction does not proceed on *tertiary E*-enaminones.^{6a} In addition, the use of I₂ and DMAP also provided the desired iodinated enaminones in excellent yields (Method C).^{6b,11} Furthermore, a tolerance for substitution adjacent to the ring fused nitrogen (**3a**) as well as a secondary vinylogous amide nitrogen (**5a**) was demonstrated.

With the α -iodoenaminones in hand, we next turned to their coupling with boronic acids. A survey of the literature reveals that coupling reactions have been achieved on α -halo vinylogous amides with success.¹³ However, in most cases, the resonance contribution of the enaminone nitrogen is attenuated via an electron withdrawing protecting group.¹² Without this protecting group the resonance contribution of the nitrogen is greatly enhanced. In turn, this electron rich system is less willing to undergo oxidative insertion, often the rate limiting step in this coupling

^{*} Corresponding author. Tel.: +1-612-626-6320; fax+1-612-626-6316; e-mail: georg239@umn.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

process, leading to poor conversion and low yields.^{4a} This limits the use of Suzuki coupling reactions in these systems to those that do not contain tertiary aliphatic substitution. This is unfortunate, given the common occurrence of this structural feature in alkaloid natural products.¹³

A variety of conditions were explored with enaminone **1a** and 4-methoxyphenylboronic acid to determine optimal conditions for coupling (Table 2). In all cases $Pd(PPh_3)_4$ was employed as the palladium source and heating was required for conversion. In addition, it was critical that the solvent mixtures be carefully deoxygenated. The best conditions were obtained when a mixture of dioxane and water was used as solvent and Ba(OH)₂ employed as base (Table 2, entry 6).¹⁴ Although pleased with the results of our optimization, the reaction times were less than ideal. Microwave irradiation has been used to decrease reaction times and in some cases increase reaction yields.⁵ Thus microwave conditions were applied to this system and a dramatic rate enhancement was noted (Table 2, entry 7, 14–20 h reduced to 15 min) along with a modest increase in yield.¹⁵

The scope of the reaction was next investigated under the optimized microwave conditions using the enaminones and boronic acid coupling partners shown in Table 3. In general, electron rich boronic acids participated well in the coupling reaction while electron poor coupling partners delivered moderate yields (1b–1h and 4b–4h). Employing an unprotected phenolic boronic acid resulted in a poor yield of enaminones 1g and 4g. Both the 5/6 (1a) and 6/6 (2a and 3a) enaminone systems couple effectively as do monocyclic enaminones (4a–6a). It should be pointed out that even the sterically encumbered substrate 3a underwent coupling under these conditions. In addition it should be noted that a free NH was tolerated (5a).

In summary, we have demonstrated a significant improvement in the technology available for preparing α -iodoenaminones and coupling them with arylboronic acids. The use of microwave irradiation proved advantageous in the coupling process. The scope of both the enaminone and boronic acid partners demonstrated versatility. Ongoing studies in these labs are directed toward further method development upon these vinylogous amide scaffolds as well as applications in natural product and diversity-oriented synthesis (DOS).

Acknowledgements

We thank the National Institutes of Health for their generous support of our programs (NIH CA90602, NIH GM076302, and NIH GM069663). B.J.T. was supported by the Department of Defense breast cancer predoctoral fellowship (DAMD17-02-1-0435).

References

- 1. Turunen BJ, Georg GI. J Am Chem Soc 2006;128:8702. [PubMed: 16819843]
- 2. For recent reviews, see: (a) Negri G, Kascheres C, Kascheres AJ. J Heterocycl Chem 2004;41:461. (b) Elassar AZA, El-Khair AA. Tetrahedron 2003;59:8463.
- Michael JP, De Koning CB, Gravestock D, Hosken GD, Howard AS, Jungmann CM, Krause RWM, Parsons AS, Pelly SC, Stanbury TV. Pure Appl Chem 1999;71:979. (b) Comins DL. J Heterocycl Chem 1999;36:1491.
- 4. During the course of our investigation an example of iodination and Suzuki-Miyaura coupling of an N-arabinosyl dehydropiperidinone appeared: (a) Kranke B, Kunz H. Can J Chem 2006;84:625. (b) Kranke B, Kunz H. Org Biomol Chem 2007;5:349. [PubMed: 17205180]
- 5. (a) Suzuki A. J Organomet Chem 1999;576:147. (b) Miyaura N, Suzuki A. Chem Rev 1995;95:2457.
 (c) Fitzmaurice RJ, Etheridge ZC, Jumel E, Woolfson DN, Caddick S. Chem Commun 2006:4814.
 (d) Kappe OC. Angew Chem, Int Ed 2004;43:6250. (e) Kellogg RM. Chemtracts 2004;17:451. (f) Song YS, Kim BT, Heo JN. Tetrahedron Lett 2005;46:5987. (g) Song YS, Lee YJ, Kim BT, Heo JN. Tetrahedron Lett 2006;47:7427.

- 6. (a) Kim JM, Na JE, Kim JN. Tetrahedron Lett 2003;44:6317. (b) Ohshima T, Xu Y, Takita R, Shibasaki M. Tetrahedron 2004;60:9569. (c) Sha CK, Shen CY, Jean TS, Chiu RT, Tseng WH. Tetrahedron Lett 1993;34:7641. (d) Sha CK, Santhosh KC, Tseng CT, Lin CT. J Chem Soc, Chem Commun 1998:397. (e) Campos PJ, Arranz J, Rodriguez MA. Tetrahedron Lett 1997;38:8397. (f) Matsuo K, Ishida S, Takuno Y. Chem Pharm Bull 1994;42:1149. (g) Kordik CP, Reitz AB. J Org Chem 1996;61:5644. (h) Ramesh NG, Heijne EH, Klunder AJH, Zwanenburg B. Tetrahedron Lett 1998;39:3295. (i) Ramesh NG, Heijne EH, Klunder AJH, Zwanenburg B. Tetrahedron 2002;58:1361. (j) Papoutsis I, Spyroudis S, Varvoglis A, Callies JA, Zhdankin VV. Tetrahedron Lett 1997;38:8401.
- 7. For an example of a bromodesilylation on an unprotected enaminone see: Comins DL, Chen X, Morgan LA. J Org Chem 1997;62:7435. [PubMed: 11671861]
- Johnson CR, Adams JP, Braun MP, Senanayake CBW, Wovkulich PM, Uskokovic MR. Tetrahedron Lett 1992;33:917.
- 9. Table 1, method A: **6-Iodo-2,3,8,8a-tetrahydroindolizin-7(1H)-one (1a).** Enaminone **1** (760 mg, 5.54 mmol) was dissolved in CCl₄/pyridine (1:1, 10 mL) and cooled to 0 °C. To this mixture was added iodine (3.52 g, 13.9 mmol) in CCl₄/pyridine (1:1, 2 mL) dropwise. The reaction was then allowed to warm to rt. After 5 h this solution was concentrated into a brown oil under reduced pressure and purified via flash column chromatography (silica gel, 1% Et₃N in EtOAc) to provide 1.45 g of the title compound (99%) as a yellow solid (mp = 97–98 °C: ¹H NMR (500 MHz, CDCl₃) δ 1.62–1.72 (m, 1H) 1.90–2.10 (m, 1H), 2.07–2.17 (m, 1H), 2.22–2.23 (m, 1H), 2.43 (dd, *J* = 16.2 Hz, 16.2 Hz, 1H), 2.74 (dd, *J* = 15.9 Hz, 4.7 Hz, 1H), 3.59–3.66 (m, 2H), 3.81–3.93 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 24.6, 32.4, 40.3, 49.8, 58.3, 59.9, 154.7, 185.3; IR (neat) 2970, 2872, 1620, 1559, 1296, 1223 cm⁻¹; HRMS (ES+) *m/e* calc'd for [M+H]⁺ C₈H₁₁INO: 263.9885, found 263.9886.
- 10. Iodination Method B: **6-Iodo-2,3,8,8a-tetrahydroindolizin-7(1***H***)-one (1a). To a stirred solution of enaminone 1 (137 mg, 1.0 mmol) and iodine (254 mg, 1.0 mmol) in CH_2Cl_2 (3 ml) was added Et_3N (140 µl, 1.0 mmol) at rt. After 5 min this solution was concentrated into a brown oil under reduced pressure then purified via flash chromatography (silica gel, 1% Et_3N in EtOAc) to provide the desired \alpha-iodoenaminone 1a (95%).**
- 11. Iodination Method C: **3-Iodo-7,8,9a-tetrahydro-1***H***-quinolizin-2**(*6H*)**-one** (**2a**). A solution of I₂ in CH₂Cl₂ (210 mg, 0.83 mmol, 0.05M) was added dropwise over 20 min to a solution of enaminone **2** (104 mg, 0.69 mmol) and DMAP (171 mg, 1.38 mmol) in CH₂Cl₂ (15 mL) at rt. After stirring overnight at the same temperature, the reaction mixture was quenched by the addition of water and extracted with CH₂Cl₂ (2×). The combined organic layers were washed with saturated aq. NH₄Cl, water, saturated aq. Na₂S₂O₃, water, brine, dried over Na₂SO₄ and concentrated. The residue was purified by flash column chromatography (silica gel, 50% EtOAc in hexanes) to afford iodide **2a** (186 mg, 97%) as a pale yellow oil: ¹H NMR (500 MHz, CDCl₃) δ 1.30–1.57 (m, 3H), 1.69–1.83 (m, 3H), 2.42 (dd, 1H, *J* = 13.2 Hz), 2.70 (dd, 1H, *J* = 5.4 Hz), 3.04 (td, 1H, *J* = 3 Hz, 3.36–3.43 (m, 2H), 7.34 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.91, 25.53, 31.55, 41.94, 53.17, 57,26, 62.71, 159.48, 186.03; IR (neat) 2924, 2853, 1630, 1564, 1461, 1318, 1136 cm⁻¹; HRMS (ES+) *m/e* calc'd for [M+H]⁺ C₉H₁₃INO : 278.0036, found 278.0038.
- (a) Comins DL, Joseph SP, Chen X. Tetrahedron Lett 1995;36:9141. (b) Felpin FX. J Org Chem 2005;70:8575. [PubMed: 16209612]
- 13. Cordell GA. The Alkaloids: Chemistry and Biology 2003;60
- 14. Conventional heating method: **6-(3,4-Dimethoxyphenyl)-2,3,8,8a-tetrahydroindolizin-7(1***H***)-one (1h**). α -Iodoenaminone **1a** (240 mg, 0.91 mmol) was dissolved in degassed dioxane:water (3:1, 4 mL). The 3,4-dimethoxyphenylboronic acid (282 mg, 1.55 mmol), barium hydroxide (345 mg, 1.82 mmol), and Pd(PPh₃)₄ (210 mg, 0.182 mmol) were added sequentially. This mixture, equipped with reflux condenser, was heated to 110 °C for 18 h. The reaction was allowed to cool to rt, concentrated under reduced pressure, dissolved in CH₂Cl₂, filtered, dried over Na₂SO₄, and purified via flash column chromatography (silica gel, 1% Et₃N in EtOAc) to provide 161 mg of the title compound (65%) as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 1.65–1.80 (m, 1H) 1.91–2.07 (m, 1H), 2.08–2.18 (m, 1H), 2.26–2.39 (m, 1H), 2.45–2.60 (m, 2H), 3.55–3.63 (m, 2H), 3.83–3.88 (m, 1H), 3.86 (s, 3H), 3.88 (s, 3H), 6.80–6.86 (m, 2H), 7.09 (s, 1H), 7.42 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 24.8, 33.4, 42.7, 50.2, 56.2, 56.3, 58.2, 110.0, 111.5, 112.0, 119.7, 129.0, 130.3, 147.4, 148.9, 149.3, 189.5; IR (neat) 3381, 2935, 2835, 1609, 1514, 1407, 1250 cm⁻¹; HRMS (ES+) *m/e* calc'd for [M +H]⁺ C₁₆H₂₀NO₃ : 274.1443, found 274.1441.

15. Microwave irradiation method: **6-(3,4-Dimethoxyphenyl)-2,3,8,8a-tetrahydroindolizin-7(1***H***)-one (1h).** α-Iodo enaminone **1a** (240 mg, 0.91 mmol) was dissolved in degassed dioxane:water (3:1, 4 mL). The 3,4-dimethoxyphenylboronic acid (282 mg, 1.55 mmol), barium hydroxide (345 mg, 1.82 mmol), and Pd(PPh₃)₄ (210 mg, 0.182 mmol) were added sequentially. This mixture was heated under microwave irradiation at 150 °C for 1 h. The reaction was allowed to cool to rt, concentrated under reduced pressure, dissolved in CH₂Cl₂, filtered, dried over Na₂SO₄, and purified via flash column chromatography (silica gel, 1% Et₃N in EtOAc) to provide 187 mg of the title compound (75%).

Figure 1. Proposed route to α -aryl enaminones.

Tetrahedron Lett. Author manuscript; available in PMC 2008 December 10.

-

-

Table 1

α -Iodination of enaminones.

Enaminone	Conditions	α-Iodo enaminone	Yield (%) ^{<i>a</i>}
	A. pyridine/CCl ₄ , I ₂ B. CH ₂ Cl ₂ , I ₂ , then NEt ₃		99 95
	B. CH ₂ Cl ₂ , I ₂ , then NEt ₃ C. CH ₂ Cl ₂ , I ₂ , DMAP		87 97
	B. CH_2Cl_2 , I_2 , then NEt_3		85
3 Me ^{-N}	B. CH_2Cl_2 , I_2 , then NEt_3	3a Me ^{-N}	88
Ph HN	B. CH ₂ Cl ₂ , I ₂ , then NEt ₃	4a Ph HN	85
5 PhNO	C. CH ₂ Cl ₂ , I ₂ , DMAP	5a Ph_N_I	94
6		6a	

^aIsolated yield

Table 2

Optimization of coupling reaction between enaminone 1a and 4-methoxyphenylboronic acid.^a

Entry	Base	Solvent(s), Temperature	Reaction Time	Yield % ^b
1	CaCO ₃	DMF/H ₂ O (3/1), 150 °C	20 h	0
2	Na ₂ CO ₃	DME/H ₂ O (1/1), 100 °C	20 h	13
3	Na ₂ CO ₃	toluene, 110 °C	20 h	23
4	Na ₂ CO ₃	toluene/EtOH (1/1), 110 °C	20 h	25
5	ČsF	MeCN/H ₂ O (1/1), 100 °C	14 h	27
6	$Ba(OH)_2$	dioxane/H ₂ O (3/1), 110 °C	14 h	65
7 ^{<i>c</i>}	Ba(OH) ₂	dioxane/H ₂ O (3/1), 150 °C MW ^{C}	15 min	70

^aCompound **1a** (0.10 mmol) was dissolved in degassed solvent mixture (0.25–0.5 M) under argon and 4-methoxyphenylboronic acid (0.17 mmol), base (0.20 mmol) and Pd(PPh3)4 (0.02 mmol) added.

^bIsolated yield.

 $^{\it C}$ Carried out employing microwave irradiation (150 °C, 15 min).

Cross coupling of iodoenaminones and arylboronic acids.^a

α-Iodo enaminone	Product	Substitution (R ₁ , R ₂ , R ₃)	Yield $(\%)^b$
		1b (H, H, OMe) 1c (H, H, OBn)	70 71
1a		1_{0} (Cl. Cl. U)	57
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16 (CI, CI, H) 1f (H, H, H)	60 65
		1 g (H, H, OH)	45
		$\mathbf{1h}$ (H, OMe, OMe)	75 ^c
~~~ ⁰	~~~0	<b>2b</b> (as shown)	72
2a	OMe OMe OMe Ph OMe OMe	<b>3b</b> (as shown)	60
Sa O		<b>4b</b> (H H OMe)	60
N J		<b>4c</b> (H, H, OBn)	71
Me	Me ^{-N}	<b>4d</b> (H, NO ₂ , H)	62
4a	R ₂	<b>4e</b> (Cl, Cl, H)	50
		<b>4f</b> (H, H, H)	55
		<b>4g</b> (H, H, OH)	36
$\hat{\rho}$	$\sim \sim \sim^{0}$	4h (H, OMe, OMe)	68 70
	Ph' HN OMe	<b>50</b> (as snown)	70
	Ph_N_COMe	<b>6b</b> (as shown)	69
va			

 $^{a}\mathrm{Coupling}$  reactions were conducted as in Table 2, entry 7.

^bIsolated yields.

^c1 h reaction time.

Tetrahedron Lett. Author manuscript; available in PMC 2008 December 10.